Library Bignums.CyclicDouble.DoubleDivn1


Set Implicit Arguments.

Require Import ZArith Ndigits.
Require Import BigNumPrelude.
Require Import DoubleType.
Require Import DoubleBase.

Local Open Scope Z_scope.

Local Infix "<<" := Pos.shiftl_nat (at level 30).

Section GENDIVN1.

 Variable w : Type.
 Variable w_digits : positive.
 Variable w_zdigits : w.
 Variable w_0 : w.
 Variable w_WW : w -> w -> zn2z w.
 Variable w_head0 : w -> w.
 Variable w_add_mul_div : w -> w -> w -> w.
 Variable w_div21 : w -> w -> w -> w * w.
 Variable w_compare : w -> w -> comparison.
 Variable w_sub : w -> w -> w.

 Variable w_to_Z : w -> Z.

 Notation wB := (base w_digits).

 Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99).
 Notation "[! n | x !]" := (double_to_Z w_digits w_to_Z n x)
                                      (at level 0, x at level 99).
 Notation "[[ x ]]" := (zn2z_to_Z wB w_to_Z x) (at level 0, x at level 99).

 Variable spec_to_Z : forall x, 0 <= [| x |] < wB.
 Variable spec_w_zdigits: [|w_zdigits|] = Zpos w_digits.
 Variable spec_0 : [|w_0|] = 0.
 Variable spec_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|].
 Variable spec_head0 : forall x, 0 < [|x|] ->
         wB/ 2 <= 2 ^ [|w_head0 x|] * [|x|] < wB.
 Variable spec_add_mul_div : forall x y p,
        [|p|] <= Zpos w_digits ->
       [| w_add_mul_div p x y |] =
         ([|x|] * (2 ^ [|p|]) +
          [|y|] / (2 ^ ((Zpos w_digits) - [|p|]))) mod wB.
 Variable spec_div21 : forall a1 a2 b,
     wB/2 <= [|b|] ->
     [|a1|] < [|b|] ->
     let (q,r) := w_div21 a1 a2 b in
     [|a1|] *wB+ [|a2|] = [|q|] * [|b|] + [|r|] /\
     0 <= [|r|] < [|b|].
 Variable spec_compare :
   forall x y, w_compare x y = Z.compare [|x|] [|y|].
 Variable spec_sub: forall x y,
   [|w_sub x y|] = ([|x|] - [|y|]) mod wB.

 Section DIVAUX.
  Variable b2p : w.
  Variable b2p_le : wB/2 <= [|b2p|].

  Definition double_divn1_0_aux n (divn1: w -> word w n -> word w n * w) r h :=
   let (hh,hl) := double_split w_0 n h in
   let (qh,rh) := divn1 r hh in
   let (ql,rl) := divn1 rh hl in
   (double_WW w_WW n qh ql, rl).

  Fixpoint double_divn1_0 (n:nat) : w -> word w n -> word w n * w :=
   match n return w -> word w n -> word w n * w with
   | O => fun r x => w_div21 r x b2p
   | S n => double_divn1_0_aux n (double_divn1_0 n)
   end.

  Lemma spec_split : forall (n : nat) (x : zn2z (word w n)),
       let (h, l) := double_split w_0 n x in
       [!S n | x!] = [!n | h!] * double_wB w_digits n + [!n | l!].
  Proof (spec_double_split w_0 w_digits w_to_Z spec_0).

  Lemma spec_double_divn1_0 : forall n r a,
    [|r|] < [|b2p|] ->
    let (q,r') := double_divn1_0 n r a in
    [|r|] * double_wB w_digits n + [!n|a!] = [!n|q!] * [|b2p|] + [|r'|] /\
    0 <= [|r'|] < [|b2p|].
  Proof.
   induction n;intros.
   exact (spec_div21 a b2p_le H).
   simpl (double_divn1_0 (S n) r a); unfold double_divn1_0_aux.
   assert (H1 := spec_split n a);destruct (double_split w_0 n a) as (hh,hl).
   rewrite H1.
   assert (H2 := IHn r hh H);destruct (double_divn1_0 n r hh) as (qh,rh).
   destruct H2.
   assert ([|rh|] < [|b2p|]). omega.
   assert (H4 := IHn rh hl H3);destruct (double_divn1_0 n rh hl) as (ql,rl).
   destruct H4;split;trivial.
   rewrite spec_double_WW;trivial.
   rewrite <- double_wB_wwB.
   rewrite Z.mul_assoc;rewrite Z.add_assoc;rewrite <- Z.mul_add_distr_r.
   rewrite H0;rewrite Z.mul_add_distr_r;rewrite <- Z.add_assoc.
   rewrite H4;ring.
  Qed.

  Definition double_modn1_0_aux n (modn1:w -> word w n -> w) r h :=
   let (hh,hl) := double_split w_0 n h in modn1 (modn1 r hh) hl.

  Fixpoint double_modn1_0 (n:nat) : w -> word w n -> w :=
   match n return w -> word w n -> w with
   | O => fun r x => snd (w_div21 r x b2p)
   | S n => double_modn1_0_aux n (double_modn1_0 n)
   end.

  Lemma spec_double_modn1_0 : forall n r x,
     double_modn1_0 n r x = snd (double_divn1_0 n r x).
  Proof.
   induction n;simpl;intros;trivial.
   unfold double_modn1_0_aux, double_divn1_0_aux.
   destruct (double_split w_0 n x) as (hh,hl).
   rewrite (IHn r hh).
   destruct (double_divn1_0 n r hh) as (qh,rh);simpl.
   rewrite IHn. destruct (double_divn1_0 n rh hl);trivial.
  Qed.

  Variable p : w.
  Variable p_bounded : [|p|] <= Zpos w_digits.

  Lemma spec_add_mul_divp : forall x y,
    [| w_add_mul_div p x y |] =
       ([|x|] * (2 ^ [|p|]) +
          [|y|] / (2 ^ ((Zpos w_digits) - [|p|]))) mod wB.
  Proof.
   intros;apply spec_add_mul_div;auto.
  Qed.

  Definition double_divn1_p_aux n
   (divn1 : w -> word w n -> word w n -> word w n * w) r h l :=
   let (hh,hl) := double_split w_0 n h in
   let (lh,ll) := double_split w_0 n l in
   let (qh,rh) := divn1 r hh hl in
   let (ql,rl) := divn1 rh hl lh in
   (double_WW w_WW n qh ql, rl).

  Fixpoint double_divn1_p (n:nat) : w -> word w n -> word w n -> word w n * w :=
   match n return w -> word w n -> word w n -> word w n * w with
   | O => fun r h l => w_div21 r (w_add_mul_div p h l) b2p
   | S n => double_divn1_p_aux n (double_divn1_p n)
   end.

  Lemma p_lt_double_digits : forall n, [|p|] <= Zpos (w_digits << n).
  Proof.
   induction n;simpl. trivial.
   case (spec_to_Z p); rewrite Pos2Z.inj_xO;auto with zarith.
  Qed.

  Lemma spec_double_divn1_p : forall n r h l,
    [|r|] < [|b2p|] ->
    let (q,r') := double_divn1_p n r h l in
    [|r|] * double_wB w_digits n +
      ([!n|h!]*2^[|p|] +
        [!n|l!] / (2^(Zpos(w_digits << n) - [|p|])))
        mod double_wB w_digits n = [!n|q!] * [|b2p|] + [|r'|] /\
    0 <= [|r'|] < [|b2p|].
  Proof.
   case (spec_to_Z p); intros HH0 HH1.
   induction n;intros.
   simpl (double_divn1_p 0 r h l).
   unfold double_to_Z, double_wB, "<<".
   rewrite <- spec_add_mul_divp.
   exact (spec_div21 (w_add_mul_div p h l) b2p_le H).
   simpl (double_divn1_p (S n) r h l).
   unfold double_divn1_p_aux.
   assert (H1 := spec_split n h);destruct (double_split w_0 n h) as (hh,hl).
   rewrite H1. rewrite <- double_wB_wwB.
   assert (H2 := spec_split n l);destruct (double_split w_0 n l) as (lh,ll).
   rewrite H2.
   replace ([|r|] * (double_wB w_digits n * double_wB w_digits n) +
    (([!n|hh!] * double_wB w_digits n + [!n|hl!]) * 2 ^ [|p|] +
    ([!n|lh!] * double_wB w_digits n + [!n|ll!]) /
     2^(Zpos (w_digits << (S n)) - [|p|])) mod
      (double_wB w_digits n * double_wB w_digits n)) with
    (([|r|] * double_wB w_digits n + ([!n|hh!] * 2^[|p|] +
      [!n|hl!] / 2^(Zpos (w_digits << n) - [|p|])) mod
                      double_wB w_digits n) * double_wB w_digits n +
     ([!n|hl!] * 2^[|p|] +
      [!n|lh!] / 2^(Zpos (w_digits << n) - [|p|])) mod
              double_wB w_digits n).
   generalize (IHn r hh hl H);destruct (double_divn1_p n r hh hl) as (qh,rh);
   intros (H3,H4);rewrite H3.
   assert ([|rh|] < [|b2p|]). omega.
   replace (([!n|qh!] * [|b2p|] + [|rh|]) * double_wB w_digits n +
     ([!n|hl!] * 2 ^ [|p|] +
      [!n|lh!] / 2 ^ (Zpos (w_digits << n) - [|p|])) mod
      double_wB w_digits n) with
    ([!n|qh!] * [|b2p|] *double_wB w_digits n + ([|rh|]*double_wB w_digits n +
      ([!n|hl!] * 2 ^ [|p|] +
       [!n|lh!] / 2 ^ (Zpos (w_digits << n) - [|p|])) mod
      double_wB w_digits n)). 2:ring.
   generalize (IHn rh hl lh H0);destruct (double_divn1_p n rh hl lh) as (ql,rl);
   intros (H5,H6);rewrite H5.
   split;[rewrite spec_double_WW;trivial;ring|trivial].
   assert (Uhh := spec_double_to_Z w_digits w_to_Z spec_to_Z n hh);
    unfold double_wB,base in Uhh.
   assert (Uhl := spec_double_to_Z w_digits w_to_Z spec_to_Z n hl);
    unfold double_wB,base in Uhl.
   assert (Ulh := spec_double_to_Z w_digits w_to_Z spec_to_Z n lh);
    unfold double_wB,base in Ulh.
   assert (Ull := spec_double_to_Z w_digits w_to_Z spec_to_Z n ll);
    unfold double_wB,base in Ull.
   unfold double_wB,base.
   assert (UU:=p_lt_double_digits n).
   rewrite Zdiv_shift_r;auto with zarith.
   2:change (Zpos (w_digits << (S n)))
     with (2*Zpos (w_digits << n));auto with zarith.
   replace (2 ^ (Zpos (w_digits << (S n)) - [|p|])) with
    (2^(Zpos (w_digits << n) - [|p|])*2^Zpos (w_digits << n)).
   rewrite Zdiv_mult_cancel_r;auto with zarith.
   rewrite Z.mul_add_distr_r with (p:= 2^[|p|]).
   pattern ([!n|hl!] * 2^[|p|]) at 2;
   rewrite (shift_unshift_mod (Zpos(w_digits << n))([|p|])([!n|hl!]));
    auto with zarith.
   rewrite Z.add_assoc.
   replace
    ([!n|hh!] * 2^Zpos (w_digits << n)* 2^[|p|] +
      ([!n|hl!] / 2^(Zpos (w_digits << n)-[|p|])*
       2^Zpos(w_digits << n)))
   with
    (([!n|hh!] *2^[|p|] + double_to_Z w_digits w_to_Z n hl /
       2^(Zpos (w_digits << n)-[|p|]))
      * 2^Zpos(w_digits << n));try (ring;fail).
   rewrite <- Z.add_assoc.
   rewrite <- (Zmod_shift_r ([|p|]));auto with zarith.
   replace
     (2 ^ Zpos (w_digits << n) * 2 ^ Zpos (w_digits << n)) with
     (2 ^ (Zpos (w_digits << n) + Zpos (w_digits << n))).
   rewrite (Zmod_shift_r (Zpos (w_digits << n)));auto with zarith.
   replace (2 ^ (Zpos (w_digits << n) + Zpos (w_digits << n)))
   with (2^Zpos(w_digits << n) *2^Zpos(w_digits << n)).
   rewrite (Z.mul_comm (([!n|hh!] * 2 ^ [|p|] +
      [!n|hl!] / 2 ^ (Zpos (w_digits << n) - [|p|])))).
   rewrite Zmult_mod_distr_l;auto with zarith.
   ring.
   rewrite Zpower_exp;auto with zarith.
   assert (0 < Zpos (w_digits << n)). unfold Z.lt;reflexivity.
   auto with zarith.
   apply Z_mod_lt;auto with zarith.
   rewrite Zpower_exp;auto with zarith.
   split;auto with zarith.
   apply Zdiv_lt_upper_bound;auto with zarith.
   rewrite <- Zpower_exp;auto with zarith.
   replace ([|p|] + (Zpos (w_digits << n) - [|p|])) with
     (Zpos(w_digits << n));auto with zarith.
   rewrite <- Zpower_exp;auto with zarith.
   replace (Zpos (w_digits << (S n)) - [|p|]) with
       (Zpos (w_digits << n) - [|p|] +
         Zpos (w_digits << n));trivial.
   change (Zpos (w_digits << (S n))) with
    (2*Zpos (w_digits << n)). ring.
  Qed.

  Definition double_modn1_p_aux n (modn1 : w -> word w n -> word w n -> w) r h l:=
   let (hh,hl) := double_split w_0 n h in
   let (lh,ll) := double_split w_0 n l in
   modn1 (modn1 r hh hl) hl lh.

  Fixpoint double_modn1_p (n:nat) : w -> word w n -> word w n -> w :=
   match n return w -> word w n -> word w n -> w with
   | O => fun r h l => snd (w_div21 r (w_add_mul_div p h l) b2p)
   | S n => double_modn1_p_aux n (double_modn1_p n)
   end.

  Lemma spec_double_modn1_p : forall n r h l ,
    double_modn1_p n r h l = snd (double_divn1_p n r h l).
  Proof.
   induction n;simpl;intros;trivial.
   unfold double_modn1_p_aux, double_divn1_p_aux.
   destruct(double_split w_0 n h)as(hh,hl);destruct(double_split w_0 n l) as (lh,ll).
   rewrite (IHn r hh hl);destruct (double_divn1_p n r hh hl) as (qh,rh).
   rewrite IHn;simpl;destruct (double_divn1_p n rh hl lh);trivial.
  Qed.

 End DIVAUX.

 Fixpoint high (n:nat) : word w n -> w :=
  match n return word w n -> w with
  | O => fun a => a
  | S n =>
    fun (a:zn2z (word w n)) =>
     match a with
     | W0 => w_0
     | WW h l => high n h
     end
  end.

 Lemma spec_double_digits:forall n, Zpos w_digits <= Zpos (w_digits << n).
 Proof.
  induction n;simpl;auto with zarith.
  change (Zpos (xO (w_digits << n))) with
    (2*Zpos (w_digits << n)).
  assert (0 < Zpos w_digits) by reflexivity.
  auto with zarith.
 Qed.

 Lemma spec_high : forall n (x:word w n),
   [|high n x|] = [!n|x!] / 2^(Zpos (w_digits << n) - Zpos w_digits).
 Proof.
  induction n;intros.
  unfold high,double_to_Z. rewrite Pshiftl_nat_0.
  replace (Zpos w_digits - Zpos w_digits) with 0;try ring.
  simpl. rewrite <- (Zdiv_unique [|x|] 1 [|x|] 0);auto with zarith.
  assert (U2 := spec_double_digits n).
  assert (U3 : 0 < Zpos w_digits). exact (eq_refl Lt).
  destruct x;unfold high;fold high.
  unfold double_to_Z,zn2z_to_Z;rewrite spec_0.
  rewrite Zdiv_0_l;trivial.
  assert (U0 := spec_double_to_Z w_digits w_to_Z spec_to_Z n w0);
   assert (U1 := spec_double_to_Z w_digits w_to_Z spec_to_Z n w1).
  simpl [!S n|WW w0 w1!].
  unfold double_wB,base;rewrite Zdiv_shift_r;auto with zarith.
  replace (2 ^ (Zpos (w_digits << (S n)) - Zpos w_digits)) with
   (2^(Zpos (w_digits << n) - Zpos w_digits) *
        2^Zpos (w_digits << n)).
  rewrite Zdiv_mult_cancel_r;auto with zarith.
  rewrite <- Zpower_exp;auto with zarith.
  replace (Zpos (w_digits << n) - Zpos w_digits +
    Zpos (w_digits << n)) with
   (Zpos (w_digits << (S n)) - Zpos w_digits);trivial.
  change (Zpos (w_digits << (S n))) with
     (2*Zpos (w_digits << n));ring.
  change (Zpos (w_digits << (S n))) with
  (2*Zpos (w_digits << n)); auto with zarith.
 Qed.

 Definition double_divn1 (n:nat) (a:word w n) (b:w) :=
  let p := w_head0 b in
  match w_compare p w_0 with
  | Gt =>
    let b2p := w_add_mul_div p b w_0 in
    let ha := high n a in
    let k := w_sub w_zdigits p in
    let lsr_n := w_add_mul_div k w_0 in
    let r0 := w_add_mul_div p w_0 ha in
    let (q,r) := double_divn1_p b2p p n r0 a (double_0 w_0 n) in
    (q, lsr_n r)
  | _ => double_divn1_0 b n w_0 a
  end.

 Lemma spec_double_divn1 : forall n a b,
    0 < [|b|] ->
    let (q,r) := double_divn1 n a b in
    [!n|a!] = [!n|q!] * [|b|] + [|r|] /\
    0 <= [|r|] < [|b|].
  Proof.
   intros n a b H. unfold double_divn1.
   case (spec_head0 H); intros H0 H1.
   case (spec_to_Z (w_head0 b)); intros HH1 HH2.
   rewrite spec_compare; case Z.compare_spec;
     rewrite spec_0; intros H2; auto with zarith.
   assert (Hv1: wB/2 <= [|b|]).
     generalize H0; rewrite H2; rewrite Z.pow_0_r;
       rewrite Z.mul_1_l; auto.
   assert (Hv2: [|w_0|] < [|b|]).
     rewrite spec_0; auto.
   generalize (spec_double_divn1_0 Hv1 n a Hv2).
   rewrite spec_0;rewrite Z.mul_0_l; rewrite Z.add_0_l; auto.
   contradict H2; auto with zarith.
   assert (HHHH : 0 < [|w_head0 b|]); auto with zarith.
   assert ([|w_head0 b|] < Zpos w_digits).
    case (Z.le_gt_cases (Zpos w_digits) [|w_head0 b|]); auto; intros HH.
    assert (2 ^ [|w_head0 b|] < wB).
     apply Z.le_lt_trans with (2 ^ [|w_head0 b|] * [|b|]);auto with zarith.
     replace (2 ^ [|w_head0 b|]) with (2^[|w_head0 b|] * 1);try (ring;fail).
     apply Z.mul_le_mono_nonneg;auto with zarith.
     assert (wB <= 2^[|w_head0 b|]).
     unfold base;apply Zpower_le_monotone;auto with zarith. omega.
   assert ([|w_add_mul_div (w_head0 b) b w_0|] =
               2 ^ [|w_head0 b|] * [|b|]).
    rewrite (spec_add_mul_div b w_0); auto with zarith.
    rewrite spec_0;rewrite Zdiv_0_l; try omega.
    rewrite Z.add_0_r; rewrite Z.mul_comm.
    rewrite Zmod_small; auto with zarith.
   assert (H5 := spec_to_Z (high n a)).
   assert
    ([|w_add_mul_div (w_head0 b) w_0 (high n a)|]
          <[|w_add_mul_div (w_head0 b) b w_0|]).
    rewrite H4.
    rewrite spec_add_mul_div;auto with zarith.
    rewrite spec_0;rewrite Z.mul_0_l;rewrite Z.add_0_l.
    assert (([|high n a|]/2^(Zpos w_digits - [|w_head0 b|])) < wB).
     apply Zdiv_lt_upper_bound;auto with zarith.
     apply Z.lt_le_trans with wB;auto with zarith.
     pattern wB at 1;replace wB with (wB*1);try ring.
     apply Z.mul_le_mono_nonneg;auto with zarith.
     assert (H6 := Z.pow_pos_nonneg 2 (Zpos w_digits - [|w_head0 b|]));
       auto with zarith.
    rewrite Zmod_small;auto with zarith.
    apply Zdiv_lt_upper_bound;auto with zarith.
    apply Z.lt_le_trans with wB;auto with zarith.
    apply Z.le_trans with (2 ^ [|w_head0 b|] * [|b|] * 2).
    rewrite <- wB_div_2; try omega.
    apply Z.mul_le_mono_nonneg;auto with zarith.
    pattern 2 at 1;rewrite <- Z.pow_1_r.
    apply Zpower_le_monotone;split;auto with zarith.
   rewrite <- H4 in H0.
   assert (Hb3: [|w_head0 b|] <= Zpos w_digits); auto with zarith.
   assert (H7:= spec_double_divn1_p H0 Hb3 n a (double_0 w_0 n) H6).
   destruct (double_divn1_p (w_add_mul_div (w_head0 b) b w_0) (w_head0 b) n
             (w_add_mul_div (w_head0 b) w_0 (high n a)) a
             (double_0 w_0 n)) as (q,r).
   assert (U:= spec_double_digits n).
   rewrite spec_double_0 in H7;trivial;rewrite Zdiv_0_l in H7.
   rewrite Z.add_0_r in H7.
   rewrite spec_add_mul_div in H7;auto with zarith.
   rewrite spec_0 in H7;rewrite Z.mul_0_l in H7;rewrite Z.add_0_l in H7.
   assert (([|high n a|] / 2 ^ (Zpos w_digits - [|w_head0 b|])) mod wB
     = [!n|a!] / 2^(Zpos (w_digits << n) - [|w_head0 b|])).
   rewrite Zmod_small;auto with zarith.
   rewrite spec_high. rewrite Zdiv_Zdiv;auto with zarith.
   rewrite <- Zpower_exp;auto with zarith.
   replace (Zpos (w_digits << n) - Zpos w_digits +
                       (Zpos w_digits - [|w_head0 b|]))
    with (Zpos (w_digits << n) - [|w_head0 b|]);trivial;ring.
   assert (H8 := Z.pow_pos_nonneg 2 (Zpos w_digits - [|w_head0 b|]));auto with zarith.
   split;auto with zarith.
   apply Z.le_lt_trans with ([|high n a|]);auto with zarith.
   apply Zdiv_le_upper_bound;auto with zarith.
   pattern ([|high n a|]) at 1;rewrite <- Z.mul_1_r.
   apply Z.mul_le_mono_nonneg;auto with zarith.
   rewrite H8 in H7;unfold double_wB,base in H7.
   rewrite <- shift_unshift_mod in H7;auto with zarith.
   rewrite H4 in H7.
   assert ([|w_add_mul_div (w_sub w_zdigits (w_head0 b)) w_0 r|]
               = [|r|]/2^[|w_head0 b|]).
   rewrite spec_add_mul_div.
   rewrite spec_0;rewrite Z.mul_0_l;rewrite Z.add_0_l.
   replace (Zpos w_digits - [|w_sub w_zdigits (w_head0 b)|])
      with ([|w_head0 b|]).
   rewrite Zmod_small;auto with zarith.
   assert (H9 := spec_to_Z r).
   split;auto with zarith.
   apply Z.le_lt_trans with ([|r|]);auto with zarith.
   apply Zdiv_le_upper_bound;auto with zarith.
   pattern ([|r|]) at 1;rewrite <- Z.mul_1_r.
   apply Z.mul_le_mono_nonneg;auto with zarith.
   assert (H10 := Z.pow_pos_nonneg 2 ([|w_head0 b|]));auto with zarith.
   rewrite spec_sub.
   rewrite Zmod_small; auto with zarith.
   split; auto with zarith.
   case (spec_to_Z w_zdigits); auto with zarith.
   rewrite spec_sub.
   rewrite Zmod_small; auto with zarith.
   split; auto with zarith.
   case (spec_to_Z w_zdigits); auto with zarith.
  case H7; intros H71 H72.
   split.
   rewrite <- (Z_div_mult [!n|a!] (2^[|w_head0 b|]));auto with zarith.
   rewrite H71;rewrite H9.
   replace ([!n|q!] * (2 ^ [|w_head0 b|] * [|b|]))
      with ([!n|q!] *[|b|] * 2^[|w_head0 b|]);
     try (ring;fail).
   rewrite Z_div_plus_l;auto with zarith.
   assert (H10 := spec_to_Z
       (w_add_mul_div (w_sub w_zdigits (w_head0 b)) w_0 r));split;
    auto with zarith.
   rewrite H9.
   apply Zdiv_lt_upper_bound;auto with zarith.
   rewrite Z.mul_comm;auto with zarith.
   exact (spec_double_to_Z w_digits w_to_Z spec_to_Z n a).
 Qed.

 Definition double_modn1 (n:nat) (a:word w n) (b:w) :=
  let p := w_head0 b in
  match w_compare p w_0 with
  | Gt =>
    let b2p := w_add_mul_div p b w_0 in
    let ha := high n a in
    let k := w_sub w_zdigits p in
    let lsr_n := w_add_mul_div k w_0 in
    let r0 := w_add_mul_div p w_0 ha in
    let r := double_modn1_p b2p p n r0 a (double_0 w_0 n) in
    lsr_n r
  | _ => double_modn1_0 b n w_0 a
  end.

 Lemma spec_double_modn1_aux : forall n a b,
    double_modn1 n a b = snd (double_divn1 n a b).
 Proof.
  intros n a b;unfold double_divn1,double_modn1.
  rewrite spec_compare; case Z.compare_spec;
     rewrite spec_0; intros H2; auto with zarith.
  apply spec_double_modn1_0.
  apply spec_double_modn1_0.
  rewrite spec_double_modn1_p.
  destruct (double_divn1_p (w_add_mul_div (w_head0 b) b w_0) (w_head0 b) n
            (w_add_mul_div (w_head0 b) w_0 (high n a)) a (double_0 w_0 n));simpl;trivial.
 Qed.

 Lemma spec_double_modn1 : forall n a b, 0 < [|b|] ->
  [|double_modn1 n a b|] = [!n|a!] mod [|b|].
 Proof.
  intros n a b H;assert (H1 := spec_double_divn1 n a H).
  assert (H2 := spec_double_modn1_aux n a b).
  rewrite H2;destruct (double_divn1 n a b) as (q,r).
  simpl;apply Zmod_unique with (double_to_Z w_digits w_to_Z n q);auto with zarith.
  destruct H1 as (h1,h2);rewrite h1;ring.
 Qed.

End GENDIVN1.