Library Bignums.CyclicDouble.DoubleDivn1
Set Implicit Arguments.
Require Import ZArith Ndigits.
Require Import BigNumPrelude.
Require Import DoubleType.
Require Import DoubleBase.
Local Open Scope Z_scope.
Local Infix "<<" := Pos.shiftl_nat (at level 30).
Section GENDIVN1.
Variable w : Type.
Variable w_digits : positive.
Variable w_zdigits : w.
Variable w_0 : w.
Variable w_WW : w -> w -> zn2z w.
Variable w_head0 : w -> w.
Variable w_add_mul_div : w -> w -> w -> w.
Variable w_div21 : w -> w -> w -> w * w.
Variable w_compare : w -> w -> comparison.
Variable w_sub : w -> w -> w.
Variable w_to_Z : w -> Z.
Notation wB := (base w_digits).
Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99).
Notation "[! n | x !]" := (double_to_Z w_digits w_to_Z n x)
(at level 0, x at level 99).
Notation "[[ x ]]" := (zn2z_to_Z wB w_to_Z x) (at level 0, x at level 99).
Variable spec_to_Z : forall x, 0 <= [| x |] < wB.
Variable spec_w_zdigits: [|w_zdigits|] = Zpos w_digits.
Variable spec_0 : [|w_0|] = 0.
Variable spec_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|].
Variable spec_head0 : forall x, 0 < [|x|] ->
wB/ 2 <= 2 ^ [|w_head0 x|] * [|x|] < wB.
Variable spec_add_mul_div : forall x y p,
[|p|] <= Zpos w_digits ->
[| w_add_mul_div p x y |] =
([|x|] * (2 ^ [|p|]) +
[|y|] / (2 ^ ((Zpos w_digits) - [|p|]))) mod wB.
Variable spec_div21 : forall a1 a2 b,
wB/2 <= [|b|] ->
[|a1|] < [|b|] ->
let (q,r) := w_div21 a1 a2 b in
[|a1|] *wB+ [|a2|] = [|q|] * [|b|] + [|r|] /\
0 <= [|r|] < [|b|].
Variable spec_compare :
forall x y, w_compare x y = Z.compare [|x|] [|y|].
Variable spec_sub: forall x y,
[|w_sub x y|] = ([|x|] - [|y|]) mod wB.
Section DIVAUX.
Variable b2p : w.
Variable b2p_le : wB/2 <= [|b2p|].
Definition double_divn1_0_aux n (divn1: w -> word w n -> word w n * w) r h :=
let (hh,hl) := double_split w_0 n h in
let (qh,rh) := divn1 r hh in
let (ql,rl) := divn1 rh hl in
(double_WW w_WW n qh ql, rl).
Fixpoint double_divn1_0 (n:nat) : w -> word w n -> word w n * w :=
match n return w -> word w n -> word w n * w with
| O => fun r x => w_div21 r x b2p
| S n => double_divn1_0_aux n (double_divn1_0 n)
end.
Lemma spec_split : forall (n : nat) (x : zn2z (word w n)),
let (h, l) := double_split w_0 n x in
[!S n | x!] = [!n | h!] * double_wB w_digits n + [!n | l!].
Proof (spec_double_split w_0 w_digits w_to_Z spec_0).
Lemma spec_double_divn1_0 : forall n r a,
[|r|] < [|b2p|] ->
let (q,r') := double_divn1_0 n r a in
[|r|] * double_wB w_digits n + [!n|a!] = [!n|q!] * [|b2p|] + [|r'|] /\
0 <= [|r'|] < [|b2p|].
Proof.
induction n;intros.
exact (spec_div21 a b2p_le H).
simpl (double_divn1_0 (S n) r a); unfold double_divn1_0_aux.
assert (H1 := spec_split n a);destruct (double_split w_0 n a) as (hh,hl).
rewrite H1.
assert (H2 := IHn r hh H);destruct (double_divn1_0 n r hh) as (qh,rh).
destruct H2.
assert ([|rh|] < [|b2p|]). omega.
assert (H4 := IHn rh hl H3);destruct (double_divn1_0 n rh hl) as (ql,rl).
destruct H4;split;trivial.
rewrite spec_double_WW;trivial.
rewrite <- double_wB_wwB.
rewrite Z.mul_assoc;rewrite Z.add_assoc;rewrite <- Z.mul_add_distr_r.
rewrite H0;rewrite Z.mul_add_distr_r;rewrite <- Z.add_assoc.
rewrite H4;ring.
Qed.
Definition double_modn1_0_aux n (modn1:w -> word w n -> w) r h :=
let (hh,hl) := double_split w_0 n h in modn1 (modn1 r hh) hl.
Fixpoint double_modn1_0 (n:nat) : w -> word w n -> w :=
match n return w -> word w n -> w with
| O => fun r x => snd (w_div21 r x b2p)
| S n => double_modn1_0_aux n (double_modn1_0 n)
end.
Lemma spec_double_modn1_0 : forall n r x,
double_modn1_0 n r x = snd (double_divn1_0 n r x).
Proof.
induction n;simpl;intros;trivial.
unfold double_modn1_0_aux, double_divn1_0_aux.
destruct (double_split w_0 n x) as (hh,hl).
rewrite (IHn r hh).
destruct (double_divn1_0 n r hh) as (qh,rh);simpl.
rewrite IHn. destruct (double_divn1_0 n rh hl);trivial.
Qed.
Variable p : w.
Variable p_bounded : [|p|] <= Zpos w_digits.
Lemma spec_add_mul_divp : forall x y,
[| w_add_mul_div p x y |] =
([|x|] * (2 ^ [|p|]) +
[|y|] / (2 ^ ((Zpos w_digits) - [|p|]))) mod wB.
Proof.
intros;apply spec_add_mul_div;auto.
Qed.
Definition double_divn1_p_aux n
(divn1 : w -> word w n -> word w n -> word w n * w) r h l :=
let (hh,hl) := double_split w_0 n h in
let (lh,ll) := double_split w_0 n l in
let (qh,rh) := divn1 r hh hl in
let (ql,rl) := divn1 rh hl lh in
(double_WW w_WW n qh ql, rl).
Fixpoint double_divn1_p (n:nat) : w -> word w n -> word w n -> word w n * w :=
match n return w -> word w n -> word w n -> word w n * w with
| O => fun r h l => w_div21 r (w_add_mul_div p h l) b2p
| S n => double_divn1_p_aux n (double_divn1_p n)
end.
Lemma p_lt_double_digits : forall n, [|p|] <= Zpos (w_digits << n).
Proof.
induction n;simpl. trivial.
case (spec_to_Z p); rewrite Pos2Z.inj_xO;auto with zarith.
Qed.
Lemma spec_double_divn1_p : forall n r h l,
[|r|] < [|b2p|] ->
let (q,r') := double_divn1_p n r h l in
[|r|] * double_wB w_digits n +
([!n|h!]*2^[|p|] +
[!n|l!] / (2^(Zpos(w_digits << n) - [|p|])))
mod double_wB w_digits n = [!n|q!] * [|b2p|] + [|r'|] /\
0 <= [|r'|] < [|b2p|].
Proof.
case (spec_to_Z p); intros HH0 HH1.
induction n;intros.
simpl (double_divn1_p 0 r h l).
unfold double_to_Z, double_wB, "<<".
rewrite <- spec_add_mul_divp.
exact (spec_div21 (w_add_mul_div p h l) b2p_le H).
simpl (double_divn1_p (S n) r h l).
unfold double_divn1_p_aux.
assert (H1 := spec_split n h);destruct (double_split w_0 n h) as (hh,hl).
rewrite H1. rewrite <- double_wB_wwB.
assert (H2 := spec_split n l);destruct (double_split w_0 n l) as (lh,ll).
rewrite H2.
replace ([|r|] * (double_wB w_digits n * double_wB w_digits n) +
(([!n|hh!] * double_wB w_digits n + [!n|hl!]) * 2 ^ [|p|] +
([!n|lh!] * double_wB w_digits n + [!n|ll!]) /
2^(Zpos (w_digits << (S n)) - [|p|])) mod
(double_wB w_digits n * double_wB w_digits n)) with
(([|r|] * double_wB w_digits n + ([!n|hh!] * 2^[|p|] +
[!n|hl!] / 2^(Zpos (w_digits << n) - [|p|])) mod
double_wB w_digits n) * double_wB w_digits n +
([!n|hl!] * 2^[|p|] +
[!n|lh!] / 2^(Zpos (w_digits << n) - [|p|])) mod
double_wB w_digits n).
generalize (IHn r hh hl H);destruct (double_divn1_p n r hh hl) as (qh,rh);
intros (H3,H4);rewrite H3.
assert ([|rh|] < [|b2p|]). omega.
replace (([!n|qh!] * [|b2p|] + [|rh|]) * double_wB w_digits n +
([!n|hl!] * 2 ^ [|p|] +
[!n|lh!] / 2 ^ (Zpos (w_digits << n) - [|p|])) mod
double_wB w_digits n) with
([!n|qh!] * [|b2p|] *double_wB w_digits n + ([|rh|]*double_wB w_digits n +
([!n|hl!] * 2 ^ [|p|] +
[!n|lh!] / 2 ^ (Zpos (w_digits << n) - [|p|])) mod
double_wB w_digits n)). 2:ring.
generalize (IHn rh hl lh H0);destruct (double_divn1_p n rh hl lh) as (ql,rl);
intros (H5,H6);rewrite H5.
split;[rewrite spec_double_WW;trivial;ring|trivial].
assert (Uhh := spec_double_to_Z w_digits w_to_Z spec_to_Z n hh);
unfold double_wB,base in Uhh.
assert (Uhl := spec_double_to_Z w_digits w_to_Z spec_to_Z n hl);
unfold double_wB,base in Uhl.
assert (Ulh := spec_double_to_Z w_digits w_to_Z spec_to_Z n lh);
unfold double_wB,base in Ulh.
assert (Ull := spec_double_to_Z w_digits w_to_Z spec_to_Z n ll);
unfold double_wB,base in Ull.
unfold double_wB,base.
assert (UU:=p_lt_double_digits n).
rewrite Zdiv_shift_r;auto with zarith.
2:change (Zpos (w_digits << (S n)))
with (2*Zpos (w_digits << n));auto with zarith.
replace (2 ^ (Zpos (w_digits << (S n)) - [|p|])) with
(2^(Zpos (w_digits << n) - [|p|])*2^Zpos (w_digits << n)).
rewrite Zdiv_mult_cancel_r;auto with zarith.
rewrite Z.mul_add_distr_r with (p:= 2^[|p|]).
pattern ([!n|hl!] * 2^[|p|]) at 2;
rewrite (shift_unshift_mod (Zpos(w_digits << n))([|p|])([!n|hl!]));
auto with zarith.
rewrite Z.add_assoc.
replace
([!n|hh!] * 2^Zpos (w_digits << n)* 2^[|p|] +
([!n|hl!] / 2^(Zpos (w_digits << n)-[|p|])*
2^Zpos(w_digits << n)))
with
(([!n|hh!] *2^[|p|] + double_to_Z w_digits w_to_Z n hl /
2^(Zpos (w_digits << n)-[|p|]))
* 2^Zpos(w_digits << n));try (ring;fail).
rewrite <- Z.add_assoc.
rewrite <- (Zmod_shift_r ([|p|]));auto with zarith.
replace
(2 ^ Zpos (w_digits << n) * 2 ^ Zpos (w_digits << n)) with
(2 ^ (Zpos (w_digits << n) + Zpos (w_digits << n))).
rewrite (Zmod_shift_r (Zpos (w_digits << n)));auto with zarith.
replace (2 ^ (Zpos (w_digits << n) + Zpos (w_digits << n)))
with (2^Zpos(w_digits << n) *2^Zpos(w_digits << n)).
rewrite (Z.mul_comm (([!n|hh!] * 2 ^ [|p|] +
[!n|hl!] / 2 ^ (Zpos (w_digits << n) - [|p|])))).
rewrite Zmult_mod_distr_l;auto with zarith.
ring.
rewrite Zpower_exp;auto with zarith.
assert (0 < Zpos (w_digits << n)). unfold Z.lt;reflexivity.
auto with zarith.
apply Z_mod_lt;auto with zarith.
rewrite Zpower_exp;auto with zarith.
split;auto with zarith.
apply Zdiv_lt_upper_bound;auto with zarith.
rewrite <- Zpower_exp;auto with zarith.
replace ([|p|] + (Zpos (w_digits << n) - [|p|])) with
(Zpos(w_digits << n));auto with zarith.
rewrite <- Zpower_exp;auto with zarith.
replace (Zpos (w_digits << (S n)) - [|p|]) with
(Zpos (w_digits << n) - [|p|] +
Zpos (w_digits << n));trivial.
change (Zpos (w_digits << (S n))) with
(2*Zpos (w_digits << n)). ring.
Qed.
Definition double_modn1_p_aux n (modn1 : w -> word w n -> word w n -> w) r h l:=
let (hh,hl) := double_split w_0 n h in
let (lh,ll) := double_split w_0 n l in
modn1 (modn1 r hh hl) hl lh.
Fixpoint double_modn1_p (n:nat) : w -> word w n -> word w n -> w :=
match n return w -> word w n -> word w n -> w with
| O => fun r h l => snd (w_div21 r (w_add_mul_div p h l) b2p)
| S n => double_modn1_p_aux n (double_modn1_p n)
end.
Lemma spec_double_modn1_p : forall n r h l ,
double_modn1_p n r h l = snd (double_divn1_p n r h l).
Proof.
induction n;simpl;intros;trivial.
unfold double_modn1_p_aux, double_divn1_p_aux.
destruct(double_split w_0 n h)as(hh,hl);destruct(double_split w_0 n l) as (lh,ll).
rewrite (IHn r hh hl);destruct (double_divn1_p n r hh hl) as (qh,rh).
rewrite IHn;simpl;destruct (double_divn1_p n rh hl lh);trivial.
Qed.
End DIVAUX.
Fixpoint high (n:nat) : word w n -> w :=
match n return word w n -> w with
| O => fun a => a
| S n =>
fun (a:zn2z (word w n)) =>
match a with
| W0 => w_0
| WW h l => high n h
end
end.
Lemma spec_double_digits:forall n, Zpos w_digits <= Zpos (w_digits << n).
Proof.
induction n;simpl;auto with zarith.
change (Zpos (xO (w_digits << n))) with
(2*Zpos (w_digits << n)).
assert (0 < Zpos w_digits) by reflexivity.
auto with zarith.
Qed.
Lemma spec_high : forall n (x:word w n),
[|high n x|] = [!n|x!] / 2^(Zpos (w_digits << n) - Zpos w_digits).
Proof.
induction n;intros.
unfold high,double_to_Z. rewrite Pshiftl_nat_0.
replace (Zpos w_digits - Zpos w_digits) with 0;try ring.
simpl. rewrite <- (Zdiv_unique [|x|] 1 [|x|] 0);auto with zarith.
assert (U2 := spec_double_digits n).
assert (U3 : 0 < Zpos w_digits). exact (eq_refl Lt).
destruct x;unfold high;fold high.
unfold double_to_Z,zn2z_to_Z;rewrite spec_0.
rewrite Zdiv_0_l;trivial.
assert (U0 := spec_double_to_Z w_digits w_to_Z spec_to_Z n w0);
assert (U1 := spec_double_to_Z w_digits w_to_Z spec_to_Z n w1).
simpl [!S n|WW w0 w1!].
unfold double_wB,base;rewrite Zdiv_shift_r;auto with zarith.
replace (2 ^ (Zpos (w_digits << (S n)) - Zpos w_digits)) with
(2^(Zpos (w_digits << n) - Zpos w_digits) *
2^Zpos (w_digits << n)).
rewrite Zdiv_mult_cancel_r;auto with zarith.
rewrite <- Zpower_exp;auto with zarith.
replace (Zpos (w_digits << n) - Zpos w_digits +
Zpos (w_digits << n)) with
(Zpos (w_digits << (S n)) - Zpos w_digits);trivial.
change (Zpos (w_digits << (S n))) with
(2*Zpos (w_digits << n));ring.
change (Zpos (w_digits << (S n))) with
(2*Zpos (w_digits << n)); auto with zarith.
Qed.
Definition double_divn1 (n:nat) (a:word w n) (b:w) :=
let p := w_head0 b in
match w_compare p w_0 with
| Gt =>
let b2p := w_add_mul_div p b w_0 in
let ha := high n a in
let k := w_sub w_zdigits p in
let lsr_n := w_add_mul_div k w_0 in
let r0 := w_add_mul_div p w_0 ha in
let (q,r) := double_divn1_p b2p p n r0 a (double_0 w_0 n) in
(q, lsr_n r)
| _ => double_divn1_0 b n w_0 a
end.
Lemma spec_double_divn1 : forall n a b,
0 < [|b|] ->
let (q,r) := double_divn1 n a b in
[!n|a!] = [!n|q!] * [|b|] + [|r|] /\
0 <= [|r|] < [|b|].
Proof.
intros n a b H. unfold double_divn1.
case (spec_head0 H); intros H0 H1.
case (spec_to_Z (w_head0 b)); intros HH1 HH2.
rewrite spec_compare; case Z.compare_spec;
rewrite spec_0; intros H2; auto with zarith.
assert (Hv1: wB/2 <= [|b|]).
generalize H0; rewrite H2; rewrite Z.pow_0_r;
rewrite Z.mul_1_l; auto.
assert (Hv2: [|w_0|] < [|b|]).
rewrite spec_0; auto.
generalize (spec_double_divn1_0 Hv1 n a Hv2).
rewrite spec_0;rewrite Z.mul_0_l; rewrite Z.add_0_l; auto.
contradict H2; auto with zarith.
assert (HHHH : 0 < [|w_head0 b|]); auto with zarith.
assert ([|w_head0 b|] < Zpos w_digits).
case (Z.le_gt_cases (Zpos w_digits) [|w_head0 b|]); auto; intros HH.
assert (2 ^ [|w_head0 b|] < wB).
apply Z.le_lt_trans with (2 ^ [|w_head0 b|] * [|b|]);auto with zarith.
replace (2 ^ [|w_head0 b|]) with (2^[|w_head0 b|] * 1);try (ring;fail).
apply Z.mul_le_mono_nonneg;auto with zarith.
assert (wB <= 2^[|w_head0 b|]).
unfold base;apply Zpower_le_monotone;auto with zarith. omega.
assert ([|w_add_mul_div (w_head0 b) b w_0|] =
2 ^ [|w_head0 b|] * [|b|]).
rewrite (spec_add_mul_div b w_0); auto with zarith.
rewrite spec_0;rewrite Zdiv_0_l; try omega.
rewrite Z.add_0_r; rewrite Z.mul_comm.
rewrite Zmod_small; auto with zarith.
assert (H5 := spec_to_Z (high n a)).
assert
([|w_add_mul_div (w_head0 b) w_0 (high n a)|]
<[|w_add_mul_div (w_head0 b) b w_0|]).
rewrite H4.
rewrite spec_add_mul_div;auto with zarith.
rewrite spec_0;rewrite Z.mul_0_l;rewrite Z.add_0_l.
assert (([|high n a|]/2^(Zpos w_digits - [|w_head0 b|])) < wB).
apply Zdiv_lt_upper_bound;auto with zarith.
apply Z.lt_le_trans with wB;auto with zarith.
pattern wB at 1;replace wB with (wB*1);try ring.
apply Z.mul_le_mono_nonneg;auto with zarith.
assert (H6 := Z.pow_pos_nonneg 2 (Zpos w_digits - [|w_head0 b|]));
auto with zarith.
rewrite Zmod_small;auto with zarith.
apply Zdiv_lt_upper_bound;auto with zarith.
apply Z.lt_le_trans with wB;auto with zarith.
apply Z.le_trans with (2 ^ [|w_head0 b|] * [|b|] * 2).
rewrite <- wB_div_2; try omega.
apply Z.mul_le_mono_nonneg;auto with zarith.
pattern 2 at 1;rewrite <- Z.pow_1_r.
apply Zpower_le_monotone;split;auto with zarith.
rewrite <- H4 in H0.
assert (Hb3: [|w_head0 b|] <= Zpos w_digits); auto with zarith.
assert (H7:= spec_double_divn1_p H0 Hb3 n a (double_0 w_0 n) H6).
destruct (double_divn1_p (w_add_mul_div (w_head0 b) b w_0) (w_head0 b) n
(w_add_mul_div (w_head0 b) w_0 (high n a)) a
(double_0 w_0 n)) as (q,r).
assert (U:= spec_double_digits n).
rewrite spec_double_0 in H7;trivial;rewrite Zdiv_0_l in H7.
rewrite Z.add_0_r in H7.
rewrite spec_add_mul_div in H7;auto with zarith.
rewrite spec_0 in H7;rewrite Z.mul_0_l in H7;rewrite Z.add_0_l in H7.
assert (([|high n a|] / 2 ^ (Zpos w_digits - [|w_head0 b|])) mod wB
= [!n|a!] / 2^(Zpos (w_digits << n) - [|w_head0 b|])).
rewrite Zmod_small;auto with zarith.
rewrite spec_high. rewrite Zdiv_Zdiv;auto with zarith.
rewrite <- Zpower_exp;auto with zarith.
replace (Zpos (w_digits << n) - Zpos w_digits +
(Zpos w_digits - [|w_head0 b|]))
with (Zpos (w_digits << n) - [|w_head0 b|]);trivial;ring.
assert (H8 := Z.pow_pos_nonneg 2 (Zpos w_digits - [|w_head0 b|]));auto with zarith.
split;auto with zarith.
apply Z.le_lt_trans with ([|high n a|]);auto with zarith.
apply Zdiv_le_upper_bound;auto with zarith.
pattern ([|high n a|]) at 1;rewrite <- Z.mul_1_r.
apply Z.mul_le_mono_nonneg;auto with zarith.
rewrite H8 in H7;unfold double_wB,base in H7.
rewrite <- shift_unshift_mod in H7;auto with zarith.
rewrite H4 in H7.
assert ([|w_add_mul_div (w_sub w_zdigits (w_head0 b)) w_0 r|]
= [|r|]/2^[|w_head0 b|]).
rewrite spec_add_mul_div.
rewrite spec_0;rewrite Z.mul_0_l;rewrite Z.add_0_l.
replace (Zpos w_digits - [|w_sub w_zdigits (w_head0 b)|])
with ([|w_head0 b|]).
rewrite Zmod_small;auto with zarith.
assert (H9 := spec_to_Z r).
split;auto with zarith.
apply Z.le_lt_trans with ([|r|]);auto with zarith.
apply Zdiv_le_upper_bound;auto with zarith.
pattern ([|r|]) at 1;rewrite <- Z.mul_1_r.
apply Z.mul_le_mono_nonneg;auto with zarith.
assert (H10 := Z.pow_pos_nonneg 2 ([|w_head0 b|]));auto with zarith.
rewrite spec_sub.
rewrite Zmod_small; auto with zarith.
split; auto with zarith.
case (spec_to_Z w_zdigits); auto with zarith.
rewrite spec_sub.
rewrite Zmod_small; auto with zarith.
split; auto with zarith.
case (spec_to_Z w_zdigits); auto with zarith.
case H7; intros H71 H72.
split.
rewrite <- (Z_div_mult [!n|a!] (2^[|w_head0 b|]));auto with zarith.
rewrite H71;rewrite H9.
replace ([!n|q!] * (2 ^ [|w_head0 b|] * [|b|]))
with ([!n|q!] *[|b|] * 2^[|w_head0 b|]);
try (ring;fail).
rewrite Z_div_plus_l;auto with zarith.
assert (H10 := spec_to_Z
(w_add_mul_div (w_sub w_zdigits (w_head0 b)) w_0 r));split;
auto with zarith.
rewrite H9.
apply Zdiv_lt_upper_bound;auto with zarith.
rewrite Z.mul_comm;auto with zarith.
exact (spec_double_to_Z w_digits w_to_Z spec_to_Z n a).
Qed.
Definition double_modn1 (n:nat) (a:word w n) (b:w) :=
let p := w_head0 b in
match w_compare p w_0 with
| Gt =>
let b2p := w_add_mul_div p b w_0 in
let ha := high n a in
let k := w_sub w_zdigits p in
let lsr_n := w_add_mul_div k w_0 in
let r0 := w_add_mul_div p w_0 ha in
let r := double_modn1_p b2p p n r0 a (double_0 w_0 n) in
lsr_n r
| _ => double_modn1_0 b n w_0 a
end.
Lemma spec_double_modn1_aux : forall n a b,
double_modn1 n a b = snd (double_divn1 n a b).
Proof.
intros n a b;unfold double_divn1,double_modn1.
rewrite spec_compare; case Z.compare_spec;
rewrite spec_0; intros H2; auto with zarith.
apply spec_double_modn1_0.
apply spec_double_modn1_0.
rewrite spec_double_modn1_p.
destruct (double_divn1_p (w_add_mul_div (w_head0 b) b w_0) (w_head0 b) n
(w_add_mul_div (w_head0 b) w_0 (high n a)) a (double_0 w_0 n));simpl;trivial.
Qed.
Lemma spec_double_modn1 : forall n a b, 0 < [|b|] ->
[|double_modn1 n a b|] = [!n|a!] mod [|b|].
Proof.
intros n a b H;assert (H1 := spec_double_divn1 n a H).
assert (H2 := spec_double_modn1_aux n a b).
rewrite H2;destruct (double_divn1 n a b) as (q,r).
simpl;apply Zmod_unique with (double_to_Z w_digits w_to_Z n q);auto with zarith.
destruct H1 as (h1,h2);rewrite h1;ring.
Qed.
End GENDIVN1.