Library Coq.Logic.Decidable

Properties of decidable propositions

Definition decidable (P:Prop) := P \/ ~ P.

Theorem dec_not_not : forall P:Prop, decidable P -> (~ P -> False) -> P.
Proof.
unfold decidable; tauto.
Qed.

Theorem dec_True : decidable True.
Proof.
unfold decidable; auto.
Qed.

Theorem dec_False : decidable False.
Proof.
unfold decidable, not; auto.
Qed.

Theorem dec_or :
 forall A B:Prop, decidable A -> decidable B -> decidable (A \/ B).
Proof.
unfold decidable; tauto.
Qed.

Theorem dec_and :
 forall A B:Prop, decidable A -> decidable B -> decidable (A /\ B).
Proof.
unfold decidable; tauto.
Qed.

Theorem dec_not : forall A:Prop, decidable A -> decidable (~ A).
Proof.
unfold decidable; tauto.
Qed.

Theorem dec_imp :
 forall A B:Prop, decidable A -> decidable B -> decidable (A -> B).
Proof.
unfold decidable; tauto.
Qed.

Theorem dec_iff :
 forall A B:Prop, decidable A -> decidable B -> decidable (A<->B).
Proof.
unfold decidable. tauto.
Qed.

Theorem not_not : forall P:Prop, decidable P -> ~ ~ P -> P.
Proof.
unfold decidable; tauto.
Qed.

Theorem not_or : forall A B:Prop, ~ (A \/ B) -> ~ A /\ ~ B.
Proof.
tauto.
Qed.

Theorem not_and : forall A B:Prop, decidable A -> ~ (A /\ B) -> ~ A \/ ~ B.
Proof.
unfold decidable; tauto.
Qed.

Theorem not_imp : forall A B:Prop, decidable A -> ~ (A -> B) -> A /\ ~ B.
Proof.
unfold decidable; tauto.
Qed.

Theorem imp_simp : forall A B:Prop, decidable A -> (A -> B) -> ~ A \/ B.
Proof.
unfold decidable; tauto.
Qed.

Theorem not_iff :
  forall A B:Prop, decidable A -> decidable B ->
    ~ (A <-> B) -> (A /\ ~ B) \/ (~ A /\ B).
Proof.
unfold decidable; tauto.
Qed.

Results formulated with iff, used in FSetDecide. Negation are expanded since it is unclear whether setoid rewrite will always perform conversion.
We begin with lemmas that, when read from left to right, can be understood as ways to eliminate uses of not.

Theorem not_true_iff : (True -> False) <-> False.
Proof.
tauto.
Qed.

Theorem not_false_iff : (False -> False) <-> True.
Proof.
tauto.
Qed.

Theorem not_not_iff : forall A:Prop, decidable A ->
  (((A -> False) -> False) <-> A).
Proof.
unfold decidable; tauto.
Qed.

Theorem contrapositive : forall A B:Prop, decidable A ->
  (((A -> False) -> (B -> False)) <-> (B -> A)).
Proof.
unfold decidable; tauto.
Qed.

Lemma or_not_l_iff_1 : forall A B: Prop, decidable A ->
  ((A -> False) \/ B <-> (A -> B)).
Proof.
unfold decidable. tauto.
Qed.

Lemma or_not_l_iff_2 : forall A B: Prop, decidable B ->
  ((A -> False) \/ B <-> (A -> B)).
Proof.
unfold decidable. tauto.
Qed.

Lemma or_not_r_iff_1 : forall A B: Prop, decidable A ->
  (A \/ (B -> False) <-> (B -> A)).
Proof.
unfold decidable. tauto.
Qed.

Lemma or_not_r_iff_2 : forall A B: Prop, decidable B ->
  (A \/ (B -> False) <-> (B -> A)).
Proof.
unfold decidable. tauto.
Qed.

Lemma imp_not_l : forall A B: Prop, decidable A ->
  (((A -> False) -> B) <-> (A \/ B)).
Proof.
unfold decidable. tauto.
Qed.

Moving Negations Around: We have four lemmas that, when read from left to right, describe how to push negations toward the leaves of a proposition and, when read from right to left, describe how to pull negations toward the top of a proposition.

Theorem not_or_iff : forall A B:Prop,
  (A \/ B -> False) <-> (A -> False) /\ (B -> False).
Proof.
tauto.
Qed.

Lemma not_and_iff : forall A B:Prop,
  (A /\ B -> False) <-> (A -> B -> False).
Proof.
tauto.
Qed.

Lemma not_imp_iff : forall A B:Prop, decidable A ->
  (((A -> B) -> False) <-> A /\ (B -> False)).
Proof.
unfold decidable. tauto.
Qed.

Lemma not_imp_rev_iff : forall A B : Prop, decidable A ->
  (((A -> B) -> False) <-> (B -> False) /\ A).
Proof.
unfold decidable. tauto.
Qed.


Theorem dec_functional_relation :
  forall (X Y : Type) (A:X->Y->Prop), (forall y y' : Y, decidable (y=y')) ->
  (forall x, exists! y, A x y) -> forall x y, decidable (A x y).
Proof.
intros X Y A Hdec H x y.
destruct (H x) as (y',(Hex,Huniq)).
destruct (Hdec y y') as [->|Hnot]; firstorder.
Qed.

With the following hint database, we can leverage auto to check decidability of propositions.

Hint Resolve dec_True dec_False dec_or dec_and dec_imp dec_not dec_iff
 : decidable_prop.

solve_decidable using lib will solve goals about the decidability of a proposition, assisted by an auxiliary database of lemmas. The database is intended to contain lemmas stating the decidability of base propositions, (e.g., the decidability of equality on a particular inductive type).

Tactic Notation "solve_decidable" "using" ident(db) :=
  match goal with
   | |- decidable _ =>
     solve [ auto 100 with decidable_prop db ]
  end.

Tactic Notation "solve_decidable" :=
  solve_decidable using core.