Library Coq.NArith.BinNat
Require Export BinNums.
Require Import BinPos RelationClasses Morphisms Setoid
Equalities OrdersFacts GenericMinMax Bool NAxioms NMaxMin NProperties.
Require BinNatDef.
Binary natural numbers, operations and properties
Local Open Scope N_scope.
Every definitions and early properties about positive numbers
are placed in a module N for qualification purpose.
Definitions of operations, now in a separate file
When including property functors, only inline t eq zero one two
Set Inline Level 30.
Logical predicates
Definition eq := @Logic.eq N.
Definition eq_equiv := @eq_equivalence N.
Definition lt x y := (x ?= y) = Lt.
Definition gt x y := (x ?= y) = Gt.
Definition le x y := (x ?= y) <> Gt.
Definition ge x y := (x ?= y) <> Lt.
Infix "<=" := le : N_scope.
Infix "<" := lt : N_scope.
Infix ">=" := ge : N_scope.
Infix ">" := gt : N_scope.
Notation "x <= y <= z" := (x <= y /\ y <= z) : N_scope.
Notation "x <= y < z" := (x <= y /\ y < z) : N_scope.
Notation "x < y < z" := (x < y /\ y < z) : N_scope.
Notation "x < y <= z" := (x < y /\ y <= z) : N_scope.
Definition divide p q := exists r, q = r*p.
Notation "( p | q )" := (divide p q) (at level 0) : N_scope.
Definition Even n := exists m, n = 2*m.
Definition Odd n := exists m, n = 2*m+1.
Proofs of morphisms, obvious since eq is Leibniz
Local Obligation Tactic := simpl_relation.
Program Definition succ_wd : Proper (eq==>eq) succ := _.
Program Definition pred_wd : Proper (eq==>eq) pred := _.
Program Definition add_wd : Proper (eq==>eq==>eq) add := _.
Program Definition sub_wd : Proper (eq==>eq==>eq) sub := _.
Program Definition mul_wd : Proper (eq==>eq==>eq) mul := _.
Program Definition lt_wd : Proper (eq==>eq==>iff) lt := _.
Program Definition div_wd : Proper (eq==>eq==>eq) div := _.
Program Definition mod_wd : Proper (eq==>eq==>eq) modulo := _.
Program Definition pow_wd : Proper (eq==>eq==>eq) pow := _.
Program Definition testbit_wd : Proper (eq==>eq==>Logic.eq) testbit := _.
Decidability of equality.
Definition eq_dec : forall n m : N, { n = m } + { n <> m }.
Proof.
decide equality.
apply Pos.eq_dec.
Defined.
Discrimination principle
Definition discr n : { p:positive | n = pos p } + { n = 0 }.
Proof.
destruct n; auto.
left; exists p; auto.
Defined.
Convenient induction principles
Definition binary_rect (P:N -> Type) (f0 : P 0)
(f2 : forall n, P n -> P (double n))
(fS2 : forall n, P n -> P (succ_double n)) (n : N) : P n :=
let P' p := P (pos p) in
let f2' p := f2 (pos p) in
let fS2' p := fS2 (pos p) in
match n with
| 0 => f0
| pos p => positive_rect P' fS2' f2' (fS2 0 f0) p
end.
Definition binary_rec (P:N -> Set) := binary_rect P.
Definition binary_ind (P:N -> Prop) := binary_rect P.
Peano induction on binary natural numbers
Definition peano_rect
(P : N -> Type) (f0 : P 0)
(f : forall n : N, P n -> P (succ n)) (n : N) : P n :=
let P' p := P (pos p) in
let f' p := f (pos p) in
match n with
| 0 => f0
| pos p => Pos.peano_rect P' (f 0 f0) f' p
end.
Theorem peano_rect_base P a f : peano_rect P a f 0 = a.
Proof.
reflexivity.
Qed.
Theorem peano_rect_succ P a f n :
peano_rect P a f (succ n) = f n (peano_rect P a f n).
Proof.
destruct n; simpl.
trivial.
now rewrite Pos.peano_rect_succ.
Qed.
Definition peano_ind (P : N -> Prop) := peano_rect P.
Definition peano_rec (P : N -> Set) := peano_rect P.
Theorem peano_rec_base P a f : peano_rec P a f 0 = a.
Proof.
apply peano_rect_base.
Qed.
Theorem peano_rec_succ P a f n :
peano_rec P a f (succ n) = f n (peano_rec P a f n).
Proof.
apply peano_rect_succ.
Qed.
Generic induction / recursion
Theorem bi_induction :
forall A : N -> Prop, Proper (Logic.eq==>iff) A ->
A 0 -> (forall n, A n <-> A (succ n)) -> forall n : N, A n.
Proof.
intros A A_wd A0 AS. apply peano_rect. assumption. intros; now apply -> AS.
Qed.
Definition recursion {A} : A -> (N -> A -> A) -> N -> A :=
peano_rect (fun _ => A).
Instance recursion_wd {A} (Aeq : relation A) :
Proper (Aeq==>(Logic.eq==>Aeq==>Aeq)==>Logic.eq==>Aeq) recursion.
Proof.
intros a a' Ea f f' Ef x x' Ex. subst x'.
induction x using peano_ind.
trivial.
unfold recursion in *. rewrite 2 peano_rect_succ. now apply Ef.
Qed.
Theorem recursion_0 {A} (a:A) (f:N->A->A) : recursion a f 0 = a.
Proof. reflexivity. Qed.
Theorem recursion_succ {A} (Aeq : relation A) (a : A) (f : N -> A -> A):
Aeq a a -> Proper (Logic.eq==>Aeq==>Aeq) f ->
forall n : N, Aeq (recursion a f (succ n)) (f n (recursion a f n)).
Proof.
unfold recursion; intros a_wd f_wd n. induction n using peano_ind.
rewrite peano_rect_succ. now apply f_wd.
rewrite !peano_rect_succ in *. now apply f_wd.
Qed.
Specification of constants
Lemma one_succ : 1 = succ 0.
Proof. reflexivity. Qed.
Lemma two_succ : 2 = succ 1.
Proof. reflexivity. Qed.
Definition pred_0 : pred 0 = 0.
Proof. reflexivity. Qed.
Properties of mixed successor and predecessor.
Lemma pos_pred_spec p : Pos.pred_N p = pred (pos p).
Proof.
now destruct p.
Qed.
Lemma succ_pos_spec n : pos (succ_pos n) = succ n.
Proof.
now destruct n.
Qed.
Lemma pos_pred_succ n : Pos.pred_N (succ_pos n) = n.
Proof.
destruct n. trivial. apply Pos.pred_N_succ.
Qed.
Lemma succ_pos_pred p : succ (Pos.pred_N p) = pos p.
Proof.
destruct p; simpl; trivial. f_equal. apply Pos.succ_pred_double.
Qed.
Properties of successor and predecessor
Theorem pred_succ n : pred (succ n) = n.
Proof.
destruct n; trivial. simpl. apply Pos.pred_N_succ.
Qed.
Theorem pred_sub n : pred n = sub n 1.
Proof.
now destruct n as [|[p|p|]].
Qed.
Theorem succ_0_discr n : succ n <> 0.
Proof.
now destruct n.
Qed.
Specification of addition
Theorem add_0_l n : 0 + n = n.
Proof.
reflexivity.
Qed.
Theorem add_succ_l n m : succ n + m = succ (n + m).
Proof.
destruct n, m; unfold succ, add; now rewrite ?Pos.add_1_l, ?Pos.add_succ_l.
Qed.
Specification of subtraction.
Theorem sub_0_r n : n - 0 = n.
Proof.
now destruct n.
Qed.
Theorem sub_succ_r n m : n - succ m = pred (n - m).
Proof.
destruct n as [|p], m as [|q]; trivial.
now destruct p.
simpl. rewrite Pos.sub_mask_succ_r, Pos.sub_mask_carry_spec.
now destruct (Pos.sub_mask p q) as [|[r|r|]|].
Qed.
Specification of multiplication
Theorem mul_0_l n : 0 * n = 0.
Proof.
reflexivity.
Qed.
Theorem mul_succ_l n m : (succ n) * m = n * m + m.
Proof.
destruct n, m; simpl; trivial. f_equal. rewrite Pos.add_comm.
apply Pos.mul_succ_l.
Qed.
Specification of boolean comparisons.
Lemma eqb_eq n m : eqb n m = true <-> n=m.
Proof.
destruct n as [|n], m as [|m]; simpl; try easy'.
rewrite Pos.eqb_eq. split; intro H. now subst. now destr_eq H.
Qed.
Lemma ltb_lt n m : (n <? m) = true <-> n < m.
Proof.
unfold ltb, lt. destruct compare; easy'.
Qed.
Lemma leb_le n m : (n <=? m) = true <-> n <= m.
Proof.
unfold leb, le. destruct compare; easy'.
Qed.
Basic properties of comparison
Theorem compare_eq_iff n m : (n ?= m) = Eq <-> n = m.
Proof.
destruct n, m; simpl; rewrite ?Pos.compare_eq_iff; split; congruence.
Qed.
Theorem compare_lt_iff n m : (n ?= m) = Lt <-> n < m.
Proof.
reflexivity.
Qed.
Theorem compare_le_iff n m : (n ?= m) <> Gt <-> n <= m.
Proof.
reflexivity.
Qed.
Theorem compare_antisym n m : (m ?= n) = CompOpp (n ?= m).
Proof.
destruct n, m; simpl; trivial. apply Pos.compare_antisym.
Qed.
Some more advanced properties of comparison and orders,
including compare_spec and lt_irrefl and lt_eq_cases.
Specification of minimum and maximum
Theorem min_l n m : n <= m -> min n m = n.
Proof.
unfold min, le. case compare; trivial. now destruct 1.
Qed.
Theorem min_r n m : m <= n -> min n m = m.
Proof.
unfold min, le. rewrite compare_antisym.
case compare_spec; trivial. now destruct 2.
Qed.
Theorem max_l n m : m <= n -> max n m = n.
Proof.
unfold max, le. rewrite compare_antisym.
case compare_spec; auto. now destruct 2.
Qed.
Theorem max_r n m : n <= m -> max n m = m.
Proof.
unfold max, le. case compare; trivial. now destruct 1.
Qed.
Specification of lt and le.
Lemma lt_succ_r n m : n < succ m <-> n<=m.
Proof.
destruct n as [|p], m as [|q]; simpl; try easy'.
split. now destruct p. now destruct 1.
apply Pos.lt_succ_r.
Qed.
We can now derive all properties of basic functions and orders,
and use these properties for proving the specs of more advanced
functions.
Properties of double and succ_double
Lemma double_spec n : double n = 2 * n.
Proof.
reflexivity.
Qed.
Lemma succ_double_spec n : succ_double n = 2 * n + 1.
Proof.
now destruct n.
Qed.
Lemma double_add n m : double (n+m) = double n + double m.
Proof.
now destruct n, m.
Qed.
Lemma succ_double_add n m : succ_double (n+m) = double n + succ_double m.
Proof.
now destruct n, m.
Qed.
Lemma double_mul n m : double (n*m) = double n * m.
Proof.
now destruct n, m.
Qed.
Lemma succ_double_mul n m :
succ_double n * m = double n * m + m.
Proof.
destruct n; simpl; destruct m; trivial.
now rewrite Pos.add_comm.
Qed.
Lemma div2_double n : div2 (double n) = n.
Proof.
now destruct n.
Qed.
Lemma div2_succ_double n : div2 (succ_double n) = n.
Proof.
now destruct n.
Qed.
Lemma double_inj n m : double n = double m -> n = m.
Proof.
intro H. rewrite <- (div2_double n), H. apply div2_double.
Qed.
Lemma succ_double_inj n m : succ_double n = succ_double m -> n = m.
Proof.
intro H. rewrite <- (div2_succ_double n), H. apply div2_succ_double.
Qed.
Lemma succ_double_lt n m : n<m -> succ_double n < double m.
Proof.
destruct n as [|n], m as [|m]; intros H; try easy.
unfold lt in *; simpl in *. now rewrite Pos.compare_xI_xO, H.
Qed.
0 is the least natural number
Specifications of power
Lemma pow_0_r n : n ^ 0 = 1.
Proof. reflexivity. Qed.
Lemma pow_succ_r n p : 0<=p -> n^(succ p) = n * n^p.
Proof.
intros _.
destruct n, p; simpl; trivial; f_equal. apply Pos.pow_succ_r.
Qed.
Lemma pow_neg_r n p : p<0 -> n^p = 0.
Proof.
now destruct p.
Qed.
Specification of square
Lemma square_spec n : square n = n * n.
Proof.
destruct n; trivial. simpl. f_equal. apply Pos.square_spec.
Qed.
Specification of Base-2 logarithm
Lemma size_log2 n : n<>0 -> size n = succ (log2 n).
Proof.
destruct n as [|[n|n| ]]; trivial. now destruct 1.
Qed.
Lemma size_gt n : n < 2^(size n).
Proof.
destruct n. reflexivity. simpl. apply Pos.size_gt.
Qed.
Lemma size_le n : 2^(size n) <= succ_double n.
Proof.
destruct n. discriminate. simpl.
change (2^Pos.size p <= Pos.succ (p~0))%positive.
apply Pos.lt_le_incl, Pos.lt_succ_r, Pos.size_le.
Qed.
Lemma log2_spec n : 0 < n ->
2^(log2 n) <= n < 2^(succ (log2 n)).
Proof.
destruct n as [|[p|p|]]; discriminate || intros _; simpl; split.
apply (size_le (pos p)).
apply Pos.size_gt.
apply Pos.size_le.
apply Pos.size_gt.
discriminate.
reflexivity.
Qed.
Lemma log2_nonpos n : n<=0 -> log2 n = 0.
Proof.
destruct n; intros Hn. reflexivity. now destruct Hn.
Qed.
Specification of parity functions
Lemma even_spec n : even n = true <-> Even n.
Proof.
destruct n.
split. now exists 0.
trivial.
destruct p; simpl; split; try easy.
intros (m,H). now destruct m.
now exists (pos p).
intros (m,H). now destruct m.
Qed.
Lemma odd_spec n : odd n = true <-> Odd n.
Proof.
destruct n.
split. discriminate.
intros (m,H). now destruct m.
destruct p; simpl; split; try easy.
now exists (pos p).
intros (m,H). now destruct m.
now exists 0.
Qed.
Specification of the euclidean division
Theorem pos_div_eucl_spec (a:positive)(b:N) :
let (q,r) := pos_div_eucl a b in pos a = q * b + r.
Proof.
induction a; cbv beta iota delta [pos_div_eucl]; fold pos_div_eucl; cbv zeta.
destruct pos_div_eucl as (q,r).
change (pos a~1) with (succ_double (pos a)).
rewrite IHa, succ_double_add, double_mul.
case leb_spec; intros H; trivial.
rewrite succ_double_mul, <- add_assoc. f_equal.
now rewrite (add_comm b), sub_add.
destruct pos_div_eucl as (q,r).
change (pos a~0) with (double (pos a)).
rewrite IHa, double_add, double_mul.
case leb_spec; intros H; trivial.
rewrite succ_double_mul, <- add_assoc. f_equal.
now rewrite (add_comm b), sub_add.
now destruct b as [|[ | | ]].
Qed.
Theorem div_eucl_spec a b :
let (q,r) := div_eucl a b in a = b * q + r.
Proof.
destruct a as [|a], b as [|b]; unfold div_eucl; trivial.
generalize (pos_div_eucl_spec a (pos b)).
destruct pos_div_eucl. now rewrite mul_comm.
Qed.
Theorem div_mod' a b : a = b * (a/b) + (a mod b).
Proof.
generalize (div_eucl_spec a b).
unfold div, modulo. now destruct div_eucl.
Qed.
Definition div_mod a b : b<>0 -> a = b * (a/b) + (a mod b).
Proof.
intros _. apply div_mod'.
Qed.
Theorem pos_div_eucl_remainder (a:positive) (b:N) :
b<>0 -> snd (pos_div_eucl a b) < b.
Proof.
intros Hb.
induction a; cbv beta iota delta [pos_div_eucl]; fold pos_div_eucl; cbv zeta.
destruct pos_div_eucl as (q,r); simpl in *.
case leb_spec; intros H; simpl; trivial.
apply add_lt_mono_l with b. rewrite add_comm, sub_add by trivial.
destruct b as [|b]; [now destruct Hb| simpl; rewrite Pos.add_diag ].
apply (succ_double_lt _ _ IHa).
destruct pos_div_eucl as (q,r); simpl in *.
case leb_spec; intros H; simpl; trivial.
apply add_lt_mono_l with b. rewrite add_comm, sub_add by trivial.
destruct b as [|b]; [now destruct Hb| simpl; rewrite Pos.add_diag ].
now destruct r.
destruct b as [|[ | | ]]; easy || (now destruct Hb).
Qed.
Theorem mod_lt a b : b<>0 -> a mod b < b.
Proof.
destruct b as [ |b]. now destruct 1.
destruct a as [ |a]. reflexivity.
unfold modulo. simpl. apply pos_div_eucl_remainder.
Qed.
Theorem mod_bound_pos a b : 0<=a -> 0<b -> 0 <= a mod b < b.
Proof.
intros _ H. split. apply le_0_l. apply mod_lt. now destruct b.
Qed.
Specification of square root
Lemma sqrtrem_sqrt n : fst (sqrtrem n) = sqrt n.
Proof.
destruct n. reflexivity.
unfold sqrtrem, sqrt, Pos.sqrt.
destruct (Pos.sqrtrem p) as (s,r). now destruct r.
Qed.
Lemma sqrtrem_spec n :
let (s,r) := sqrtrem n in n = s*s + r /\ r <= 2*s.
Proof.
destruct n. now split.
generalize (Pos.sqrtrem_spec p). simpl.
destruct 1; simpl; subst; now split.
Qed.
Lemma sqrt_spec n : 0<=n ->
let s := sqrt n in s*s <= n < (succ s)*(succ s).
Proof.
intros _. destruct n. now split. apply (Pos.sqrt_spec p).
Qed.
Lemma sqrt_neg n : n<0 -> sqrt n = 0.
Proof.
now destruct n.
Qed.
Specification of gcd
The first component of ggcd is gcd
Lemma ggcd_gcd a b : fst (ggcd a b) = gcd a b.
Proof.
destruct a as [|p], b as [|q]; simpl; auto.
assert (H := Pos.ggcd_gcd p q).
destruct Pos.ggcd as (g,(aa,bb)); simpl; now f_equal.
Qed.
The other components of ggcd are indeed the correct factors.
Lemma ggcd_correct_divisors a b :
let '(g,(aa,bb)) := ggcd a b in
a=g*aa /\ b=g*bb.
Proof.
destruct a as [|p], b as [|q]; simpl; auto.
now rewrite Pos.mul_1_r.
now rewrite Pos.mul_1_r.
generalize (Pos.ggcd_correct_divisors p q).
destruct Pos.ggcd as (g,(aa,bb)); simpl.
destruct 1; split; now f_equal.
Qed.
We can use this fact to prove a part of the gcd correctness
Lemma gcd_divide_l a b : (gcd a b | a).
Proof.
rewrite <- ggcd_gcd. generalize (ggcd_correct_divisors a b).
destruct ggcd as (g,(aa,bb)); simpl. intros (H,_). exists aa.
now rewrite mul_comm.
Qed.
Lemma gcd_divide_r a b : (gcd a b | b).
Proof.
rewrite <- ggcd_gcd. generalize (ggcd_correct_divisors a b).
destruct ggcd as (g,(aa,bb)); simpl. intros (_,H). exists bb.
now rewrite mul_comm.
Qed.
We now prove directly that gcd is the greatest amongst common divisors
Lemma gcd_greatest a b c : (c|a) -> (c|b) -> (c|gcd a b).
Proof.
destruct a as [ |p], b as [ |q]; simpl; trivial.
destruct c as [ |r]. intros (s,H). destruct s; discriminate.
intros ([ |s],Hs) ([ |t],Ht); try discriminate; simpl in *.
destruct (Pos.gcd_greatest p q r) as (u,H).
exists s. now inversion Hs.
exists t. now inversion Ht.
exists (pos u). simpl; now f_equal.
Qed.
Lemma gcd_nonneg a b : 0 <= gcd a b.
Proof. apply le_0_l. Qed.
Specification of bitwise functions
Correctness proofs for testbit.
Lemma testbit_even_0 a : testbit (2*a) 0 = false.
Proof.
now destruct a.
Qed.
Lemma testbit_odd_0 a : testbit (2*a+1) 0 = true.
Proof.
now destruct a.
Qed.
Lemma testbit_succ_r_div2 a n : 0<=n ->
testbit a (succ n) = testbit (div2 a) n.
Proof.
intros _. destruct a as [|[a|a| ]], n as [|n]; simpl; trivial;
f_equal; apply Pos.pred_N_succ.
Qed.
Lemma testbit_odd_succ a n : 0<=n ->
testbit (2*a+1) (succ n) = testbit a n.
Proof.
intros H. rewrite testbit_succ_r_div2 by trivial. f_equal. now destruct a.
Qed.
Lemma testbit_even_succ a n : 0<=n ->
testbit (2*a) (succ n) = testbit a n.
Proof.
intros H. rewrite testbit_succ_r_div2 by trivial. f_equal. now destruct a.
Qed.
Lemma testbit_neg_r a n : n<0 -> testbit a n = false.
Proof.
now destruct n.
Qed.
Correctness proofs for shifts
Lemma shiftr_succ_r a n :
shiftr a (succ n) = div2 (shiftr a n).
Proof.
destruct n; simpl; trivial. apply Pos.iter_succ.
Qed.
Lemma shiftl_succ_r a n :
shiftl a (succ n) = double (shiftl a n).
Proof.
destruct n, a; simpl; trivial. f_equal. apply Pos.iter_succ.
Qed.
Lemma shiftr_spec a n m : 0<=m ->
testbit (shiftr a n) m = testbit a (m+n).
Proof.
intros _. revert a m.
induction n using peano_ind; intros a m. now rewrite add_0_r.
rewrite add_comm, add_succ_l, add_comm, <- add_succ_l.
now rewrite <- IHn, testbit_succ_r_div2, shiftr_succ_r by apply le_0_l.
Qed.
Lemma shiftl_spec_high a n m : 0<=m -> n<=m ->
testbit (shiftl a n) m = testbit a (m-n).
Proof.
intros _ H.
rewrite <- (sub_add n m H) at 1.
set (m' := m-n). clearbody m'. clear H m. revert a m'.
induction n using peano_ind; intros a m.
rewrite add_0_r; now destruct a.
rewrite shiftl_succ_r.
rewrite add_comm, add_succ_l, add_comm.
now rewrite testbit_succ_r_div2, div2_double by apply le_0_l.
Qed.
Lemma shiftl_spec_low a n m : m<n ->
testbit (shiftl a n) m = false.
Proof.
revert a m.
induction n using peano_ind; intros a m H.
elim (le_0_l m). now rewrite compare_antisym, H.
rewrite shiftl_succ_r.
destruct m. now destruct (shiftl a n).
rewrite <- (succ_pos_pred p), testbit_succ_r_div2, div2_double by apply le_0_l.
apply IHn.
apply add_lt_mono_l with 1. rewrite 2 (add_succ_l 0). simpl.
now rewrite succ_pos_pred.
Qed.
Definition div2_spec a : div2 a = shiftr a 1.
Proof.
reflexivity.
Qed.
Semantics of bitwise operations
Lemma pos_lxor_spec p p' n :
testbit (Pos.lxor p p') n = xorb (Pos.testbit p n) (Pos.testbit p' n).
Proof.
revert p' n.
induction p as [p IH|p IH|]; intros [p'|p'|] [|n]; trivial; simpl;
(specialize (IH p'); destruct Pos.lxor; trivial; now rewrite <-IH) ||
(now destruct Pos.testbit).
Qed.
Lemma lxor_spec a a' n :
testbit (lxor a a') n = xorb (testbit a n) (testbit a' n).
Proof.
destruct a, a'; simpl; trivial.
now destruct Pos.testbit.
now destruct Pos.testbit.
apply pos_lxor_spec.
Qed.
Lemma pos_lor_spec p p' n :
Pos.testbit (Pos.lor p p') n = (Pos.testbit p n) || (Pos.testbit p' n).
Proof.
revert p' n.
induction p as [p IH|p IH|]; intros [p'|p'|] [|n]; trivial; simpl;
apply IH || now rewrite orb_false_r.
Qed.
Lemma lor_spec a a' n :
testbit (lor a a') n = (testbit a n) || (testbit a' n).
Proof.
destruct a, a'; simpl; trivial.
now rewrite orb_false_r.
apply pos_lor_spec.
Qed.
Lemma pos_land_spec p p' n :
testbit (Pos.land p p') n = (Pos.testbit p n) && (Pos.testbit p' n).
Proof.
revert p' n.
induction p as [p IH|p IH|]; intros [p'|p'|] [|n]; trivial; simpl;
(specialize (IH p'); destruct Pos.land; trivial; now rewrite <-IH) ||
(now rewrite andb_false_r).
Qed.
Lemma land_spec a a' n :
testbit (land a a') n = (testbit a n) && (testbit a' n).
Proof.
destruct a, a'; simpl; trivial.
now rewrite andb_false_r.
apply pos_land_spec.
Qed.
Lemma pos_ldiff_spec p p' n :
testbit (Pos.ldiff p p') n = (Pos.testbit p n) && negb (Pos.testbit p' n).
Proof.
revert p' n.
induction p as [p IH|p IH|]; intros [p'|p'|] [|n]; trivial; simpl;
(specialize (IH p'); destruct Pos.ldiff; trivial; now rewrite <-IH) ||
(now rewrite andb_true_r).
Qed.
Lemma ldiff_spec a a' n :
testbit (ldiff a a') n = (testbit a n) && negb (testbit a' n).
Proof.
destruct a, a'; simpl; trivial.
now rewrite andb_true_r.
apply pos_ldiff_spec.
Qed.
Instantiation of generic properties of advanced functions
(pow, sqrt, log2, div, gcd, ...)
In generic statements, the predicates lt and le have been
favored, whereas gt and ge don't even exist in the abstract
layers. The use of gt and ge is hence not recommended. We provide
here the bare minimal results to related them with lt and le.
Lemma gt_lt_iff n m : n > m <-> m < n.
Proof.
unfold lt, gt. now rewrite compare_antisym, CompOpp_iff.
Qed.
Lemma gt_lt n m : n > m -> m < n.
Proof.
apply gt_lt_iff.
Qed.
Lemma lt_gt n m : n < m -> m > n.
Proof.
apply gt_lt_iff.
Qed.
Lemma ge_le_iff n m : n >= m <-> m <= n.
Proof.
unfold le, ge. now rewrite compare_antisym, CompOpp_iff.
Qed.
Lemma ge_le n m : n >= m -> m <= n.
Proof.
apply ge_le_iff.
Qed.
Lemma le_ge n m : n <= m -> m >= n.
Proof.
apply ge_le_iff.
Qed.
Auxiliary results about right shift on positive numbers,
used in BinInt
Lemma pos_pred_shiftl_low : forall p n m, m<n ->
testbit (Pos.pred_N (Pos.shiftl p n)) m = true.
Proof.
induction n using peano_ind.
now destruct m.
intros m H. unfold Pos.shiftl.
destruct n as [|n]; simpl in *.
destruct m. now destruct p. elim (Pos.nlt_1_r _ H).
rewrite Pos.iter_succ. simpl.
set (u:=Pos.iter xO p n) in *; clearbody u.
destruct m as [|m]. now destruct u.
rewrite <- (IHn (Pos.pred_N m)).
rewrite <- (testbit_odd_succ _ (Pos.pred_N m)).
rewrite succ_pos_pred. now destruct u.
apply le_0_l.
apply succ_lt_mono. now rewrite succ_pos_pred.
Qed.
Lemma pos_pred_shiftl_high : forall p n m, n<=m ->
testbit (Pos.pred_N (Pos.shiftl p n)) m =
testbit (shiftl (Pos.pred_N p) n) m.
Proof.
induction n using peano_ind; intros m H.
unfold shiftl. simpl. now destruct (Pos.pred_N p).
rewrite shiftl_succ_r.
destruct n as [|n].
destruct m as [|m]. now destruct H. now destruct p.
destruct m as [|m]. now destruct H.
rewrite <- (succ_pos_pred m).
rewrite double_spec, testbit_even_succ by apply le_0_l.
rewrite <- IHn.
rewrite testbit_succ_r_div2 by apply le_0_l.
f_equal. simpl. rewrite Pos.iter_succ.
now destruct (Pos.iter xO p n).
apply succ_le_mono. now rewrite succ_pos_pred.
Qed.
Lemma pred_div2_up p : Pos.pred_N (Pos.div2_up p) = div2 (Pos.pred_N p).
Proof.
destruct p as [p|p| ]; trivial.
simpl. apply Pos.pred_N_succ.
destruct p; simpl; trivial.
Qed.
End N.
Bind Scope N_scope with N.t N.
Exportation of notations
Numeral Notation N N.of_uint N.to_uint : N_scope.
Infix "+" := N.add : N_scope.
Infix "-" := N.sub : N_scope.
Infix "*" := N.mul : N_scope.
Infix "^" := N.pow : N_scope.
Infix "?=" := N.compare (at level 70, no associativity) : N_scope.
Infix "<=" := N.le : N_scope.
Infix "<" := N.lt : N_scope.
Infix ">=" := N.ge : N_scope.
Infix ">" := N.gt : N_scope.
Notation "x <= y <= z" := (x <= y /\ y <= z) : N_scope.
Notation "x <= y < z" := (x <= y /\ y < z) : N_scope.
Notation "x < y < z" := (x < y /\ y < z) : N_scope.
Notation "x < y <= z" := (x < y /\ y <= z) : N_scope.
Infix "=?" := N.eqb (at level 70, no associativity) : N_scope.
Infix "<=?" := N.leb (at level 70, no associativity) : N_scope.
Infix "<?" := N.ltb (at level 70, no associativity) : N_scope.
Infix "/" := N.div : N_scope.
Infix "mod" := N.modulo (at level 40, no associativity) : N_scope.
Notation "( p | q )" := (N.divide p q) (at level 0) : N_scope.
Compatibility notations
Notation N_rect := N_rect (only parsing).
Notation N_rec := N_rec (only parsing).
Notation N_ind := N_ind (only parsing).
Notation N0 := N0 (only parsing).
Notation Npos := N.pos (only parsing).
Notation Ndiscr := N.discr (compat "8.7").
Notation Ndouble_plus_one := N.succ_double (only parsing).
Notation Ndouble := N.double (compat "8.7").
Notation Nsucc := N.succ (compat "8.7").
Notation Npred := N.pred (compat "8.7").
Notation Nsucc_pos := N.succ_pos (compat "8.7").
Notation Ppred_N := Pos.pred_N (compat "8.7").
Notation Nplus := N.add (only parsing).
Notation Nminus := N.sub (only parsing).
Notation Nmult := N.mul (only parsing).
Notation Neqb := N.eqb (compat "8.7").
Notation Ncompare := N.compare (compat "8.7").
Notation Nlt := N.lt (compat "8.7").
Notation Ngt := N.gt (compat "8.7").
Notation Nle := N.le (compat "8.7").
Notation Nge := N.ge (compat "8.7").
Notation Nmin := N.min (compat "8.7").
Notation Nmax := N.max (compat "8.7").
Notation Ndiv2 := N.div2 (compat "8.7").
Notation Neven := N.even (compat "8.7").
Notation Nodd := N.odd (compat "8.7").
Notation Npow := N.pow (compat "8.7").
Notation Nlog2 := N.log2 (compat "8.7").
Notation nat_of_N := N.to_nat (only parsing).
Notation N_of_nat := N.of_nat (only parsing).
Notation N_eq_dec := N.eq_dec (compat "8.7").
Notation Nrect := N.peano_rect (only parsing).
Notation Nrect_base := N.peano_rect_base (only parsing).
Notation Nrect_step := N.peano_rect_succ (only parsing).
Notation Nind := N.peano_ind (only parsing).
Notation Nrec := N.peano_rec (only parsing).
Notation Nrec_base := N.peano_rec_base (only parsing).
Notation Nrec_succ := N.peano_rec_succ (only parsing).
Notation Npred_succ := N.pred_succ (compat "8.7").
Notation Npred_minus := N.pred_sub (only parsing).
Notation Nsucc_pred := N.succ_pred (compat "8.7").
Notation Ppred_N_spec := N.pos_pred_spec (only parsing).
Notation Nsucc_pos_spec := N.succ_pos_spec (compat "8.7").
Notation Ppred_Nsucc := N.pos_pred_succ (only parsing).
Notation Nplus_0_l := N.add_0_l (only parsing).
Notation Nplus_0_r := N.add_0_r (only parsing).
Notation Nplus_comm := N.add_comm (only parsing).
Notation Nplus_assoc := N.add_assoc (only parsing).
Notation Nplus_succ := N.add_succ_l (only parsing).
Notation Nsucc_0 := N.succ_0_discr (only parsing).
Notation Nsucc_inj := N.succ_inj (compat "8.7").
Notation Nminus_N0_Nle := N.sub_0_le (only parsing).
Notation Nminus_0_r := N.sub_0_r (only parsing).
Notation Nminus_succ_r:= N.sub_succ_r (only parsing).
Notation Nmult_0_l := N.mul_0_l (only parsing).
Notation Nmult_1_l := N.mul_1_l (only parsing).
Notation Nmult_1_r := N.mul_1_r (only parsing).
Notation Nmult_comm := N.mul_comm (only parsing).
Notation Nmult_assoc := N.mul_assoc (only parsing).
Notation Nmult_plus_distr_r := N.mul_add_distr_r (only parsing).
Notation Neqb_eq := N.eqb_eq (compat "8.7").
Notation Nle_0 := N.le_0_l (only parsing).
Notation Ncompare_refl := N.compare_refl (compat "8.7").
Notation Ncompare_Eq_eq := N.compare_eq (only parsing).
Notation Ncompare_eq_correct := N.compare_eq_iff (only parsing).
Notation Nlt_irrefl := N.lt_irrefl (compat "8.7").
Notation Nlt_trans := N.lt_trans (compat "8.7").
Notation Nle_lteq := N.lt_eq_cases (only parsing).
Notation Nlt_succ_r := N.lt_succ_r (compat "8.7").
Notation Nle_trans := N.le_trans (compat "8.7").
Notation Nle_succ_l := N.le_succ_l (compat "8.7").
Notation Ncompare_spec := N.compare_spec (compat "8.7").
Notation Ncompare_0 := N.compare_0_r (only parsing).
Notation Ndouble_div2 := N.div2_double (only parsing).
Notation Ndouble_plus_one_div2 := N.div2_succ_double (only parsing).
Notation Ndouble_inj := N.double_inj (compat "8.7").
Notation Ndouble_plus_one_inj := N.succ_double_inj (only parsing).
Notation Npow_0_r := N.pow_0_r (compat "8.7").
Notation Npow_succ_r := N.pow_succ_r (compat "8.7").
Notation Nlog2_spec := N.log2_spec (compat "8.7").
Notation Nlog2_nonpos := N.log2_nonpos (compat "8.7").
Notation Neven_spec := N.even_spec (compat "8.7").
Notation Nodd_spec := N.odd_spec (compat "8.7").
Notation Nlt_not_eq := N.lt_neq (only parsing).
Notation Ngt_Nlt := N.gt_lt (only parsing).
More complex compatibility facts, expressed as lemmas
(to preserve scopes for instance)
Lemma Nplus_reg_l n m p : n + m = n + p -> m = p.
Proof (proj1 (N.add_cancel_l m p n)).
Lemma Nmult_Sn_m n m : N.succ n * m = m + n * m.
Proof (eq_trans (N.mul_succ_l n m) (N.add_comm _ _)).
Lemma Nmult_plus_distr_l n m p : p * (n + m) = p * n + p * m.
Proof (N.mul_add_distr_l p n m).
Lemma Nmult_reg_r n m p : p <> 0 -> n * p = m * p -> n = m.
Proof (fun H => proj1 (N.mul_cancel_r n m p H)).
Lemma Ncompare_antisym n m : CompOpp (n ?= m) = (m ?= n).
Proof (eq_sym (N.compare_antisym n m)).
Definition N_ind_double a P f0 f2 fS2 := N.binary_ind P f0 f2 fS2 a.
Definition N_rec_double a P f0 f2 fS2 := N.binary_rec P f0 f2 fS2 a.
Not kept : Ncompare_n_Sm Nplus_lt_cancel_l