Library Coq.Numbers.NatInt.NZSqrt


Square Root Function

Require Import NZAxioms NZMulOrder.

Interface of a sqrt function, then its specification on naturals

Module Type Sqrt (Import A : Typ).
 Parameter Inline sqrt : t -> t.
End Sqrt.

Module Type SqrtNotation (A : Typ)(Import B : Sqrt A).
 Notation "√ x" := (sqrt x) (at level 6).
End SqrtNotation.

Module Type Sqrt' (A : Typ) := Sqrt A <+ SqrtNotation A.

Module Type NZSqrtSpec (Import A : NZOrdAxiomsSig')(Import B : Sqrt' A).
 Axiom sqrt_spec : forall a, 0<=a -> a * a <= a < S (a) * S (a).
 Axiom sqrt_neg : forall a, a<0 -> a == 0.
End NZSqrtSpec.

Module Type NZSqrt (A : NZOrdAxiomsSig) := Sqrt A <+ NZSqrtSpec A.
Module Type NZSqrt' (A : NZOrdAxiomsSig) := Sqrt' A <+ NZSqrtSpec A.

Derived properties of power

Module Type NZSqrtProp
 (Import A : NZOrdAxiomsSig')
 (Import B : NZSqrt' A)
 (Import C : NZMulOrderProp A).

Local Notation "a ²" := (a*a) (at level 5, no associativity, format "a ²").

First, sqrt is non-negative

Lemma sqrt_spec_nonneg : forall b,
 b² < (S b -> 0 <= b.
Proof.
 intros b LT.
 destruct (le_gt_cases 0 b) as [Hb|Hb]; trivial. exfalso.
 assert ((S b < b²).
  rewrite mul_succ_l, <- (add_0_r b²).
  apply add_lt_le_mono.
  apply mul_lt_mono_neg_l; trivial. apply lt_succ_diag_r.
  now apply le_succ_l.
 order.
Qed.

Lemma sqrt_nonneg : forall a, 0<=a.
Proof.
 intros. destruct (lt_ge_cases a 0) as [Ha|Ha].
 now rewrite (sqrt_neg _ Ha).
 apply sqrt_spec_nonneg. destruct (sqrt_spec a Ha). order.
Qed.

The spec of sqrt indeed determines it

Lemma sqrt_unique : forall a b, b² <= a < (S b -> a == b.
Proof.
 intros a b (LEb,LTb).
 assert (Ha : 0<=a) by (transitivity (b²); trivial using square_nonneg).
 assert (Hb : 0<=b) by (apply sqrt_spec_nonneg; order).
 assert (Ha': 0<=a) by now apply sqrt_nonneg.
 destruct (sqrt_spec a Ha) as (LEa,LTa).
 assert (b <= a).
  apply lt_succ_r, square_lt_simpl_nonneg; [|order].
  now apply lt_le_incl, lt_succ_r.
 assert (a <= b).
  apply lt_succ_r, square_lt_simpl_nonneg; [|order].
  now apply lt_le_incl, lt_succ_r.
 order.
Qed.

Hence sqrt is a morphism

Instance sqrt_wd : Proper (eq==>eq) sqrt.
Proof.
 intros x x' Hx.
 destruct (lt_ge_cases x 0) as [H|H].
 rewrite 2 sqrt_neg; trivial. reflexivity.
 now rewrite <- Hx.
 apply sqrt_unique. rewrite Hx in *. now apply sqrt_spec.
Qed.

An alternate specification

Lemma sqrt_spec_alt : forall a, 0<=a -> exists r,
 a == (a + r /\ 0 <= r <= 2*a.
Proof.
 intros a Ha.
 destruct (sqrt_spec _ Ha) as (LE,LT).
 destruct (le_exists_sub _ _ LE) as (r & Hr & Hr').
 exists r.
 split. now rewrite add_comm.
 split. trivial.
 apply (add_le_mono_r _ _ (a).
 rewrite <- Hr, add_comm.
 generalize LT. nzsimpl'. now rewrite lt_succ_r, add_assoc.
Qed.

Lemma sqrt_unique' : forall a b c, 0<=c<=2*b ->
 a == b² + c -> a == b.
Proof.
 intros a b c (Hc,H) EQ.
 apply sqrt_unique.
 rewrite EQ.
 split.
 rewrite <- add_0_r at 1. now apply add_le_mono_l.
 nzsimpl. apply lt_succ_r.
 rewrite <- add_assoc. apply add_le_mono_l.
 generalize H; now nzsimpl'.
Qed.

Sqrt is exact on squares

Lemma sqrt_square : forall a, 0<=a -> √(a²) == a.
Proof.
 intros a Ha.
 apply sqrt_unique' with 0.
 split. order. apply mul_nonneg_nonneg; order'. now nzsimpl.
Qed.

Sqrt and predecessors of squares

Lemma sqrt_pred_square : forall a, 0<a -> √(P a²) == P a.
Proof.
 intros a Ha.
 apply sqrt_unique.
 assert (EQ := lt_succ_pred 0 a Ha).
 rewrite EQ. split.
 apply lt_succ_r.
 rewrite (lt_succ_pred 0).
 assert (0 <= P a) by (now rewrite <- lt_succ_r, EQ).
 assert (P a < a) by (now rewrite <- le_succ_l, EQ).
 apply mul_lt_mono_nonneg; trivial.
 now apply mul_pos_pos.
 apply le_succ_l.
 rewrite (lt_succ_pred 0). reflexivity. now apply mul_pos_pos.
Qed.

Sqrt is a monotone function (but not a strict one)

Lemma sqrt_le_mono : forall a b, a <= b -> a <= b.
Proof.
 intros a b Hab.
 destruct (lt_ge_cases a 0) as [Ha|Ha].
 rewrite (sqrt_neg _ Ha). apply sqrt_nonneg.
 assert (Hb : 0 <= b) by order.
 destruct (sqrt_spec a Ha) as (LE,_).
 destruct (sqrt_spec b Hb) as (_,LT).
 apply lt_succ_r.
 apply square_lt_simpl_nonneg; try order.
 now apply lt_le_incl, lt_succ_r, sqrt_nonneg.
Qed.

No reverse result for <=, consider for instance √2 <= √1

Lemma sqrt_lt_cancel : forall a b, a < b -> a < b.
Proof.
 intros a b H.
 destruct (lt_ge_cases b 0) as [Hb|Hb].
 rewrite (sqrt_neg b Hb) in H; generalize (sqrt_nonneg a); order.
 destruct (lt_ge_cases a 0) as [Ha|Ha]; [order|].
 destruct (sqrt_spec a Ha) as (_,LT).
 destruct (sqrt_spec b Hb) as (LE,_).
 apply le_succ_l in H.
 assert ((S (a) <= (b).
  apply mul_le_mono_nonneg; trivial.
  now apply lt_le_incl, lt_succ_r, sqrt_nonneg.
  now apply lt_le_incl, lt_succ_r, sqrt_nonneg.
 order.
Qed.

When left side is a square, we have an equivalence for <=

Lemma sqrt_le_square : forall a b, 0<=a -> 0<=b -> (b²<=a <-> b <= a).
Proof.
 intros a b Ha Hb. split; intros H.
 rewrite <- (sqrt_square b); trivial.
 now apply sqrt_le_mono.
 destruct (sqrt_spec a Ha) as (LE,LT).
 transitivity (a; trivial.
 now apply mul_le_mono_nonneg.
Qed.

When right side is a square, we have an equivalence for <

Lemma sqrt_lt_square : forall a b, 0<=a -> 0<=b -> (a<b² <-> a < b).
Proof.
 intros a b Ha Hb. split; intros H.
 destruct (sqrt_spec a Ha) as (LE,_).
 apply square_lt_simpl_nonneg; try order.
 rewrite <- (sqrt_square b Hb) in H.
 now apply sqrt_lt_cancel.
Qed.

Sqrt and basic constants

Lemma sqrt_0 : 0 == 0.
Proof.
 rewrite <- (mul_0_l 0) at 1. now apply sqrt_square.
Qed.

Lemma sqrt_1 : 1 == 1.
Proof.
 rewrite <- (mul_1_l 1) at 1. apply sqrt_square. order'.
Qed.

Lemma sqrt_2 : 2 == 1.
Proof.
 apply sqrt_unique' with 1. nzsimpl; split; order'. now nzsimpl'.
Qed.

Lemma sqrt_pos : forall a, 0 < a <-> 0 < a.
Proof.
 intros a. split; intros Ha. apply sqrt_lt_cancel. now rewrite sqrt_0.
 rewrite <- le_succ_l, <- one_succ, <- sqrt_1. apply sqrt_le_mono.
 now rewrite one_succ, le_succ_l.
Qed.

Lemma sqrt_lt_lin : forall a, 1<a -> a<a.
Proof.
 intros a Ha. rewrite <- sqrt_lt_square; try order'.
 rewrite <- (mul_1_r a) at 1.
 rewrite <- mul_lt_mono_pos_l; order'.
Qed.

Lemma sqrt_le_lin : forall a, 0<=a -> a<=a.
Proof.
 intros a Ha.
 destruct (le_gt_cases a 0) as [H|H].
 setoid_replace a with 0 by order. now rewrite sqrt_0.
 destruct (le_gt_cases a 1) as [H'|H'].
 rewrite <- le_succ_l, <- one_succ in H.
 setoid_replace a with 1 by order. now rewrite sqrt_1.
 now apply lt_le_incl, sqrt_lt_lin.
Qed.

Sqrt and multiplication.
Due to rounding error, we don't have the usual √(a*b) = √a*√b but only lower and upper bounds.

Lemma sqrt_mul_below : forall a b, a * b <= √(a*b).
Proof.
 intros a b.
 destruct (lt_ge_cases a 0) as [Ha|Ha].
 rewrite (sqrt_neg a Ha). nzsimpl. apply sqrt_nonneg.
 destruct (lt_ge_cases b 0) as [Hb|Hb].
 rewrite (sqrt_neg b Hb). nzsimpl. apply sqrt_nonneg.
 assert (Ha':=sqrt_nonneg a).
 assert (Hb':=sqrt_nonneg b).
 apply sqrt_le_square; try now apply mul_nonneg_nonneg.
 rewrite mul_shuffle1.
 apply mul_le_mono_nonneg; try now apply mul_nonneg_nonneg.
  now apply sqrt_spec.
  now apply sqrt_spec.
Qed.

Lemma sqrt_mul_above : forall a b, 0<=a -> 0<=b -> √(a*b) < S (a) * S (b).
Proof.
 intros a b Ha Hb.
 apply sqrt_lt_square.
 now apply mul_nonneg_nonneg.
 apply mul_nonneg_nonneg.
 now apply lt_le_incl, lt_succ_r, sqrt_nonneg.
 now apply lt_le_incl, lt_succ_r, sqrt_nonneg.
 rewrite mul_shuffle1.
 apply mul_lt_mono_nonneg; trivial; now apply sqrt_spec.
Qed.

And we can't find better approximations in general.
  • The lower bound is exact for squares
  • Concerning the upper bound, for any c>0, take a=b=c²-1, then √(a*b) = c² -1 while S √a = S √b = c
Sqrt and successor :
  • the sqrt function climbs by at most 1 at a time
  • otherwise it stays at the same value
  • the +1 steps occur for squares

Lemma sqrt_succ_le : forall a, 0<=a -> √(S a) <= S (a).
Proof.
 intros a Ha.
 apply lt_succ_r.
 apply sqrt_lt_square.
 now apply le_le_succ_r.
 apply le_le_succ_r, le_le_succ_r, sqrt_nonneg.
 rewrite <- (add_1_l (S (a))).
 apply lt_le_trans with (1²+(S (a)).
 rewrite mul_1_l, add_1_l, <- succ_lt_mono.
 now apply sqrt_spec.
 apply add_square_le. order'. apply le_le_succ_r, sqrt_nonneg.
Qed.

Lemma sqrt_succ_or : forall a, 0<=a -> √(S a) == S (a) \/ √(S a) == a.
Proof.
 intros a Ha.
 destruct (le_gt_cases (√(S a)) (a)) as [H|H].
 right. generalize (sqrt_le_mono _ _ (le_succ_diag_r a)); order.
 left. apply le_succ_l in H. generalize (sqrt_succ_le a Ha); order.
Qed.

Lemma sqrt_eq_succ_iff_square : forall a, 0<=a ->
 (√(S a) == S (a) <-> exists b, 0<b /\ S a == b²).
Proof.
 intros a Ha. split.
 intros EQ. exists (S (a)).
 split. apply lt_succ_r, sqrt_nonneg.
 generalize (proj2 (sqrt_spec a Ha)). rewrite <- le_succ_l.
 assert (Ha' : 0 <= S a) by now apply le_le_succ_r.
 generalize (proj1 (sqrt_spec (S a) Ha')). rewrite EQ; order.
 intros (b & Hb & H).
 rewrite H. rewrite sqrt_square; try order.
 symmetry.
 rewrite <- (lt_succ_pred 0 b Hb). f_equiv.
 rewrite <- (lt_succ_pred 0 b²) in H. apply succ_inj in H.
 now rewrite H, sqrt_pred_square.
 now apply mul_pos_pos.
Qed.

Sqrt and addition

Lemma sqrt_add_le : forall a b, √(a+b) <= a + b.
Proof.
 assert (AUX : forall a b, a<0 -> √(a+b) <= a + b).
  intros a b Ha. rewrite (sqrt_neg a Ha). nzsimpl.
  apply sqrt_le_mono.
  rewrite <- (add_0_l b) at 2.
  apply add_le_mono_r; order.
 intros a b.
 destruct (lt_ge_cases a 0) as [Ha|Ha]. now apply AUX.
 destruct (lt_ge_cases b 0) as [Hb|Hb].
  rewrite (add_comm a), (add_comm (a)); now apply AUX.
 assert (Ha':=sqrt_nonneg a).
 assert (Hb':=sqrt_nonneg b).
 rewrite <- lt_succ_r.
 apply sqrt_lt_square.
  now apply add_nonneg_nonneg.
  now apply lt_le_incl, lt_succ_r, add_nonneg_nonneg.
 destruct (sqrt_spec a Ha) as (_,LTa).
 destruct (sqrt_spec b Hb) as (_,LTb).
 revert LTa LTb. nzsimpl. rewrite 3 lt_succ_r.
 intros LTa LTb.
 assert (H:=add_le_mono _ _ _ _ LTa LTb).
 etransitivity; [eexact H|]. clear LTa LTb H.
 rewrite <- (add_assoc _ (a) (a)).
 rewrite <- (add_assoc _ (b) (b)).
 rewrite add_shuffle1.
 rewrite <- (add_assoc _ (a + b)).
 rewrite (add_shuffle1 (a) (b)).
 apply add_le_mono_r.
 now apply add_square_le.
Qed.

convexity inequality for sqrt: sqrt of middle is above middle of square roots.

Lemma add_sqrt_le : forall a b, 0<=a -> 0<=b -> a + b <= √(2*(a+b)).
Proof.
 intros a b Ha Hb.
 assert (Ha':=sqrt_nonneg a).
 assert (Hb':=sqrt_nonneg b).
 apply sqrt_le_square.
  apply mul_nonneg_nonneg. order'. now apply add_nonneg_nonneg.
  now apply add_nonneg_nonneg.
 transitivity (2*((a + (b)).
 now apply square_add_le.
 apply mul_le_mono_nonneg_l. order'.
 apply add_le_mono; now apply sqrt_spec.
Qed.

End NZSqrtProp.

Module Type NZSqrtUpProp
 (Import A : NZDecOrdAxiomsSig')
 (Import B : NZSqrt' A)
 (Import C : NZMulOrderProp A)
 (Import D : NZSqrtProp A B C).

sqrt_up : a square root that rounds up instead of down


Local Notation "a ²" := (a*a) (at level 5, no associativity, format "a ²").

For once, we define instead of axiomatizing, thanks to sqrt

Definition sqrt_up a :=
 match compare 0 a with
  | Lt => S √(P a)
  | _ => 0
 end.

Local Notation "√° a" := (sqrt_up a) (at level 6, no associativity).

Lemma sqrt_up_eqn0 : forall a, a<=0 -> √°a == 0.
Proof.
 intros a Ha. unfold sqrt_up. case compare_spec; try order.
Qed.

Lemma sqrt_up_eqn : forall a, 0<a -> √°a == S √(P a).
Proof.
 intros a Ha. unfold sqrt_up. case compare_spec; try order.
Qed.

Lemma sqrt_up_spec : forall a, 0<a -> (P √°a < a <= (√°a.
Proof.
 intros a Ha.
 rewrite sqrt_up_eqn, pred_succ; trivial.
 assert (Ha' := lt_succ_pred 0 a Ha).
 rewrite <- Ha' at 3 4.
 rewrite le_succ_l, lt_succ_r.
 apply sqrt_spec.
 now rewrite <- lt_succ_r, Ha'.
Qed.

First, sqrt_up is non-negative

Lemma sqrt_up_nonneg : forall a, 0<=√°a.
Proof.
 intros. destruct (le_gt_cases a 0) as [Ha|Ha].
 now rewrite sqrt_up_eqn0.
 rewrite sqrt_up_eqn; trivial. apply le_le_succ_r, sqrt_nonneg.
Qed.

sqrt_up is a morphism

Instance sqrt_up_wd : Proper (eq==>eq) sqrt_up.
Proof.
 assert (Proper (eq==>eq==>Logic.eq) compare).
  intros x x' Hx y y' Hy. do 2 case compare_spec; trivial; order.
 intros x x' Hx; unfold sqrt_up; rewrite Hx; case compare; now rewrite ?Hx.
Qed.

The spec of sqrt_up indeed determines it

Lemma sqrt_up_unique : forall a b, 0<b -> (P b < a <= b² -> √°a == b.
Proof.
 intros a b Hb (LEb,LTb).
 assert (Ha : 0<a)
  by (apply le_lt_trans with (P b; trivial using square_nonneg).
 rewrite sqrt_up_eqn; trivial.
 assert (Hb' := lt_succ_pred 0 b Hb).
 rewrite <- Hb'. f_equiv. apply sqrt_unique.
 rewrite <- le_succ_l, <- lt_succ_r, Hb'.
 rewrite (lt_succ_pred 0 a Ha). now split.
Qed.

sqrt_up is exact on squares

Lemma sqrt_up_square : forall a, 0<=a -> √°(a²) == a.
Proof.
 intros a Ha.
 le_elim Ha.
 rewrite sqrt_up_eqn by (now apply mul_pos_pos).
 rewrite sqrt_pred_square; trivial. apply (lt_succ_pred 0); trivial.
 rewrite sqrt_up_eqn0; trivial. rewrite <- Ha. now nzsimpl.
Qed.

sqrt_up and successors of squares

Lemma sqrt_up_succ_square : forall a, 0<=a -> √°(S a²) == S a.
Proof.
 intros a Ha.
 rewrite sqrt_up_eqn by (now apply lt_succ_r, mul_nonneg_nonneg).
 now rewrite pred_succ, sqrt_square.
Qed.

Basic constants

Lemma sqrt_up_0 : √°0 == 0.
Proof.
 rewrite <- (mul_0_l 0) at 1. now apply sqrt_up_square.
Qed.

Lemma sqrt_up_1 : √°1 == 1.
Proof.
 rewrite <- (mul_1_l 1) at 1. apply sqrt_up_square. order'.
Qed.

Lemma sqrt_up_2 : √°2 == 2.
Proof.
 rewrite sqrt_up_eqn by order'.
 now rewrite two_succ, pred_succ, sqrt_1.
Qed.

Links between sqrt and sqrt_up

Lemma le_sqrt_sqrt_up : forall a, a <= √°a.
Proof.
 intros a. unfold sqrt_up. case compare_spec; intros H.
 rewrite <- H, sqrt_0. order.
 rewrite <- (lt_succ_pred 0 a H) at 1. apply sqrt_succ_le.
 apply lt_succ_r. now rewrite (lt_succ_pred 0 a H).
 now rewrite sqrt_neg.
Qed.

Lemma le_sqrt_up_succ_sqrt : forall a, √°a <= S (a).
Proof.
 intros a. unfold sqrt_up.
 case compare_spec; intros H; try apply le_le_succ_r, sqrt_nonneg.
 rewrite <- succ_le_mono. apply sqrt_le_mono.
 rewrite <- (lt_succ_pred 0 a H) at 2. apply le_succ_diag_r.
Qed.

Lemma sqrt_sqrt_up_spec : forall a, 0<=a -> (a <= a <= (√°a.
Proof.
 intros a H. split.
 now apply sqrt_spec.
 le_elim H.
 now apply sqrt_up_spec.
 now rewrite <-H, sqrt_up_0, mul_0_l.
Qed.

Lemma sqrt_sqrt_up_exact :
 forall a, 0<=a -> (a == √°a <-> exists b, 0<=b /\ a == b²).
Proof.
 intros a Ha.
 split. intros. exists a.
  split. apply sqrt_nonneg.
  generalize (sqrt_sqrt_up_spec a Ha). rewrite <-H. destruct 1; order.
 intros (b & Hb & Hb'). rewrite Hb'.
 now rewrite sqrt_square, sqrt_up_square.
Qed.

sqrt_up is a monotone function (but not a strict one)

Lemma sqrt_up_le_mono : forall a b, a <= b -> √°a <= √°b.
Proof.
 intros a b H.
 destruct (le_gt_cases a 0) as [Ha|Ha].
 rewrite (sqrt_up_eqn0 _ Ha). apply sqrt_up_nonneg.
 rewrite 2 sqrt_up_eqn by order. rewrite <- succ_le_mono.
 apply sqrt_le_mono, succ_le_mono. rewrite 2 (lt_succ_pred 0); order.
Qed.

No reverse result for <=, consider for instance √°3 <= √°2

Lemma sqrt_up_lt_cancel : forall a b, √°a < √°b -> a < b.
Proof.
 intros a b H.
 destruct (le_gt_cases b 0) as [Hb|Hb].
 rewrite (sqrt_up_eqn0 _ Hb) in H; generalize (sqrt_up_nonneg a); order.
 destruct (le_gt_cases a 0) as [Ha|Ha]; [order|].
 rewrite <- (lt_succ_pred 0 a Ha), <- (lt_succ_pred 0 b Hb), <- succ_lt_mono.
 apply sqrt_lt_cancel, succ_lt_mono. now rewrite <- 2 sqrt_up_eqn.
Qed.

When left side is a square, we have an equivalence for <

Lemma sqrt_up_lt_square : forall a b, 0<=a -> 0<=b -> (b² < a <-> b < √°a).
Proof.
 intros a b Ha Hb. split; intros H.
 destruct (sqrt_up_spec a) as (LE,LT).
 apply le_lt_trans with b²; trivial using square_nonneg.
 apply square_lt_simpl_nonneg; try order. apply sqrt_up_nonneg.
 apply sqrt_up_lt_cancel. now rewrite sqrt_up_square.
Qed.

When right side is a square, we have an equivalence for <=

Lemma sqrt_up_le_square : forall a b, 0<=a -> 0<=b -> (a <= b² <-> √°a <= b).
Proof.
 intros a b Ha Hb. split; intros H.
 rewrite <- (sqrt_up_square b Hb).
 now apply sqrt_up_le_mono.
 apply square_le_mono_nonneg in H; [|now apply sqrt_up_nonneg].
 transitivity (√°a; trivial. now apply sqrt_sqrt_up_spec.
Qed.

Lemma sqrt_up_pos : forall a, 0 < √°a <-> 0 < a.
Proof.
 intros a. split; intros Ha. apply sqrt_up_lt_cancel. now rewrite sqrt_up_0.
 rewrite <- le_succ_l, <- one_succ, <- sqrt_up_1. apply sqrt_up_le_mono.
 now rewrite one_succ, le_succ_l.
Qed.

Lemma sqrt_up_lt_lin : forall a, 2<a -> √°a < a.
Proof.
 intros a Ha.
 rewrite sqrt_up_eqn by order'.
 assert (Ha' := lt_succ_pred 2 a Ha).
 rewrite <- Ha' at 2. rewrite <- succ_lt_mono.
 apply sqrt_lt_lin. rewrite succ_lt_mono. now rewrite Ha', <- two_succ.
Qed.

Lemma sqrt_up_le_lin : forall a, 0<=a -> √°a<=a.
Proof.
 intros a Ha.
 le_elim Ha.
 rewrite sqrt_up_eqn; trivial. apply le_succ_l.
 apply le_lt_trans with (P a). apply sqrt_le_lin.
 now rewrite <- lt_succ_r, (lt_succ_pred 0).
 rewrite <- (lt_succ_pred 0 a) at 2; trivial. apply lt_succ_diag_r.
 now rewrite <- Ha, sqrt_up_0.
Qed.

sqrt_up and multiplication.
Due to rounding error, we don't have the usual √(a*b) = a*√b but only lower and upper bounds.

Lemma sqrt_up_mul_above : forall a b, 0<=a -> 0<=b -> √°(a*b) <= √°a * √°b.
Proof.
 intros a b Ha Hb.
 apply sqrt_up_le_square.
 now apply mul_nonneg_nonneg.
 apply mul_nonneg_nonneg; apply sqrt_up_nonneg.
 rewrite mul_shuffle1.
 apply mul_le_mono_nonneg; trivial; now apply sqrt_sqrt_up_spec.
Qed.

Lemma sqrt_up_mul_below : forall a b, 0<a -> 0<b -> (P √°a)*(P √°b) < √°(a*b).
Proof.
 intros a b Ha Hb.
 apply sqrt_up_lt_square.
 apply mul_nonneg_nonneg; order.
 apply mul_nonneg_nonneg; apply lt_succ_r.
 rewrite (lt_succ_pred 0); now rewrite sqrt_up_pos.
 rewrite (lt_succ_pred 0); now rewrite sqrt_up_pos.
 rewrite mul_shuffle1.
 apply mul_lt_mono_nonneg; trivial using square_nonneg;
  now apply sqrt_up_spec.
Qed.

And we can't find better approximations in general.
  • The upper bound is exact for squares
  • Concerning the lower bound, for any c>0, take a=b=c²+1, then √°(a*b) = c²+1 while P √°a = P √°b = c
sqrt_up and successor :
  • the sqrt_up function climbs by at most 1 at a time
  • otherwise it stays at the same value
  • the +1 steps occur after squares

Lemma sqrt_up_succ_le : forall a, 0<=a -> √°(S a) <= S (√°a).
Proof.
 intros a Ha.
 apply sqrt_up_le_square.
 now apply le_le_succ_r.
 apply le_le_succ_r, sqrt_up_nonneg.
 rewrite <- (add_1_l (√°a)).
 apply le_trans with (1²+(√°a).
 rewrite mul_1_l, add_1_l, <- succ_le_mono.
 now apply sqrt_sqrt_up_spec.
 apply add_square_le. order'. apply sqrt_up_nonneg.
Qed.

Lemma sqrt_up_succ_or : forall a, 0<=a -> √°(S a) == S (√°a) \/ √°(S a) == √°a.
Proof.
 intros a Ha.
 destruct (le_gt_cases (√°(S a)) (√°a)) as [H|H].
 right. generalize (sqrt_up_le_mono _ _ (le_succ_diag_r a)); order.
 left. apply le_succ_l in H. generalize (sqrt_up_succ_le a Ha); order.
Qed.

Lemma sqrt_up_eq_succ_iff_square : forall a, 0<=a ->
 (√°(S a) == S (√°a) <-> exists b, 0<=b /\ a == b²).
Proof.
 intros a Ha. split.
 intros EQ.
 le_elim Ha.
 exists (√°a). split. apply sqrt_up_nonneg.
 generalize (proj2 (sqrt_up_spec a Ha)).
 assert (Ha' : 0 < S a) by (apply lt_succ_r; order').
 generalize (proj1 (sqrt_up_spec (S a) Ha')).
 rewrite EQ, pred_succ, lt_succ_r. order.
 exists 0. nzsimpl. now split.
 intros (b & Hb & H).
 now rewrite H, sqrt_up_succ_square, sqrt_up_square.
Qed.

sqrt_up and addition

Lemma sqrt_up_add_le : forall a b, √°(a+b) <= √°a + √°b.
Proof.
 assert (AUX : forall a b, a<=0 -> √°(a+b) <= √°a + √°b).
  intros a b Ha. rewrite (sqrt_up_eqn0 a Ha). nzsimpl.
  apply sqrt_up_le_mono.
  rewrite <- (add_0_l b) at 2.
  apply add_le_mono_r; order.
 intros a b.
 destruct (le_gt_cases a 0) as [Ha|Ha]. now apply AUX.
 destruct (le_gt_cases b 0) as [Hb|Hb].
  rewrite (add_comm a), (add_comm (√°a)); now apply AUX.
 rewrite 2 sqrt_up_eqn; trivial.
 nzsimpl. rewrite <- succ_le_mono.
 transitivity (√(P a) + b).
 rewrite <- (lt_succ_pred 0 a Ha) at 1. nzsimpl. apply sqrt_add_le.
 apply add_le_mono_l.
 apply le_sqrt_sqrt_up.
 now apply add_pos_pos.
Qed.

Convexity-like inequality for sqrt_up: sqrt_up of middle is above middle of square roots. We cannot say more, for instance take a=b=2, then 2+2 <= S 3

Lemma add_sqrt_up_le : forall a b, 0<=a -> 0<=b -> √°a + √°b <= S √°(2*(a+b)).
Proof.
 intros a b Ha Hb.
 le_elim Ha.
 le_elim Hb.
 rewrite 3 sqrt_up_eqn; trivial.
 nzsimpl. rewrite <- 2 succ_le_mono.
 etransitivity; [eapply add_sqrt_le|].
 apply lt_succ_r. now rewrite (lt_succ_pred 0 a Ha).
 apply lt_succ_r. now rewrite (lt_succ_pred 0 b Hb).
 apply sqrt_le_mono.
 apply lt_succ_r. rewrite (lt_succ_pred 0).
 apply mul_lt_mono_pos_l. order'.
 apply add_lt_mono.
 apply le_succ_l. now rewrite (lt_succ_pred 0).
 apply le_succ_l. now rewrite (lt_succ_pred 0).
 apply mul_pos_pos. order'. now apply add_pos_pos.
 apply mul_pos_pos. order'. now apply add_pos_pos.
 rewrite <- Hb, sqrt_up_0. nzsimpl. apply le_le_succ_r, sqrt_up_le_mono.
 rewrite <- (mul_1_l a) at 1. apply mul_le_mono_nonneg_r; order'.
 rewrite <- Ha, sqrt_up_0. nzsimpl. apply le_le_succ_r, sqrt_up_le_mono.
 rewrite <- (mul_1_l b) at 1. apply mul_le_mono_nonneg_r; order'.
Qed.

End NZSqrtUpProp.