Library Coq.QArith.QArith_base


Require Export ZArith.
Require Export ZArithRing.
Require Export Morphisms Setoid Bool.

Definition of Q and basic properties

Rationals are pairs of Z and positive numbers.

Record Q : Set := Qmake {Qnum : Z; Qden : positive}.

Delimit Scope Q_scope with Q.
Bind Scope Q_scope with Q.
Arguments Qmake _%Z _%positive.
Open Scope Q_scope.
Ltac simpl_mult := rewrite ?Pos2Z.inj_mul.

a#b denotes the fraction a over b.

Notation "a # b" := (Qmake a b) (at level 55, no associativity) : Q_scope.

Definition inject_Z (x : Z) := Qmake x 1.
Arguments inject_Z x%Z.

Notation QDen p := (Zpos (Qden p)).
Notation " 0 " := (0#1) : Q_scope.
Notation " 1 " := (1#1) : Q_scope.

Definition Qeq (p q : Q) := (Qnum p * QDen q)%Z = (Qnum q * QDen p)%Z.
Definition Qle (x y : Q) := (Qnum x * QDen y <= Qnum y * QDen x)%Z.
Definition Qlt (x y : Q) := (Qnum x * QDen y < Qnum y * QDen x)%Z.
Notation Qgt a b := (Qlt b a) (only parsing).
Notation Qge a b := (Qle b a) (only parsing).

Infix "==" := Qeq (at level 70, no associativity) : Q_scope.
Infix "<" := Qlt : Q_scope.
Infix "<=" := Qle : Q_scope.
Notation "x > y" := (Qlt y x)(only parsing) : Q_scope.
Notation "x >= y" := (Qle y x)(only parsing) : Q_scope.
Notation "x <= y <= z" := (x<=y/\y<=z) : Q_scope.

injection from Z is injective.

Lemma inject_Z_injective (a b: Z): inject_Z a == inject_Z b <-> a = b.
Proof.
 unfold Qeq. simpl. omega.
Qed.

Another approach : using Qcompare for defining order relations.

Definition Qcompare (p q : Q) := (Qnum p * QDen q ?= Qnum q * QDen p)%Z.
Notation "p ?= q" := (Qcompare p q) : Q_scope.

Lemma Qeq_alt p q : (p == q) <-> (p ?= q) = Eq.
Proof.
symmetry. apply Z.compare_eq_iff.
Qed.

Lemma Qlt_alt p q : (p<q) <-> (p?=q = Lt).
Proof.
reflexivity.
Qed.

Lemma Qgt_alt p q : (p>q) <-> (p?=q = Gt).
Proof.
symmetry. apply Z.gt_lt_iff.
Qed.

Lemma Qle_alt p q : (p<=q) <-> (p?=q <> Gt).
Proof.
reflexivity.
Qed.

Lemma Qge_alt p q : (p>=q) <-> (p?=q <> Lt).
Proof.
symmetry. apply Z.ge_le_iff.
Qed.

Hint Unfold Qeq Qlt Qle : qarith.
Hint Extern 5 (?X1 <> ?X2) => intro; discriminate: qarith.

Lemma Qcompare_antisym x y : CompOpp (x ?= y) = (y ?= x).
Proof.
 symmetry. apply Z.compare_antisym.
Qed.

Lemma Qcompare_spec x y : CompareSpec (x==y) (x<y) (y<x) (x ?= y).
Proof.
 unfold Qeq, Qlt, Qcompare. case Z.compare_spec; now constructor.
Qed.

Properties of equality.


Theorem Qeq_refl x : x == x.
Proof.
 auto with qarith.
Qed.

Theorem Qeq_sym x y : x == y -> y == x.
Proof.
 auto with qarith.
Qed.

Theorem Qeq_trans x y z : x == y -> y == z -> x == z.
Proof.
unfold Qeq; intros XY YZ.
apply Z.mul_reg_r with (QDen y); [auto with qarith|].
now rewrite Z.mul_shuffle0, XY, Z.mul_shuffle0, YZ, Z.mul_shuffle0.
Qed.

Hint Immediate Qeq_sym : qarith.
Hint Resolve Qeq_refl Qeq_trans : qarith.

In a word, Qeq is a setoid equality.

Instance Q_Setoid : Equivalence Qeq.
Proof. split; red; eauto with qarith. Qed.

Furthermore, this equality is decidable:

Theorem Qeq_dec x y : {x==y} + {~ x==y}.
Proof.
 apply Z.eq_dec.
Defined.

Definition Qeq_bool x y :=
  (Zeq_bool (Qnum x * QDen y) (Qnum y * QDen x))%Z.

Definition Qle_bool x y :=
  (Z.leb (Qnum x * QDen y) (Qnum y * QDen x))%Z.

Lemma Qeq_bool_iff x y : Qeq_bool x y = true <-> x == y.
Proof.
  symmetry; apply Zeq_is_eq_bool.
Qed.

Lemma Qeq_bool_eq x y : Qeq_bool x y = true -> x == y.
Proof.
  apply Qeq_bool_iff.
Qed.

Lemma Qeq_eq_bool x y : x == y -> Qeq_bool x y = true.
Proof.
  apply Qeq_bool_iff.
Qed.

Lemma Qeq_bool_neq x y : Qeq_bool x y = false -> ~ x == y.
Proof.
  rewrite <- Qeq_bool_iff. now intros ->.
Qed.

Lemma Qle_bool_iff x y : Qle_bool x y = true <-> x <= y.
Proof.
  symmetry; apply Zle_is_le_bool.
Qed.

Lemma Qle_bool_imp_le x y : Qle_bool x y = true -> x <= y.
Proof.
  apply Qle_bool_iff.
Qed.

Theorem Qnot_eq_sym x y : ~x == y -> ~y == x.
Proof.
 auto with qarith.
Qed.

Lemma Qeq_bool_comm x y: Qeq_bool x y = Qeq_bool y x.
Proof.
 apply eq_true_iff_eq. rewrite !Qeq_bool_iff. now symmetry.
Qed.

Lemma Qeq_bool_refl x: Qeq_bool x x = true.
Proof.
  rewrite Qeq_bool_iff. now reflexivity.
Qed.

Lemma Qeq_bool_sym x y: Qeq_bool x y = true -> Qeq_bool y x = true.
Proof.
  rewrite !Qeq_bool_iff. now symmetry.
Qed.

Lemma Qeq_bool_trans x y z: Qeq_bool x y = true -> Qeq_bool y z = true -> Qeq_bool x z = true.
Proof.
  rewrite !Qeq_bool_iff; apply Qeq_trans.
Qed.

Hint Resolve Qnot_eq_sym : qarith.

Addition, multiplication and opposite

The addition, multiplication and opposite are defined in the straightforward way:

Definition Qplus (x y : Q) :=
  (Qnum x * QDen y + Qnum y * QDen x) # (Qden x * Qden y).

Definition Qmult (x y : Q) := (Qnum x * Qnum y) # (Qden x * Qden y).

Definition Qopp (x : Q) := (- Qnum x) # (Qden x).

Definition Qminus (x y : Q) := Qplus x (Qopp y).

Definition Qinv (x : Q) :=
  match Qnum x with
  | Z0 => 0
  | Zpos p => (QDen x)#p
  | Zneg p => (Zneg (Qden x))#p
  end.

Definition Qdiv (x y : Q) := Qmult x (Qinv y).

Infix "+" := Qplus : Q_scope.
Notation "- x" := (Qopp x) : Q_scope.
Infix "-" := Qminus : Q_scope.
Infix "*" := Qmult : Q_scope.
Notation "/ x" := (Qinv x) : Q_scope.
Infix "/" := Qdiv : Q_scope.

A light notation for Zpos

Lemma Qmake_Qdiv a b : a#b==inject_Z a/inject_Z (Zpos b).
Proof.
unfold Qeq. simpl. ring.
Qed.

Setoid compatibility results


Instance Qplus_comp : Proper (Qeq==>Qeq==>Qeq) Qplus.
Proof.
  unfold Qeq, Qplus; simpl.
  Open Scope Z_scope.
  intros (p1, p2) (q1, q2) H (r1, r2) (s1, s2) H0; simpl in *.
  simpl_mult; ring_simplify.
  replace (p1 * Zpos r2 * Zpos q2) with (p1 * Zpos q2 * Zpos r2) by ring.
  rewrite H.
  replace (r1 * Zpos p2 * Zpos q2 * Zpos s2) with (r1 * Zpos s2 * Zpos p2 * Zpos q2) by ring.
  rewrite H0.
  ring.
  Close Scope Z_scope.
Qed.

Instance Qopp_comp : Proper (Qeq==>Qeq) Qopp.
Proof.
  unfold Qeq, Qopp; simpl.
  Open Scope Z_scope.
  intros x y H; simpl.
  replace (- Qnum x * Zpos (Qden y)) with (- (Qnum x * Zpos (Qden y))) by ring.
  rewrite H; ring.
  Close Scope Z_scope.
Qed.

Instance Qminus_comp : Proper (Qeq==>Qeq==>Qeq) Qminus.
Proof.
  intros x x' Hx y y' Hy.
  unfold Qminus. rewrite Hx, Hy; auto with qarith.
Qed.

Instance Qmult_comp : Proper (Qeq==>Qeq==>Qeq) Qmult.
Proof.
  unfold Qeq; simpl.
  Open Scope Z_scope.
  intros (p1, p2) (q1, q2) H (r1, r2) (s1, s2) H0; simpl in *.
  intros; simpl_mult; ring_simplify.
  replace (q1 * s1 * Zpos p2) with (q1 * Zpos p2 * s1) by ring.
  rewrite <- H.
  replace (p1 * r1 * Zpos q2 * Zpos s2) with (r1 * Zpos s2 * p1 * Zpos q2) by ring.
  rewrite H0.
  ring.
  Close Scope Z_scope.
Qed.

Instance Qinv_comp : Proper (Qeq==>Qeq) Qinv.
Proof.
  unfold Qeq, Qinv; simpl.
  Open Scope Z_scope.
  intros (p1, p2) (q1, q2) EQ; simpl in *.
  destruct q1; simpl in *.
  - apply Z.mul_eq_0 in EQ. destruct EQ; now subst.
  - destruct p1; simpl in *; try discriminate.
    now rewrite Pos.mul_comm, <- EQ, Pos.mul_comm.
  - destruct p1; simpl in *; try discriminate.
    now rewrite Pos.mul_comm, <- EQ, Pos.mul_comm.
  Close Scope Z_scope.
Qed.

Instance Qdiv_comp : Proper (Qeq==>Qeq==>Qeq) Qdiv.
Proof.
  intros x x' Hx y y' Hy; unfold Qdiv.
  rewrite Hx, Hy; auto with qarith.
Qed.

Instance Qcompare_comp : Proper (Qeq==>Qeq==>eq) Qcompare.
Proof.
  unfold Qeq, Qcompare.
  Open Scope Z_scope.
  intros (p1,p2) (q1,q2) H (r1,r2) (s1,s2) H'; simpl in *.
  rewrite <- (Zcompare_mult_compat (q2*s2) (p1*Zpos r2)).
  rewrite <- (Zcompare_mult_compat (p2*r2) (q1*Zpos s2)).
  change (Zpos (q2*s2)) with (Zpos q2 * Zpos s2).
  change (Zpos (p2*r2)) with (Zpos p2 * Zpos r2).
  replace (Zpos q2 * Zpos s2 * (p1*Zpos r2)) with ((p1*Zpos q2)*Zpos r2*Zpos s2) by ring.
  rewrite H.
  replace (Zpos q2 * Zpos s2 * (r1*Zpos p2)) with ((r1*Zpos s2)*Zpos q2*Zpos p2) by ring.
  rewrite H'.
  f_equal; ring.
  Close Scope Z_scope.
Qed.

Instance Qle_comp : Proper (Qeq==>Qeq==>iff) Qle.
Proof.
  intros p q H r s H'. rewrite 2 Qle_alt, H, H'; auto with *.
Qed.

Instance Qlt_compat : Proper (Qeq==>Qeq==>iff) Qlt.
Proof.
  intros p q H r s H'. rewrite 2 Qlt_alt, H, H'; auto with *.
Qed.

Instance Qeqb_comp : Proper (Qeq==>Qeq==>eq) Qeq_bool.
Proof.
 intros p q H r s H'; apply eq_true_iff_eq.
 rewrite 2 Qeq_bool_iff, H, H'; split; auto with qarith.
Qed.

Instance Qleb_comp : Proper (Qeq==>Qeq==>eq) Qle_bool.
Proof.
 intros p q H r s H'; apply eq_true_iff_eq.
 rewrite 2 Qle_bool_iff, H, H'; split; auto with qarith.
Qed.

0 and 1 are apart

Lemma Q_apart_0_1 : ~ 1 == 0.
Proof.
  unfold Qeq; auto with qarith.
Qed.

Properties of Qadd

Addition is associative:

Theorem Qplus_assoc : forall x y z, x+(y+z)==(x+y)+z.
Proof.
  intros (x1, x2) (y1, y2) (z1, z2).
  unfold Qeq, Qplus; simpl; simpl_mult; ring.
Qed.

0 is a neutral element for addition:

Lemma Qplus_0_l : forall x, 0+x == x.
Proof.
  intros (x1, x2); unfold Qeq, Qplus; simpl; ring.
Qed.

Lemma Qplus_0_r : forall x, x+0 == x.
Proof.
  intros (x1, x2); unfold Qeq, Qplus; simpl.
  rewrite Pos.mul_comm; simpl; ring.
Qed.

Commutativity of addition:

Theorem Qplus_comm : forall x y, x+y == y+x.
Proof.
  intros (x1, x2); unfold Qeq, Qplus; simpl.
  intros; rewrite Pos.mul_comm; ring.
Qed.

Properties of Qopp


Lemma Qopp_involutive : forall q, - -q == q.
Proof.
  red; simpl; intros; ring.
Qed.

Theorem Qplus_opp_r : forall q, q+(-q) == 0.
Proof.
  red; simpl; intro; ring.
Qed.

Injectivity of addition (uses theory about Qopp above):

Lemma Qplus_inj_r (x y z: Q):
  x + z == y + z <-> x == y.
Proof.
 split; intro E.
  rewrite <- (Qplus_0_r x), <- (Qplus_0_r y).
  rewrite <- (Qplus_opp_r z); auto.
  do 2 rewrite Qplus_assoc.
  rewrite E. reflexivity.
 rewrite E. reflexivity.
Qed.

Lemma Qplus_inj_l (x y z: Q):
  z + x == z + y <-> x == y.
Proof.
 rewrite (Qplus_comm z x), (Qplus_comm z y).
 apply Qplus_inj_r.
Qed.

Properties of Qmult

Multiplication is associative:

Theorem Qmult_assoc : forall n m p, n*(m*p)==(n*m)*p.
Proof.
  intros; red; simpl; rewrite Pos.mul_assoc; ring.
Qed.

multiplication and zero

Lemma Qmult_0_l : forall x , 0*x == 0.
Proof.
  intros; compute; reflexivity.
Qed.

Lemma Qmult_0_r : forall x , x*0 == 0.
Proof.
  intros; red; simpl; ring.
Qed.

1 is a neutral element for multiplication:

Lemma Qmult_1_l : forall n, 1*n == n.
Proof.
  intro; red; simpl; destruct (Qnum n); auto.
Qed.

Theorem Qmult_1_r : forall n, n*1==n.
Proof.
  intro; red; simpl.
  rewrite Z.mul_1_r with (n := Qnum n).
  rewrite Pos.mul_comm; simpl; trivial.
Qed.

Commutativity of multiplication

Theorem Qmult_comm : forall x y, x*y==y*x.
Proof.
  intros; red; simpl; rewrite Pos.mul_comm; ring.
Qed.

Distributivity over Qadd

Theorem Qmult_plus_distr_r : forall x y z, x*(y+z)==(x*y)+(x*z).
Proof.
  intros (x1, x2) (y1, y2) (z1, z2).
  unfold Qeq, Qmult, Qplus; simpl; simpl_mult; ring.
Qed.

Theorem Qmult_plus_distr_l : forall x y z, (x+y)*z==(x*z)+(y*z).
Proof.
  intros (x1, x2) (y1, y2) (z1, z2).
  unfold Qeq, Qmult, Qplus; simpl; simpl_mult; ring.
Qed.

Integrality

Theorem Qmult_integral : forall x y, x*y==0 -> x==0 \/ y==0.
Proof.
  intros (x1,x2) (y1,y2).
  unfold Qeq, Qmult; simpl.
  now rewrite <- Z.mul_eq_0, !Z.mul_1_r.
Qed.

Theorem Qmult_integral_l : forall x y, ~ x == 0 -> x*y == 0 -> y == 0.
Proof.
  intros (x1, x2) (y1, y2).
  unfold Qeq, Qmult; simpl.
  rewrite !Z.mul_1_r, Z.mul_eq_0. intuition.
Qed.

inject_Z is a ring homomorphism:


Lemma inject_Z_plus (x y: Z): inject_Z (x + y) = inject_Z x + inject_Z y.
Proof.
 unfold Qplus, inject_Z. simpl. f_equal. ring.
Qed.

Lemma inject_Z_mult (x y: Z): inject_Z (x * y) = inject_Z x * inject_Z y.
Proof. reflexivity. Qed.

Lemma inject_Z_opp (x: Z): inject_Z (- x) = - inject_Z x.
Proof. reflexivity. Qed.

Inverse and division.


Lemma Qinv_involutive : forall q, (/ / q) == q.
Proof.
intros [[|n|n] d]; red; simpl; reflexivity.
Qed.

Theorem Qmult_inv_r : forall x, ~ x == 0 -> x*(/x) == 1.
Proof.
  intros (x1, x2); unfold Qeq, Qdiv, Qmult; case x1; simpl;
    intros; simpl_mult; try ring.
  elim H; auto.
Qed.

Lemma Qinv_mult_distr : forall p q, / (p * q) == /p * /q.
Proof.
  intros (x1,x2) (y1,y2); unfold Qeq, Qinv, Qmult; simpl.
  destruct x1; simpl; auto;
    destruct y1; simpl; auto.
Qed.

Theorem Qdiv_mult_l : forall x y, ~ y == 0 -> (x*y)/y == x.
Proof.
  intros; unfold Qdiv.
  rewrite <- (Qmult_assoc x y (Qinv y)).
  rewrite (Qmult_inv_r y H).
  apply Qmult_1_r.
Qed.

Theorem Qmult_div_r : forall x y, ~ y == 0 -> y*(x/y) == x.
Proof.
  intros; unfold Qdiv.
  rewrite (Qmult_assoc y x (Qinv y)).
  rewrite (Qmult_comm y x).
  fold (Qdiv (Qmult x y) y).
  apply Qdiv_mult_l; auto.
Qed.

Injectivity of Qmult (requires theory about Qinv above):

Lemma Qmult_inj_r (x y z: Q): ~ z == 0 -> (x * z == y * z <-> x == y).
Proof.
 intro z_ne_0.
 split; intro E.
  rewrite <- (Qmult_1_r x), <- (Qmult_1_r y).
  rewrite <- (Qmult_inv_r z); auto.
  do 2 rewrite Qmult_assoc.
  rewrite E. reflexivity.
 rewrite E. reflexivity.
Qed.

Lemma Qmult_inj_l (x y z: Q): ~ z == 0 -> (z * x == z * y <-> x == y).
Proof.
 rewrite (Qmult_comm z x), (Qmult_comm z y).
 apply Qmult_inj_r.
Qed.

Properties of order upon Q.


Lemma Qle_refl x : x<=x.
Proof.
  unfold Qle; auto with zarith.
Qed.

Lemma Qle_antisym x y : x<=y -> y<=x -> x==y.
Proof.
  unfold Qle, Qeq; auto with zarith.
Qed.

Lemma Qle_trans : forall x y z, x<=y -> y<=z -> x<=z.
Proof.
  unfold Qle; intros (x1, x2) (y1, y2) (z1, z2); simpl; intros.
  Open Scope Z_scope.
  apply Z.mul_le_mono_pos_r with (Zpos y2); [easy|].
  apply Z.le_trans with (y1 * Zpos x2 * Zpos z2).
  - rewrite Z.mul_shuffle0. now apply Z.mul_le_mono_pos_r.
  - rewrite Z.mul_shuffle0, (Z.mul_shuffle0 z1).
    now apply Z.mul_le_mono_pos_r.
  Close Scope Z_scope.
Qed.

Hint Resolve Qle_trans : qarith.

Lemma Qlt_irrefl x : ~x<x.
Proof.
 unfold Qlt. auto with zarith.
Qed.

Lemma Qlt_not_eq x y : x<y -> ~ x==y.
Proof.
  unfold Qlt, Qeq; auto with zarith.
Qed.

Lemma Zle_Qle (x y: Z): (x <= y)%Z = (inject_Z x <= inject_Z y).
Proof.
 unfold Qle. simpl. now rewrite !Z.mul_1_r.
Qed.

Lemma Zlt_Qlt (x y: Z): (x < y)%Z = (inject_Z x < inject_Z y).
Proof.
 unfold Qlt. simpl. now rewrite !Z.mul_1_r.
Qed.

Large = strict or equal

Lemma Qle_lteq x y : x<=y <-> x<y \/ x==y.
Proof.
 rewrite Qeq_alt, Qle_alt, Qlt_alt.
 destruct (x ?= y); intuition; discriminate.
Qed.

Lemma Qlt_le_weak x y : x<y -> x<=y.
Proof.
  unfold Qle, Qlt; auto with zarith.
Qed.

Lemma Qle_lt_trans : forall x y z, x<=y -> y<z -> x<z.
Proof.
  unfold Qle, Qlt; intros (x1, x2) (y1, y2) (z1, z2); simpl; intros.
  Open Scope Z_scope.
  apply Z.mul_lt_mono_pos_r with (Zpos y2); [easy|].
  apply Z.le_lt_trans with (y1 * Zpos x2 * Zpos z2).
  - rewrite Z.mul_shuffle0. now apply Z.mul_le_mono_pos_r.
  - rewrite Z.mul_shuffle0, (Z.mul_shuffle0 z1).
    now apply Z.mul_lt_mono_pos_r.
  Close Scope Z_scope.
Qed.

Lemma Qlt_le_trans : forall x y z, x<y -> y<=z -> x<z.
Proof.
  unfold Qle, Qlt; intros (x1, x2) (y1, y2) (z1, z2); simpl; intros.
  Open Scope Z_scope.
  apply Z.mul_lt_mono_pos_r with (Zpos y2); [easy|].
  apply Z.lt_le_trans with (y1 * Zpos x2 * Zpos z2).
  - rewrite Z.mul_shuffle0. now apply Z.mul_lt_mono_pos_r.
  - rewrite Z.mul_shuffle0, (Z.mul_shuffle0 z1).
    now apply Z.mul_le_mono_pos_r.
  Close Scope Z_scope.
Qed.

Lemma Qlt_trans : forall x y z, x<y -> y<z -> x<z.
Proof.
  intros.
  apply Qle_lt_trans with y; auto.
  apply Qlt_le_weak; auto.
Qed.

x<y iff ~(y<=x)

Lemma Qnot_lt_le : forall x y, ~ x<y -> y<=x.
Proof.
  unfold Qle, Qlt; auto with zarith.
Qed.

Lemma Qnot_le_lt : forall x y, ~ x<=y -> y<x.
Proof.
  unfold Qle, Qlt; auto with zarith.
Qed.

Lemma Qlt_not_le : forall x y, x<y -> ~ y<=x.
Proof.
  unfold Qle, Qlt; auto with zarith.
Qed.

Lemma Qle_not_lt : forall x y, x<=y -> ~ y<x.
Proof.
  unfold Qle, Qlt; auto with zarith.
Qed.

Lemma Qle_lt_or_eq : forall x y, x<=y -> x<y \/ x==y.
Proof.
  unfold Qle, Qlt, Qeq; intros; now apply Z.lt_eq_cases.
Qed.

Hint Resolve Qle_not_lt Qlt_not_le Qnot_le_lt Qnot_lt_le
 Qlt_le_weak Qlt_not_eq Qle_antisym Qle_refl: qarith.

Some decidability results about orders.

Lemma Q_dec : forall x y, {x<y} + {y<x} + {x==y}.
Proof.
  unfold Qlt, Qle, Qeq; intros.
  exact (Z_dec' (Qnum x * QDen y) (Qnum y * QDen x)).
Defined.

Lemma Qlt_le_dec : forall x y, {x<y} + {y<=x}.
Proof.
  unfold Qlt, Qle; intros.
  exact (Z_lt_le_dec (Qnum x * QDen y) (Qnum y * QDen x)).
Defined.

Compatibility of operations with respect to order.

Lemma Qopp_le_compat : forall p q, p<=q -> -q <= -p.
Proof.
  intros (a1,a2) (b1,b2); unfold Qle, Qlt; simpl.
  rewrite !Z.mul_opp_l. omega.
Qed.

Hint Resolve Qopp_le_compat : qarith.

Lemma Qle_minus_iff : forall p q, p <= q <-> 0 <= q+-p.
Proof.
  intros (x1,x2) (y1,y2); unfold Qle; simpl.
  rewrite Z.mul_opp_l. omega.
Qed.

Lemma Qlt_minus_iff : forall p q, p < q <-> 0 < q+-p.
Proof.
  intros (x1,x2) (y1,y2); unfold Qlt; simpl.
  rewrite Z.mul_opp_l. omega.
Qed.

Lemma Qplus_le_compat :
  forall x y z t, x<=y -> z<=t -> x+z <= y+t.
Proof.
  unfold Qplus, Qle; intros (x1, x2) (y1, y2) (z1, z2) (t1, t2);
    simpl; simpl_mult.
  Open Scope Z_scope.
  intros.
  match goal with |- ?a <= ?b => ring_simplify a b end.
  rewrite Z.add_comm.
  apply Z.add_le_mono.
  match goal with |- ?a <= ?b => ring_simplify z1 t1 (Zpos z2) (Zpos t2) a b end.
  auto with zarith.
  match goal with |- ?a <= ?b => ring_simplify x1 y1 (Zpos x2) (Zpos y2) a b end.
  auto with zarith.
  Close Scope Z_scope.
Qed.

Lemma Qplus_lt_le_compat :
  forall x y z t, x<y -> z<=t -> x+z < y+t.
Proof.
  unfold Qplus, Qle, Qlt; intros (x1, x2) (y1, y2) (z1, z2) (t1, t2);
    simpl; simpl_mult.
  Open Scope Z_scope.
  intros.
  match goal with |- ?a < ?b => ring_simplify a b end.
  rewrite Z.add_comm.
  apply Z.add_le_lt_mono.
  match goal with |- ?a <= ?b => ring_simplify z1 t1 (Zpos z2) (Zpos t2) a b end.
  auto with zarith.
  match goal with |- ?a < ?b => ring_simplify x1 y1 (Zpos x2) (Zpos y2) a b end.
  do 2 (apply Z.mul_lt_mono_pos_r;try easy).
  Close Scope Z_scope.
Qed.

Lemma Qplus_le_l (x y z: Q): x + z <= y + z <-> x <= y.
Proof.
 split; intros.
  rewrite <- (Qplus_0_r x), <- (Qplus_0_r y), <- (Qplus_opp_r z).
  do 2 rewrite Qplus_assoc.
  apply Qplus_le_compat; auto with *.
 apply Qplus_le_compat; auto with *.
Qed.

Lemma Qplus_le_r (x y z: Q): z + x <= z + y <-> x <= y.
Proof.
 rewrite (Qplus_comm z x), (Qplus_comm z y).
 apply Qplus_le_l.
Qed.

Lemma Qplus_lt_l (x y z: Q): x + z < y + z <-> x < y.
Proof.
 split; intros.
  rewrite <- (Qplus_0_r x), <- (Qplus_0_r y), <- (Qplus_opp_r z).
  do 2 rewrite Qplus_assoc.
  apply Qplus_lt_le_compat; auto with *.
 apply Qplus_lt_le_compat; auto with *.
Qed.

Lemma Qplus_lt_r (x y z: Q): z + x < z + y <-> x < y.
Proof.
 rewrite (Qplus_comm z x), (Qplus_comm z y).
 apply Qplus_lt_l.
Qed.

Lemma Qmult_le_compat_r : forall x y z, x <= y -> 0 <= z -> x*z <= y*z.
Proof.
  intros (a1,a2) (b1,b2) (c1,c2); unfold Qle, Qlt; simpl.
  Open Scope Z_scope.
  intros; simpl_mult.
  rewrite Z.mul_shuffle1, (Z.mul_shuffle1 b1).
  apply Z.mul_le_mono_nonneg_r; auto with zarith.
  Close Scope Z_scope.
Qed.

Lemma Qmult_lt_0_le_reg_r : forall x y z, 0 < z -> x*z <= y*z -> x <= y.
Proof.
  intros (a1,a2) (b1,b2) (c1,c2); unfold Qle, Qlt; simpl.
  Open Scope Z_scope.
  simpl_mult.
  rewrite Z.mul_shuffle1, (Z.mul_shuffle1 b1).
  intros LT LE.
  apply Z.mul_le_mono_pos_r in LE; trivial.
  apply Z.mul_pos_pos; [omega|easy].
  Close Scope Z_scope.
Qed.

Lemma Qmult_le_r (x y z: Q): 0 < z -> (x*z <= y*z <-> x <= y).
Proof.
 split; intro.
  now apply Qmult_lt_0_le_reg_r with z.
 apply Qmult_le_compat_r; auto with qarith.
Qed.

Lemma Qmult_le_l (x y z: Q): 0 < z -> (z*x <= z*y <-> x <= y).
Proof.
 rewrite (Qmult_comm z x), (Qmult_comm z y).
 apply Qmult_le_r.
Qed.

Lemma Qmult_lt_compat_r : forall x y z, 0 < z -> x < y -> x*z < y*z.
Proof.
  intros (a1,a2) (b1,b2) (c1,c2); unfold Qle, Qlt; simpl.
  Open Scope Z_scope.
  intros; simpl_mult.
  rewrite Z.mul_shuffle1, (Z.mul_shuffle1 b1).
  apply Z.mul_lt_mono_pos_r; auto with zarith.
  apply Z.mul_pos_pos; [omega|reflexivity].
  Close Scope Z_scope.
Qed.

Lemma Qmult_lt_r: forall x y z, 0 < z -> (x*z < y*z <-> x < y).
Proof.
 Open Scope Z_scope.
 intros (a1,a2) (b1,b2) (c1,c2).
 unfold Qle, Qlt; simpl.
 simpl_mult.
 rewrite Z.mul_shuffle1, (Z.mul_shuffle1 b1).
 intro LT. rewrite <- Z.mul_lt_mono_pos_r. reflexivity.
 apply Z.mul_pos_pos; [omega|reflexivity].
 Close Scope Z_scope.
Qed.

Lemma Qmult_lt_l (x y z: Q): 0 < z -> (z*x < z*y <-> x < y).
Proof.
 rewrite (Qmult_comm z x), (Qmult_comm z y).
 apply Qmult_lt_r.
Qed.

Lemma Qmult_le_0_compat : forall a b, 0 <= a -> 0 <= b -> 0 <= a*b.
Proof.
intros a b Ha Hb.
unfold Qle in *.
simpl in *.
auto with *.
Qed.

Lemma Qinv_le_0_compat : forall a, 0 <= a -> 0 <= /a.
Proof.
intros [[|n|n] d] Ha; assumption.
Qed.

Lemma Qle_shift_div_l : forall a b c,
 0 < c -> a*c <= b -> a <= b/c.
Proof.
intros a b c Hc H.
apply Qmult_lt_0_le_reg_r with (c).
 assumption.
setoid_replace (b/c*c) with (c*(b/c)) by apply Qmult_comm.
rewrite Qmult_div_r; try assumption.
auto with *.
Qed.

Lemma Qle_shift_inv_l : forall a c,
 0 < c -> a*c <= 1 -> a <= /c.
Proof.
intros a c Hc H.
setoid_replace (/c) with (1*/c) by (symmetry; apply Qmult_1_l).
change (a <= 1/c).
apply Qle_shift_div_l; assumption.
Qed.

Lemma Qle_shift_div_r : forall a b c,
 0 < b -> a <= c*b -> a/b <= c.
Proof.
intros a b c Hc H.
apply Qmult_lt_0_le_reg_r with b.
 assumption.
setoid_replace (a/b*b) with (b*(a/b)) by apply Qmult_comm.
rewrite Qmult_div_r; try assumption.
auto with *.
Qed.

Lemma Qle_shift_inv_r : forall b c,
 0 < b -> 1 <= c*b -> /b <= c.
Proof.
intros b c Hc H.
setoid_replace (/b) with (1*/b) by (symmetry; apply Qmult_1_l).
change (1/b <= c).
apply Qle_shift_div_r; assumption.
Qed.

Lemma Qinv_lt_0_compat : forall a, 0 < a -> 0 < /a.
Proof.
intros [[|n|n] d] Ha; assumption.
Qed.

Lemma Qlt_shift_div_l : forall a b c,
 0 < c -> a*c < b -> a < b/c.
Proof.
intros a b c Hc H.
apply Qnot_le_lt.
intros H0.
apply (Qlt_not_le _ _ H).
apply Qmult_lt_0_le_reg_r with (/c).
 apply Qinv_lt_0_compat.
 assumption.
setoid_replace (a*c/c) with (a) by (apply Qdiv_mult_l; auto with *).
assumption.
Qed.

Lemma Qlt_shift_inv_l : forall a c,
 0 < c -> a*c < 1 -> a < /c.
Proof.
intros a c Hc H.
setoid_replace (/c) with (1*/c) by (symmetry; apply Qmult_1_l).
change (a < 1/c).
apply Qlt_shift_div_l; assumption.
Qed.

Lemma Qlt_shift_div_r : forall a b c,
 0 < b -> a < c*b -> a/b < c.
Proof.
intros a b c Hc H.
apply Qnot_le_lt.
intros H0.
apply (Qlt_not_le _ _ H).
apply Qmult_lt_0_le_reg_r with (/b).
 apply Qinv_lt_0_compat.
 assumption.
setoid_replace (c*b/b) with (c) by (apply Qdiv_mult_l; auto with *).
assumption.
Qed.

Lemma Qlt_shift_inv_r : forall b c,
 0 < b -> 1 < c*b -> /b < c.
Proof.
intros b c Hc H.
setoid_replace (/b) with (1*/b) by (symmetry; apply Qmult_1_l).
change (1/b < c).
apply Qlt_shift_div_r; assumption.
Qed.

Rational to the n-th power


Definition Qpower_positive : Q -> positive -> Q :=
 pow_pos Qmult.

Instance Qpower_positive_comp : Proper (Qeq==>eq==>Qeq) Qpower_positive.
Proof.
intros x x' Hx y y' Hy. rewrite <-Hy; clear y' Hy.
unfold Qpower_positive.
induction y; simpl;
try rewrite IHy;
try rewrite Hx;
reflexivity.
Qed.

Definition Qpower (q:Q) (z:Z) :=
    match z with
      | Zpos p => Qpower_positive q p
      | Z0 => 1
      | Zneg p => /Qpower_positive q p
    end.

Notation " q ^ z " := (Qpower q z) : Q_scope.

Instance Qpower_comp : Proper (Qeq==>eq==>Qeq) Qpower.
Proof.
intros x x' Hx y y' Hy. rewrite <- Hy; clear y' Hy.
destruct y; simpl; rewrite ?Hx; auto with *.
Qed.