Library Coq.Reals.R_sqr


Require Import Rbase.
Require Import Rbasic_fun.
Local Open Scope R_scope.

Rsqr : some results

Ltac ring_Rsqr := unfold Rsqr; ring.

Lemma Rsqr_neg : forall x:R, Rsqr x = Rsqr (- x).
Proof.
  intros; ring_Rsqr.
Qed.

Lemma Rsqr_mult : forall x y:R, Rsqr (x * y) = Rsqr x * Rsqr y.
Proof.
  intros; ring_Rsqr.
Qed.

Lemma Rsqr_plus : forall x y:R, Rsqr (x + y) = Rsqr x + Rsqr y + 2 * x * y.
Proof.
  intros; ring_Rsqr.
Qed.

Lemma Rsqr_minus : forall x y:R, Rsqr (x - y) = Rsqr x + Rsqr y - 2 * x * y.
Proof.
  intros; ring_Rsqr.
Qed.

Lemma Rsqr_neg_minus : forall x y:R, Rsqr (x - y) = Rsqr (y - x).
Proof.
  intros; ring_Rsqr.
Qed.

Lemma Rsqr_1 : Rsqr 1 = 1.
Proof.
  ring_Rsqr.
Qed.

Lemma Rsqr_gt_0_0 : forall x:R, 0 < Rsqr x -> x <> 0.
Proof.
  intros; red; intro; rewrite H0 in H; rewrite Rsqr_0 in H;
    elim (Rlt_irrefl 0 H).
Qed.

Lemma Rsqr_pos_lt : forall x:R, x <> 0 -> 0 < Rsqr x.
Proof.
  intros; case (Rtotal_order 0 x); intro;
    [ unfold Rsqr; apply Rmult_lt_0_compat; assumption
      | elim H0; intro;
        [ elim H; symmetry ; exact H1
          | rewrite Rsqr_neg; generalize (Ropp_lt_gt_contravar x 0 H1);
            rewrite Ropp_0; intro; unfold Rsqr;
              apply Rmult_lt_0_compat; assumption ] ].
Qed.

Lemma Rsqr_div : forall x y:R, y <> 0 -> Rsqr (x / y) = Rsqr x / Rsqr y.
Proof.
  intros; unfold Rsqr.
  unfold Rdiv.
  rewrite Rinv_mult_distr.
  repeat rewrite Rmult_assoc.
  apply Rmult_eq_compat_l.
  rewrite Rmult_comm.
  repeat rewrite Rmult_assoc.
  apply Rmult_eq_compat_l.
  reflexivity.
  assumption.
  assumption.
Qed.

Lemma Rsqr_eq_0 : forall x:R, Rsqr x = 0 -> x = 0.
Proof.
  unfold Rsqr; intros; generalize (Rmult_integral x x H); intro;
    elim H0; intro; assumption.
Qed.

Lemma Rsqr_minus_plus : forall a b:R, (a - b) * (a + b) = Rsqr a - Rsqr b.
Proof.
  intros; ring_Rsqr.
Qed.

Lemma Rsqr_plus_minus : forall a b:R, (a + b) * (a - b) = Rsqr a - Rsqr b.
Proof.
  intros; ring_Rsqr.
Qed.

Lemma Rsqr_incr_0 :
  forall x y:R, Rsqr x <= Rsqr y -> 0 <= x -> 0 <= y -> x <= y.
Proof.
  intros; destruct (Rle_dec x y) as [Hle|Hnle];
    [ assumption
      | cut (y < x);
        [ intro; unfold Rsqr in H;
          generalize (Rmult_le_0_lt_compat y x y x H1 H1 H2 H2);
            intro; generalize (Rle_lt_trans (x * x) (y * y) (x * x) H H3);
              intro; elim (Rlt_irrefl (x * x) H4)
          | auto with real ] ].
Qed.

Lemma Rsqr_incr_0_var : forall x y:R, Rsqr x <= Rsqr y -> 0 <= y -> x <= y.
Proof.
  intros; destruct (Rle_dec x y) as [Hle|Hnle];
    [ assumption
      | cut (y < x);
        [ intro; unfold Rsqr in H;
          generalize (Rmult_le_0_lt_compat y x y x H0 H0 H1 H1);
            intro; generalize (Rle_lt_trans (x * x) (y * y) (x * x) H H2);
              intro; elim (Rlt_irrefl (x * x) H3)
          | auto with real ] ].
Qed.

Lemma Rsqr_incr_1 :
  forall x y:R, x <= y -> 0 <= x -> 0 <= y -> Rsqr x <= Rsqr y.
Proof.
  intros; unfold Rsqr; apply Rmult_le_compat; assumption.
Qed.

Lemma Rsqr_incrst_0 :
  forall x y:R, Rsqr x < Rsqr y -> 0 <= x -> 0 <= y -> x < y.
Proof.
  intros; case (Rtotal_order x y); intro;
    [ assumption
      | elim H2; intro;
        [ rewrite H3 in H; elim (Rlt_irrefl (Rsqr y) H)
          | generalize (Rmult_le_0_lt_compat y x y x H1 H1 H3 H3); intro;
            unfold Rsqr in H; generalize (Rlt_trans (x * x) (y * y) (x * x) H H4);
              intro; elim (Rlt_irrefl (x * x) H5) ] ].
Qed.

Lemma Rsqr_incrst_1 :
  forall x y:R, x < y -> 0 <= x -> 0 <= y -> Rsqr x < Rsqr y.
Proof.
  intros; unfold Rsqr; apply Rmult_le_0_lt_compat; assumption.
Qed.

Lemma Rsqr_neg_pos_le_0 :
  forall x y:R, Rsqr x <= Rsqr y -> 0 <= y -> - y <= x.
Proof.
  intros; destruct (Rcase_abs x) as [Hlt|Hle].
  generalize (Ropp_lt_gt_contravar x 0 Hlt); rewrite Ropp_0; intro;
    generalize (Rlt_le 0 (- x) H1); intro; rewrite (Rsqr_neg x) in H;
      generalize (Rsqr_incr_0 (- x) y H H2 H0); intro;
        rewrite <- (Ropp_involutive x); apply Ropp_ge_le_contravar;
          apply Rle_ge; assumption.
  apply Rle_trans with 0;
    [ rewrite <- Ropp_0; apply Ropp_ge_le_contravar; apply Rle_ge; assumption
      | apply Rge_le; assumption ].
Qed.

Lemma Rsqr_neg_pos_le_1 :
  forall x y:R, - y <= x -> x <= y -> 0 <= y -> Rsqr x <= Rsqr y.
Proof.
  intros x y H H0 H1; destruct (Rcase_abs x) as [Hlt|Hle].
  apply Ropp_lt_gt_contravar, Rlt_le in Hlt; rewrite Ropp_0 in Hlt;
  apply Ropp_le_ge_contravar, Rge_le in H; rewrite Ropp_involutive in H;
  rewrite (Rsqr_neg x); apply Rsqr_incr_1; assumption.
  apply Rge_le in Hle; apply Rsqr_incr_1; assumption.
Qed.

Lemma neg_pos_Rsqr_le : forall x y:R, - y <= x -> x <= y -> Rsqr x <= Rsqr y.
Proof.
  intros x y H H0; destruct (Rcase_abs x) as [Hlt|Hle].
  apply Ropp_lt_gt_contravar, Rlt_le in Hlt; rewrite Ropp_0 in Hlt;
  apply Ropp_le_ge_contravar, Rge_le in H; rewrite Ropp_involutive in H.
  assert (0 <= y) by (apply Rle_trans with (-x); assumption).
  rewrite (Rsqr_neg x); apply Rsqr_incr_1; assumption.
  apply Rge_le in Hle;
  assert (0 <= y) by (apply Rle_trans with x; assumption).
  apply Rsqr_incr_1; assumption.
Qed.

Lemma Rsqr_abs : forall x:R, Rsqr x = Rsqr (Rabs x).
Proof.
  intro; unfold Rabs; case (Rcase_abs x); intro;
    [ apply Rsqr_neg | reflexivity ].
Qed.

Lemma Rsqr_le_abs_0 : forall x y:R, Rsqr x <= Rsqr y -> Rabs x <= Rabs y.
Proof.
  intros; apply Rsqr_incr_0; repeat rewrite <- Rsqr_abs;
    [ assumption | apply Rabs_pos | apply Rabs_pos ].
Qed.

Lemma Rsqr_le_abs_1 : forall x y:R, Rabs x <= Rabs y -> Rsqr x <= Rsqr y.
Proof.
  intros; rewrite (Rsqr_abs x); rewrite (Rsqr_abs y);
    apply (Rsqr_incr_1 (Rabs x) (Rabs y) H (Rabs_pos x) (Rabs_pos y)).
Qed.

Lemma Rsqr_lt_abs_0 : forall x y:R, Rsqr x < Rsqr y -> Rabs x < Rabs y.
Proof.
  intros; apply Rsqr_incrst_0; repeat rewrite <- Rsqr_abs;
    [ assumption | apply Rabs_pos | apply Rabs_pos ].
Qed.

Lemma Rsqr_lt_abs_1 : forall x y:R, Rabs x < Rabs y -> Rsqr x < Rsqr y.
Proof.
  intros; rewrite (Rsqr_abs x); rewrite (Rsqr_abs y);
    apply (Rsqr_incrst_1 (Rabs x) (Rabs y) H (Rabs_pos x) (Rabs_pos y)).
Qed.

Lemma Rsqr_inj : forall x y:R, 0 <= x -> 0 <= y -> Rsqr x = Rsqr y -> x = y.
Proof.
  intros; generalize (Rle_le_eq (Rsqr x) (Rsqr y)); intro; elim H2; intros _ H3;
    generalize (H3 H1); intro; elim H4; intros; apply Rle_antisym;
      apply Rsqr_incr_0; assumption.
Qed.

Lemma Rsqr_eq_abs_0 : forall x y:R, Rsqr x = Rsqr y -> Rabs x = Rabs y.
Proof.
  intros; unfold Rabs; case (Rcase_abs x) as [Hltx|Hgex];
    case (Rcase_abs y) as [Hlty|Hgey].
  rewrite (Rsqr_neg x), (Rsqr_neg y) in H;
    generalize (Ropp_lt_gt_contravar y 0 Hlty);
      generalize (Ropp_lt_gt_contravar x 0 Hltx); rewrite Ropp_0;
        intros; generalize (Rlt_le 0 (- x) H0); generalize (Rlt_le 0 (- y) H1);
          intros; apply Rsqr_inj; assumption.
  rewrite (Rsqr_neg x) in H; generalize (Rge_le y 0 Hgey); intro;
    generalize (Ropp_lt_gt_contravar x 0 Hltx); rewrite Ropp_0;
      intro; generalize (Rlt_le 0 (- x) H1); intro; apply Rsqr_inj;
        assumption.
  rewrite (Rsqr_neg y) in H; generalize (Rge_le x 0 Hgex); intro;
    generalize (Ropp_lt_gt_contravar y 0 Hlty); rewrite Ropp_0;
      intro; generalize (Rlt_le 0 (- y) H1); intro; apply Rsqr_inj;
        assumption.
  apply Rsqr_inj; auto using Rge_le.
Qed.

Lemma Rsqr_eq_asb_1 : forall x y:R, Rabs x = Rabs y -> Rsqr x = Rsqr y.
Proof.
  intros; cut (Rsqr (Rabs x) = Rsqr (Rabs y)).
  intro; repeat rewrite <- Rsqr_abs in H0; assumption.
  rewrite H; reflexivity.
Qed.

Lemma triangle_rectangle :
  forall x y z:R,
    0 <= z -> Rsqr x + Rsqr y <= Rsqr z -> - z <= x <= z /\ - z <= y <= z.
Proof.
  intros;
    generalize (plus_le_is_le (Rsqr x) (Rsqr y) (Rsqr z) (Rle_0_sqr y) H0);
      rewrite Rplus_comm in H0;
        generalize (plus_le_is_le (Rsqr y) (Rsqr x) (Rsqr z) (Rle_0_sqr x) H0);
          intros; split;
            [ split;
              [ apply Rsqr_neg_pos_le_0; assumption
                | apply Rsqr_incr_0_var; assumption ]
              | split;
                [ apply Rsqr_neg_pos_le_0; assumption
                  | apply Rsqr_incr_0_var; assumption ] ].
Qed.

Lemma triangle_rectangle_lt :
  forall x y z:R,
    Rsqr x + Rsqr y < Rsqr z -> Rabs x < Rabs z /\ Rabs y < Rabs z.
Proof.
  intros; split;
    [ generalize (plus_lt_is_lt (Rsqr x) (Rsqr y) (Rsqr z) (Rle_0_sqr y) H);
      intro; apply Rsqr_lt_abs_0; assumption
      | rewrite Rplus_comm in H;
        generalize (plus_lt_is_lt (Rsqr y) (Rsqr x) (Rsqr z) (Rle_0_sqr x) H);
          intro; apply Rsqr_lt_abs_0; assumption ].
Qed.

Lemma triangle_rectangle_le :
  forall x y z:R,
    Rsqr x + Rsqr y <= Rsqr z -> Rabs x <= Rabs z /\ Rabs y <= Rabs z.
Proof.
  intros; split;
    [ generalize (plus_le_is_le (Rsqr x) (Rsqr y) (Rsqr z) (Rle_0_sqr y) H);
      intro; apply Rsqr_le_abs_0; assumption
      | rewrite Rplus_comm in H;
        generalize (plus_le_is_le (Rsqr y) (Rsqr x) (Rsqr z) (Rle_0_sqr x) H);
          intro; apply Rsqr_le_abs_0; assumption ].
Qed.

Lemma Rsqr_inv : forall x:R, x <> 0 -> Rsqr (/ x) = / Rsqr x.
Proof.
  intros; unfold Rsqr.
  rewrite Rinv_mult_distr; try reflexivity || assumption.
Qed.

Lemma canonical_Rsqr :
  forall (a:nonzeroreal) (b c x:R),
    a * Rsqr x + b * x + c =
    a * Rsqr (x + b / (2 * a)) + (4 * a * c - Rsqr b) / (4 * a).
Proof.
  intros.
  unfold Rsqr.
  field.
  apply a.
Qed.

Lemma Rsqr_eq : forall x y:R, Rsqr x = Rsqr y -> x = y \/ x = - y.
Proof.
  intros; unfold Rsqr in H;
    generalize (Rplus_eq_compat_l (- (y * y)) (x * x) (y * y) H);
      rewrite Rplus_opp_l; replace (- (y * y) + x * x) with ((x - y) * (x + y)).
  intro; generalize (Rmult_integral (x - y) (x + y) H0); intro; elim H1; intros.
  left; apply Rminus_diag_uniq; assumption.
  right; apply Rminus_diag_uniq; unfold Rminus; rewrite Ropp_involutive;
    assumption.
  ring.
Qed.