Library Coq.Reals.Rprod


Require Import Compare.
Require Import Rbase.
Require Import Rfunctions.
Require Import Rseries.
Require Import PartSum.
Require Import Binomial.
Require Import Omega.
Local Open Scope R_scope.

TT Ak; 0<=k<=N
Fixpoint prod_f_R0 (f:nat -> R) (N:nat) : R :=
  match N with
    | O => f O
    | S p => prod_f_R0 f p * f (S p)
  end.

Notation prod_f_SO := (fun An N => prod_f_R0 (fun n => An (S n)) N).

Lemma prod_SO_split :
  forall (An:nat -> R) (n k:nat),
    (k < n)%nat ->
    prod_f_R0 An n =
    prod_f_R0 An k * prod_f_R0 (fun l:nat => An (k +1+l)%nat) (n - k -1).
Proof.
  intros; induction n as [| n Hrecn].
  absurd (k < 0)%nat; omega.
  cut (k = n \/ (k < n)%nat);[intro; elim H0; intro|omega].
  replace (S n - k - 1)%nat with O; [rewrite H1; simpl|omega].
  replace (n+1+0)%nat with (S n); ring.
  replace (S n - k-1)%nat with (S (n - k-1));[idtac|omega].
  simpl; replace (k + S (n - k))%nat with (S n).
  replace (k + 1 + S (n - k - 1))%nat with (S n).
  rewrite Hrecn; [ ring | assumption ].
  omega.
  omega.
Qed.

Lemma prod_SO_pos :
  forall (An:nat -> R) (N:nat),
    (forall n:nat, (n <= N)%nat -> 0 <= An n) -> 0 <= prod_f_R0 An N.
Proof.
  intros; induction N as [| N HrecN].
  simpl; apply H; trivial.
  simpl; apply Rmult_le_pos.
  apply HrecN; intros; apply H; apply le_trans with N;
    [ assumption | apply le_n_Sn ].
  apply H; apply le_n.
Qed.

Lemma prod_SO_Rle :
  forall (An Bn:nat -> R) (N:nat),
    (forall n:nat, (n <= N)%nat -> 0 <= An n <= Bn n) ->
    prod_f_R0 An N <= prod_f_R0 Bn N.
Proof.
  intros; induction N as [| N HrecN].
  elim H with O; trivial.
  simpl; apply Rle_trans with (prod_f_R0 An N * Bn (S N)).
  apply Rmult_le_compat_l.
  apply prod_SO_pos; intros; elim (H n (le_trans _ _ _ H0 (le_n_Sn N))); intros;
    assumption.
  elim (H (S N) (le_n (S N))); intros; assumption.
  do 2 rewrite <- (Rmult_comm (Bn (S N))); apply Rmult_le_compat_l.
  elim (H (S N) (le_n (S N))); intros.
  apply Rle_trans with (An (S N)); assumption.
  apply HrecN; intros; elim (H n (le_trans _ _ _ H0 (le_n_Sn N))); intros;
    split; assumption.
Qed.

Application to factorial
Lemma fact_prodSO :
  forall n:nat, INR (fact n) = prod_f_R0 (fun k:nat =>
     (match (eq_nat_dec k 0) with
          | left _ => 1%R
          | right _ => INR k
                        end)) n.
Proof.
  intro; induction n as [| n Hrecn].
  reflexivity.
  simpl; rewrite <- Hrecn.
  case n; auto with real.
  intros; repeat rewrite plus_INR;rewrite mult_INR;ring.
Qed.

Lemma le_n_2n : forall n:nat, (n <= 2 * n)%nat.
Proof.
  simple induction n.
  replace (2 * 0)%nat with 0%nat; [ apply le_n | ring ].
  intros; replace (2 * S n0)%nat with (S (S (2 * n0))).
  apply le_n_S; apply le_S; assumption.
  replace (S (S (2 * n0))) with (2 * n0 + 2)%nat; [ idtac | ring ].
  replace (S n0) with (n0 + 1)%nat; [ idtac | ring ].
  ring.
Qed.

We prove that (N!)^2<=(2N-k)!*k! forall k in |O;2N|
Lemma RfactN_fact2N_factk :
  forall N k:nat,
    (k <= 2 * N)%nat ->
    Rsqr (INR (fact N)) <= INR (fact (2 * N - k)) * INR (fact k).
Proof.
  assert (forall (n:nat), 0 <= (if eq_nat_dec n 0 then 1 else INR n)).
  intros; case (eq_nat_dec n 0); auto with real.
  assert (forall (n:nat), (0 < n)%nat ->
     (if eq_nat_dec n 0 then 1 else INR n) = INR n).
  intros n; case (eq_nat_dec n 0); auto with real.
  intros; absurd (0 < n)%nat; omega.
  intros; unfold Rsqr; repeat rewrite fact_prodSO.
  cut ((k=N)%nat \/ (k < N)%nat \/ (N < k)%nat).
  intro H2; elim H2; intro H3.
  rewrite H3; replace (2*N-N)%nat with N;[right; ring|omega].
  case H3; intro; clear H2 H3.
  rewrite (prod_SO_split (fun l:nat => if eq_nat_dec l 0 then 1 else INR l) (2 * N - k) N).
  rewrite Rmult_assoc; apply Rmult_le_compat_l.
  apply prod_SO_pos; intros; auto.
  replace (2 * N - k - N-1)%nat with (N - k-1)%nat.
  rewrite Rmult_comm; rewrite (prod_SO_split
        (fun l:nat => if eq_nat_dec l 0 then 1 else INR l) N k).
  apply Rmult_le_compat_l.
  apply prod_SO_pos; intros; auto.
  apply prod_SO_Rle; intros; split; auto.
  rewrite H0.
  rewrite H0.
  apply le_INR; omega.
  omega.
  omega.
  assumption.
  omega.
  omega.
  rewrite <- (Rmult_comm (prod_f_R0 (fun l:nat =>
          if eq_nat_dec l 0 then 1 else INR l) k));
    rewrite (prod_SO_split (fun l:nat =>
          if eq_nat_dec l 0 then 1 else INR l) k N).
  rewrite Rmult_assoc; apply Rmult_le_compat_l.
  apply prod_SO_pos; intros; auto.
  rewrite Rmult_comm;
    rewrite (prod_SO_split (fun l:nat =>
          if eq_nat_dec l 0 then 1 else INR l) N (2 * N - k)).
  apply Rmult_le_compat_l.
  apply prod_SO_pos; intros; auto.
  replace (N - (2 * N - k)-1)%nat with (k - N-1)%nat.
  apply prod_SO_Rle; intros; split; auto.
  rewrite H0.
  rewrite H0.
  apply le_INR; omega.
  omega.
  omega.
  omega.
  omega.
  assumption.
  omega.
Qed.

Lemma INR_fact_lt_0 : forall n:nat, 0 < INR (fact n).
Proof.
  intro; apply lt_INR_0; apply neq_O_lt; red; intro;
    elim (fact_neq_0 n); symmetry ; assumption.
Qed.

We have the following inequality : (C 2N k) <= (C 2N N) forall k in |O;2N|
Lemma C_maj : forall N k:nat, (k <= 2 * N)%nat -> C (2 * N) k <= C (2 * N) N.
Proof.
  intros; unfold C; unfold Rdiv; apply Rmult_le_compat_l.
  apply pos_INR.
  replace (2 * N - N)%nat with N.
  apply Rmult_le_reg_l with (INR (fact N) * INR (fact N)).
  apply Rmult_lt_0_compat; apply INR_fact_lt_0.
  rewrite <- Rinv_r_sym.
  rewrite Rmult_comm;
    apply Rmult_le_reg_l with (INR (fact k) * INR (fact (2 * N - k))).
  apply Rmult_lt_0_compat; apply INR_fact_lt_0.
  rewrite Rmult_1_r; rewrite <- mult_INR; rewrite <- Rmult_assoc;
    rewrite <- Rinv_r_sym.
  rewrite Rmult_1_l; rewrite mult_INR; rewrite (Rmult_comm (INR (fact k)));
    replace (INR (fact N) * INR (fact N)) with (Rsqr (INR (fact N))).
  apply RfactN_fact2N_factk.
  assumption.
  reflexivity.
  rewrite mult_INR; apply prod_neq_R0; apply INR_fact_neq_0.
  apply prod_neq_R0; apply INR_fact_neq_0.
  omega.
Qed.