Library Coq.Structures.OrdersAlt



Require Import OrderedType Orders.
Set Implicit Arguments.

Some alternative (but equivalent) presentations for an Ordered Type

inferface.

The original interface

An interface based on compare


Module Type OrderedTypeAlt.

 Parameter t : Type.

 Parameter compare : t -> t -> comparison.

 Infix "?=" := compare (at level 70, no associativity).

 Parameter compare_sym :
   forall x y, (y?=x) = CompOpp (x?=y).
 Parameter compare_trans :
   forall c x y z, (x?=y) = c -> (y?=z) = c -> (x?=z) = c.

End OrderedTypeAlt.

From OrderedTypeOrig to OrderedType.


Module Update_OT (O:OrderedTypeOrig) <: OrderedType.

 Include Update_DT O.
 Definition lt := O.lt.

 Instance lt_strorder : StrictOrder lt.
 Proof.
  split.
  intros x Hx. apply (O.lt_not_eq Hx); auto with *.
  exact O.lt_trans.
 Qed.

 Instance lt_compat : Proper (eq==>eq==>iff) lt.
 Proof.
  apply proper_sym_impl_iff_2; auto with *.
  intros x x' Hx y y' Hy H.
  assert (H0 : lt x' y).
   destruct (O.compare x' y) as [H'|H'|H']; auto.
   elim (O.lt_not_eq H). transitivity x'; auto with *.
   elim (O.lt_not_eq (O.lt_trans H H')); auto.
  destruct (O.compare x' y') as [H'|H'|H']; auto.
  elim (O.lt_not_eq H).
   transitivity x'; auto with *. transitivity y'; auto with *.
  elim (O.lt_not_eq (O.lt_trans H' H0)); auto with *.
 Qed.

 Definition compare x y :=
   match O.compare x y with
    | EQ _ => Eq
    | LT _ => Lt
    | GT _ => Gt
  end.

 Lemma compare_spec : forall x y, CompSpec eq lt x y (compare x y).
 Proof.
  intros; unfold compare; destruct O.compare; auto.
 Qed.

End Update_OT.

From OrderedType to OrderedTypeOrig.


Module Backport_OT (O:OrderedType) <: OrderedTypeOrig.

 Include Backport_DT O.
 Definition lt := O.lt.

 Lemma lt_not_eq : forall x y, lt x y -> ~eq x y.
 Proof.
  intros x y L E; rewrite E in L. apply (StrictOrder_Irreflexive y); auto.
 Qed.

 Lemma lt_trans : Transitive lt.
 Proof. apply O.lt_strorder. Qed.

 Definition compare : forall x y, Compare lt eq x y.
 Proof.
  intros x y; destruct (CompSpec2Type (O.compare_spec x y));
   [apply EQ|apply LT|apply GT]; auto.
 Defined.

End Backport_OT.

From OrderedTypeAlt to OrderedType.


Module OT_from_Alt (Import O:OrderedTypeAlt) <: OrderedType.

 Definition t := t.

 Definition eq x y := (x?=y) = Eq.
 Definition lt x y := (x?=y) = Lt.

 Instance eq_equiv : Equivalence eq.
 Proof.
  split; red.
  unfold eq; intros x.
  assert (H:=compare_sym x x).
  destruct (x ?= x); simpl in *; auto; discriminate.
  unfold eq; intros x y H.
  rewrite compare_sym, H; simpl; auto.
  apply compare_trans.
 Qed.

 Instance lt_strorder : StrictOrder lt.
 Proof.
  split; repeat red; unfold lt; try apply compare_trans.
  intros x H.
  assert (eq x x) by reflexivity.
  unfold eq in *; congruence.
 Qed.

 Lemma lt_eq : forall x y z, lt x y -> eq y z -> lt x z.
 Proof.
  unfold lt, eq; intros x y z Hxy Hyz.
  destruct (compare x z) eqn:Hxz; auto.
  rewrite compare_sym, CompOpp_iff in Hyz. simpl in Hyz.
  rewrite (compare_trans Hxz Hyz) in Hxy; discriminate.
  rewrite compare_sym, CompOpp_iff in Hxy. simpl in Hxy.
  rewrite (compare_trans Hxy Hxz) in Hyz; discriminate.
 Qed.

 Lemma eq_lt : forall x y z, eq x y -> lt y z -> lt x z.
 Proof.
  unfold lt, eq; intros x y z Hxy Hyz.
  destruct (compare x z) eqn:Hxz; auto.
  rewrite compare_sym, CompOpp_iff in Hxy. simpl in Hxy.
  rewrite (compare_trans Hxy Hxz) in Hyz; discriminate.
  rewrite compare_sym, CompOpp_iff in Hyz. simpl in Hyz.
  rewrite (compare_trans Hxz Hyz) in Hxy; discriminate.
 Qed.

 Instance lt_compat : Proper (eq==>eq==>iff) lt.
 Proof.
  apply proper_sym_impl_iff_2; auto with *.
  repeat red; intros.
  eapply lt_eq; eauto. eapply eq_lt; eauto. symmetry; auto.
 Qed.

 Definition compare := O.compare.

 Lemma compare_spec : forall x y, CompSpec eq lt x y (compare x y).
 Proof.
  unfold eq, lt, compare; intros.
  destruct (O.compare x y) eqn:H; auto.
  apply CompGt.
  rewrite compare_sym, H; auto.
 Qed.

 Definition eq_dec : forall x y, { eq x y } + { ~ eq x y }.
 Proof.
 intros; unfold eq.
 case (x ?= y); [ left | right | right ]; auto; discriminate.
 Defined.

End OT_from_Alt.

From the original presentation to this alternative one.

Module OT_to_Alt (Import O:OrderedType) <: OrderedTypeAlt.

 Definition t := t.
 Definition compare := compare.

 Infix "?=" := compare (at level 70, no associativity).

 Lemma compare_sym :
   forall x y, (y?=x) = CompOpp (x?=y).
 Proof.
 intros x y; unfold compare.
 destruct (compare_spec x y) as [U|U|U];
  destruct (compare_spec y x) as [V|V|V]; auto.
 rewrite U in V. elim (StrictOrder_Irreflexive y); auto.
 rewrite U in V. elim (StrictOrder_Irreflexive y); auto.
 rewrite V in U. elim (StrictOrder_Irreflexive x); auto.
 rewrite V in U. elim (StrictOrder_Irreflexive x); auto.
 rewrite V in U. elim (StrictOrder_Irreflexive x); auto.
 rewrite V in U. elim (StrictOrder_Irreflexive y); auto.
 Qed.

 Lemma compare_Eq : forall x y, compare x y = Eq <-> eq x y.
 Proof.
 unfold compare.
 intros x y; destruct (compare_spec x y); intuition;
  try discriminate.
 rewrite H0 in H. elim (StrictOrder_Irreflexive y); auto.
 rewrite H0 in H. elim (StrictOrder_Irreflexive y); auto.
 Qed.

 Lemma compare_Lt : forall x y, compare x y = Lt <-> lt x y.
 Proof.
 unfold compare.
 intros x y; destruct (compare_spec x y); intuition;
  try discriminate.
 rewrite H in H0. elim (StrictOrder_Irreflexive y); auto.
 rewrite H in H0. elim (StrictOrder_Irreflexive x); auto.
 Qed.

 Lemma compare_Gt : forall x y, compare x y = Gt <-> lt y x.
 Proof.
 intros x y. rewrite compare_sym, CompOpp_iff. apply compare_Lt.
 Qed.

 Lemma compare_trans :
   forall c x y z, (x?=y) = c -> (y?=z) = c -> (x?=z) = c.
 Proof.
 intros c x y z.
 destruct c; unfold compare;
  rewrite ?compare_Eq, ?compare_Lt, ?compare_Gt;
  transitivity y; auto.
 Qed.

End OT_to_Alt.