Library Coq.Vectors.VectorEq


Equalities and Vector relations
Author: Pierre Boutillier Institution: PPS, INRIA 07/2012

Require Import VectorDef.
Require Import VectorSpec.
Import VectorNotations.

Section BEQ.

 Variables (A: Type) (A_beq: A -> A -> bool).
 Hypothesis A_eqb_eq: forall x y, A_beq x y = true <-> x = y.

 Definition eqb:
   forall {m n} (v1: t A m) (v2: t A n), bool :=
   fix fix_beq {m n} v1 v2 :=
   match v1, v2 with
     |[], [] => true
     |_ :: _, [] |[], _ :: _ => false
     |h1 :: t1, h2 :: t2 => A_beq h1 h2 && fix_beq t1 t2
   end%bool.

 Lemma eqb_nat_eq: forall m n (v1: t A m) (v2: t A n)
  (Hbeq: eqb v1 v2 = true), m = n.
 Proof.
   intros m n v1; revert n.
   induction v1; destruct v2;
     [now constructor | discriminate | discriminate | simpl].
   intros Hbeq; apply andb_prop in Hbeq; destruct Hbeq.
   f_equal; eauto.
 Qed.

 Lemma eqb_eq: forall n (v1: t A n) (v2: t A n),
  eqb v1 v2 = true <-> v1 = v2.
 Proof.
   refine (@rect2 _ _ _ _ _); [now constructor | simpl].
   intros ? ? ? Hrec h1 h2; destruct Hrec; destruct (A_eqb_eq h1 h2); split.
   + intros Hbeq. apply andb_prop in Hbeq; destruct Hbeq.
     f_equal; now auto.
   + intros Heq. destruct (cons_inj Heq). apply andb_true_intro.
     split; now auto.
 Qed.

 Definition eq_dec n (v1 v2: t A n): {v1 = v2} + {v1 <> v2}.
 Proof.
 case_eq (eqb v1 v2); intros.
  + left; now apply eqb_eq.
  + right. intros Heq. apply <- eqb_eq in Heq. congruence.
 Defined.

End BEQ.

Section CAST.

 Definition cast: forall {A m} (v: t A m) {n}, m = n -> t A n.
 Proof.
 refine (fix cast {A m} (v: t A m) {struct v} :=
  match v in t _ m' return forall n, m' = n -> t A n with
  |[] => fun n => match n with
    | 0 => fun _ => []
    | S _ => fun H => False_rect _ _
  end
  |h :: w => fun n => match n with
    | 0 => fun H => False_rect _ _
    | S n' => fun H => h :: (cast w n' (f_equal pred H))
  end
 end); discriminate.
 Defined.

End CAST.