Library Coq.ZArith.Zwf
Well-founded relations on Z.
We define the following family of relations on Z x Z:
x (Zwf c) y iff x < y & c <= y
and we prove that (Zwf c) is well founded
The proof of well-foundness is classic: we do the proof by induction
on a measure in nat, which is here |x-c|
Let f (z:Z) := Z.abs_nat (z - c).
Lemma Zwf_well_founded : well_founded (Zwf c).
red; intros.
assert (forall (n:nat) (a:Z), (f a < n)%nat \/ a < c -> Acc (Zwf c) a).
clear a; simple induction n; intros.
n= 0
case H; intros.
case (lt_n_O (f a)); auto.
apply Acc_intro; unfold Zwf; intros.
assert False; omega || contradiction.
case (lt_n_O (f a)); auto.
apply Acc_intro; unfold Zwf; intros.
assert False; omega || contradiction.
inductive case
case H0; clear H0; intro; auto.
apply Acc_intro; intros.
apply H.
unfold Zwf in H1.
case (Z.le_gt_cases c y); intro; auto with zarith.
left.
red in H0.
apply lt_le_trans with (f a); auto with arith.
unfold f.
apply Zabs2Nat.inj_lt; omega.
apply (H (S (f a))); auto.
Qed.
End wf_proof.
Hint Resolve Zwf_well_founded: datatypes.
apply Acc_intro; intros.
apply H.
unfold Zwf in H1.
case (Z.le_gt_cases c y); intro; auto with zarith.
left.
red in H0.
apply lt_le_trans with (f a); auto with arith.
unfold f.
apply Zabs2Nat.inj_lt; omega.
apply (H (S (f a))); auto.
Qed.
End wf_proof.
Hint Resolve Zwf_well_founded: datatypes.
We also define the other family of relations:
x (Zwf_up c) y iff y < x <= c
and we prove that (Zwf_up c) is well founded
The proof of well-foundness is classic: we do the proof by induction
on a measure in nat, which is here |c-x|
Let f (z:Z) := Z.abs_nat (c - z).
Lemma Zwf_up_well_founded : well_founded (Zwf_up c).
Proof.
apply well_founded_lt_compat with (f := f).
unfold Zwf_up, f.
intros.
apply Zabs2Nat.inj_lt; try (apply Z.le_0_sub; intuition).
now apply Z.sub_lt_mono_l.
Qed.
End wf_proof_up.
Hint Resolve Zwf_up_well_founded: datatypes.