Library Coq.micromega.ZMicromega
Require Import OrderedRing.
Require Import RingMicromega.
Require Import ZCoeff.
Require Import Refl.
Require Import ZArith.
Require Import List.
Require Import Bool.
Ltac flatten_bool :=
repeat match goal with
[ id : (_ && _)%bool = true |- _ ] => destruct (andb_prop _ _ id); clear id
| [ id : (_ || _)%bool = true |- _ ] => destruct (orb_prop _ _ id); clear id
end.
Ltac inv H := inversion H ; try subst ; clear H.
Require Import EnvRing.
Open Scope Z_scope.
Lemma Zsor : SOR 0 1 Z.add Z.mul Z.sub Z.opp (@eq Z) Z.le Z.lt.
Proof.
constructor ; intros ; subst ; try (intuition (auto with zarith)).
apply Zsth.
apply Zth.
destruct (Z.lt_trichotomy n m) ; intuition.
apply Z.mul_pos_pos ; auto.
Qed.
Lemma ZSORaddon :
SORaddon 0 1 Z.add Z.mul Z.sub Z.opp (@eq Z) Z.le
0%Z 1%Z Z.add Z.mul Z.sub Z.opp
Zeq_bool Z.leb
(fun x => x) (fun x => x) (pow_N 1 Z.mul).
Proof.
constructor.
constructor ; intros ; try reflexivity.
apply Zeq_bool_eq ; auto.
constructor.
reflexivity.
intros x y.
apply Zeq_bool_neq ; auto.
apply Zle_bool_imp_le.
Qed.
Fixpoint Zeval_expr (env : PolEnv Z) (e: PExpr Z) : Z :=
match e with
| PEc c => c
| PEX _ x => env x
| PEadd e1 e2 => Zeval_expr env e1 + Zeval_expr env e2
| PEmul e1 e2 => Zeval_expr env e1 * Zeval_expr env e2
| PEpow e1 n => Z.pow (Zeval_expr env e1) (Z.of_N n)
| PEsub e1 e2 => (Zeval_expr env e1) - (Zeval_expr env e2)
| PEopp e => Z.opp (Zeval_expr env e)
end.
Definition eval_expr := eval_pexpr Z.add Z.mul Z.sub Z.opp (fun x => x) (fun x => x) (pow_N 1 Z.mul).
Lemma ZNpower : forall r n, r ^ Z.of_N n = pow_N 1 Z.mul r n.
Proof.
destruct n.
reflexivity.
simpl.
unfold Z.pow_pos.
replace (pow_pos Z.mul r p) with (1 * (pow_pos Z.mul r p)) by ring.
generalize 1.
induction p; simpl ; intros ; repeat rewrite IHp ; ring.
Qed.
Lemma Zeval_expr_compat : forall env e, Zeval_expr env e = eval_expr env e.
Proof.
induction e ; simpl ; try congruence.
reflexivity.
rewrite ZNpower. congruence.
Qed.
Definition Zeval_op2 (o : Op2) : Z -> Z -> Prop :=
match o with
| OpEq => @eq Z
| OpNEq => fun x y => ~ x = y
| OpLe => Z.le
| OpGe => Z.ge
| OpLt => Z.lt
| OpGt => Z.gt
end.
Definition Zeval_formula (env : PolEnv Z) (f : Formula Z):=
let (lhs, op, rhs) := f in
(Zeval_op2 op) (Zeval_expr env lhs) (Zeval_expr env rhs).
Definition Zeval_formula' :=
eval_formula Z.add Z.mul Z.sub Z.opp (@eq Z) Z.le Z.lt (fun x => x) (fun x => x) (pow_N 1 Z.mul).
Lemma Zeval_formula_compat : forall env f, Zeval_formula env f <-> Zeval_formula' env f.
Proof.
destruct f ; simpl.
rewrite Zeval_expr_compat. rewrite Zeval_expr_compat.
unfold eval_expr.
generalize (eval_pexpr Z.add Z.mul Z.sub Z.opp (fun x : Z => x)
(fun x : N => x) (pow_N 1 Z.mul) env Flhs).
generalize ((eval_pexpr Z.add Z.mul Z.sub Z.opp (fun x : Z => x)
(fun x : N => x) (pow_N 1 Z.mul) env Frhs)).
destruct Fop ; simpl; intros ; intuition (auto with zarith).
Qed.
Definition eval_nformula :=
eval_nformula 0 Z.add Z.mul (@eq Z) Z.le Z.lt (fun x => x) .
Definition Zeval_op1 (o : Op1) : Z -> Prop :=
match o with
| Equal => fun x : Z => x = 0
| NonEqual => fun x : Z => x <> 0
| Strict => fun x : Z => 0 < x
| NonStrict => fun x : Z => 0 <= x
end.
Lemma Zeval_nformula_dec : forall env d, (eval_nformula env d) \/ ~ (eval_nformula env d).
Proof.
intros.
apply (eval_nformula_dec Zsor).
Qed.
Definition ZWitness := Psatz Z.
Definition ZWeakChecker := check_normalised_formulas 0 1 Z.add Z.mul Zeq_bool Z.leb.
Lemma ZWeakChecker_sound : forall (l : list (NFormula Z)) (cm : ZWitness),
ZWeakChecker l cm = true ->
forall env, make_impl (eval_nformula env) l False.
Proof.
intros l cm H.
intro.
unfold eval_nformula.
apply (checker_nf_sound Zsor ZSORaddon l cm).
unfold ZWeakChecker in H.
exact H.
Qed.
Definition psub := psub Z0 Z.add Z.sub Z.opp Zeq_bool.
Declare Equivalent Keys psub RingMicromega.psub.
Definition padd := padd Z0 Z.add Zeq_bool.
Declare Equivalent Keys padd RingMicromega.padd.
Definition norm := norm 0 1 Z.add Z.mul Z.sub Z.opp Zeq_bool.
Declare Equivalent Keys norm RingMicromega.norm.
Definition eval_pol := eval_pol Z.add Z.mul (fun x => x).
Declare Equivalent Keys eval_pol RingMicromega.eval_pol.
Lemma eval_pol_sub : forall env lhs rhs, eval_pol env (psub lhs rhs) = eval_pol env lhs - eval_pol env rhs.
Proof.
intros.
apply (eval_pol_sub Zsor ZSORaddon).
Qed.
Lemma eval_pol_add : forall env lhs rhs, eval_pol env (padd lhs rhs) = eval_pol env lhs + eval_pol env rhs.
Proof.
intros.
apply (eval_pol_add Zsor ZSORaddon).
Qed.
Lemma eval_pol_norm : forall env e, eval_expr env e = eval_pol env (norm e) .
Proof.
intros.
apply (eval_pol_norm Zsor ZSORaddon).
Qed.
Definition xnormalise (t:Formula Z) : list (NFormula Z) :=
let (lhs,o,rhs) := t in
let lhs := norm lhs in
let rhs := norm rhs in
match o with
| OpEq =>
((psub lhs (padd rhs (Pc 1))),NonStrict)::((psub rhs (padd lhs (Pc 1))),NonStrict)::nil
| OpNEq => (psub lhs rhs,Equal) :: nil
| OpGt => (psub rhs lhs,NonStrict) :: nil
| OpLt => (psub lhs rhs,NonStrict) :: nil
| OpGe => (psub rhs (padd lhs (Pc 1)),NonStrict) :: nil
| OpLe => (psub lhs (padd rhs (Pc 1)),NonStrict) :: nil
end.
Require Import Coq.micromega.Tauto BinNums.
Definition normalise (t:Formula Z) : cnf (NFormula Z) :=
List.map (fun x => x::nil) (xnormalise t).
Lemma normalise_correct : forall env t, eval_cnf eval_nformula env (normalise t) <-> Zeval_formula env t.
Proof.
unfold normalise, xnormalise; cbn -[padd]; intros env t.
rewrite Zeval_formula_compat.
unfold eval_cnf, eval_clause.
destruct t as [lhs o rhs]; case_eq o; cbn -[padd];
repeat rewrite eval_pol_sub;
repeat rewrite eval_pol_add;
repeat rewrite <- eval_pol_norm ; simpl in *;
unfold eval_expr;
generalize ( eval_pexpr Z.add Z.mul Z.sub Z.opp (fun x : Z => x)
(fun x : N => x) (pow_N 1 Z.mul) env lhs);
generalize (eval_pexpr Z.add Z.mul Z.sub Z.opp (fun x : Z => x)
(fun x : N => x) (pow_N 1 Z.mul) env rhs) ; intros z1 z2 ; intros ; subst;
intuition (auto with zarith).
Qed.
Definition xnegate (t:RingMicromega.Formula Z) : list (NFormula Z) :=
let (lhs,o,rhs) := t in
let lhs := norm lhs in
let rhs := norm rhs in
match o with
| OpEq => (psub lhs rhs,Equal) :: nil
| OpNEq => ((psub lhs (padd rhs (Pc 1))),NonStrict)::((psub rhs (padd lhs (Pc 1))),NonStrict)::nil
| OpGt => (psub lhs (padd rhs (Pc 1)),NonStrict) :: nil
| OpLt => (psub rhs (padd lhs (Pc 1)),NonStrict) :: nil
| OpGe => (psub lhs rhs,NonStrict) :: nil
| OpLe => (psub rhs lhs,NonStrict) :: nil
end.
Definition negate (t:RingMicromega.Formula Z) : cnf (NFormula Z) :=
List.map (fun x => x::nil) (xnegate t).
Lemma negate_correct : forall env t, eval_cnf eval_nformula env (negate t) <-> ~ Zeval_formula env t.
Proof.
Proof.
Opaque padd.
intros env t.
rewrite Zeval_formula_compat.
unfold negate, xnegate ; simpl.
unfold eval_cnf,eval_clause.
destruct t as [lhs o rhs]; case_eq o; simpl;
repeat rewrite eval_pol_sub;
repeat rewrite eval_pol_add;
repeat rewrite <- eval_pol_norm ; simpl in *;
unfold eval_expr;
generalize ( eval_pexpr Z.add Z.mul Z.sub Z.opp (fun x : Z => x)
(fun x : N => x) (pow_N 1 Z.mul) env lhs);
generalize (eval_pexpr Z.add Z.mul Z.sub Z.opp (fun x : Z => x)
(fun x : N => x) (pow_N 1 Z.mul) env rhs) ; intros z1 z2 ; intros ; subst;
intuition (auto with zarith).
Transparent padd.
Qed.
Definition Zunsat := check_inconsistent 0 Zeq_bool Z.leb.
Definition Zdeduce := nformula_plus_nformula 0 Z.add Zeq_bool.
Definition ZweakTautoChecker (w: list ZWitness) (f : BFormula (Formula Z)) : bool :=
@tauto_checker (Formula Z) (NFormula Z) Zunsat Zdeduce normalise negate ZWitness ZWeakChecker f w.
Require Import Zdiv.
Open Scope Z_scope.
Definition ceiling (a b:Z) : Z :=
let (q,r) := Z.div_eucl a b in
match r with
| Z0 => q
| _ => q + 1
end.
Require Import Znumtheory.
Lemma Zdivide_ceiling : forall a b, (b | a) -> ceiling a b = Z.div a b.
Proof.
unfold ceiling.
intros.
apply Zdivide_mod in H.
case_eq (Z.div_eucl a b).
intros.
change z with (fst (z,z0)).
rewrite <- H0.
change (fst (Z.div_eucl a b)) with (Z.div a b).
change z0 with (snd (z,z0)).
rewrite <- H0.
change (snd (Z.div_eucl a b)) with (Z.modulo a b).
rewrite H.
reflexivity.
Qed.
Lemma narrow_interval_lower_bound a b x :
a > 0 -> a * x >= b -> x >= ceiling b a.
Proof.
rewrite !Z.ge_le_iff.
unfold ceiling.
intros Ha H.
generalize (Z_div_mod b a Ha).
destruct (Z.div_eucl b a) as (q,r). intros (->,(H1,H2)).
destruct r as [|r|r].
- rewrite Z.add_0_r in H.
apply Z.mul_le_mono_pos_l in H; auto with zarith.
- assert (0 < Z.pos r) by easy.
rewrite Z.add_1_r, Z.le_succ_l.
apply Z.mul_lt_mono_pos_l with a; auto with zarith.
- now elim H1.
Qed.
NB: narrow_interval_upper_bound is Zdiv.Zdiv_le_lower_bound
Require Import QArith.
Inductive ZArithProof :=
| DoneProof
| RatProof : ZWitness -> ZArithProof -> ZArithProof
| CutProof : ZWitness -> ZArithProof -> ZArithProof
| EnumProof : ZWitness -> ZWitness -> list ZArithProof -> ZArithProof
.
Require Import Znumtheory.
Definition isZ0 (x:Z) :=
match x with
| Z0 => true
| _ => false
end.
Lemma isZ0_0 : forall x, isZ0 x = true <-> x = 0.
Proof.
destruct x ; simpl ; intuition congruence.
Qed.
Lemma isZ0_n0 : forall x, isZ0 x = false <-> x <> 0.
Proof.
destruct x ; simpl ; intuition congruence.
Qed.
Definition ZgcdM (x y : Z) := Z.max (Z.gcd x y) 1.
Fixpoint Zgcd_pol (p : PolC Z) : (Z * Z) :=
match p with
| Pc c => (0,c)
| Pinj _ p => Zgcd_pol p
| PX p _ q =>
let (g1,c1) := Zgcd_pol p in
let (g2,c2) := Zgcd_pol q in
(ZgcdM (ZgcdM g1 c1) g2 , c2)
end.
Fixpoint Zdiv_pol (p:PolC Z) (x:Z) : PolC Z :=
match p with
| Pc c => Pc (Z.div c x)
| Pinj j p => Pinj j (Zdiv_pol p x)
| PX p j q => PX (Zdiv_pol p x) j (Zdiv_pol q x)
end.
Inductive Zdivide_pol (x:Z): PolC Z -> Prop :=
| Zdiv_Pc : forall c, (x | c) -> Zdivide_pol x (Pc c)
| Zdiv_Pinj : forall p, Zdivide_pol x p -> forall j, Zdivide_pol x (Pinj j p)
| Zdiv_PX : forall p q, Zdivide_pol x p -> Zdivide_pol x q -> forall j, Zdivide_pol x (PX p j q).
Lemma Zdiv_pol_correct : forall a p, 0 < a -> Zdivide_pol a p ->
forall env, eval_pol env p = a * eval_pol env (Zdiv_pol p a).
Proof.
intros until 2.
induction H0.
simpl.
intros.
apply Zdivide_Zdiv_eq ; auto.
simpl.
intros.
apply IHZdivide_pol.
simpl.
intros.
rewrite IHZdivide_pol1.
rewrite IHZdivide_pol2.
ring.
Qed.
Lemma Zgcd_pol_ge : forall p, fst (Zgcd_pol p) >= 0.
Proof.
induction p.
simpl. auto with zarith.
simpl. auto.
simpl.
case_eq (Zgcd_pol p1).
case_eq (Zgcd_pol p3).
intros.
simpl.
unfold ZgcdM.
generalize (Z.gcd_nonneg z1 z2).
generalize (Zmax_spec (Z.gcd z1 z2) 1).
generalize (Z.gcd_nonneg (Z.max (Z.gcd z1 z2) 1) z).
generalize (Zmax_spec (Z.gcd (Z.max (Z.gcd z1 z2) 1) z) 1).
auto with zarith.
Qed.
Lemma Zdivide_pol_Zdivide : forall p x y, Zdivide_pol x p -> (y | x) -> Zdivide_pol y p.
Proof.
intros.
induction H.
constructor.
apply Z.divide_trans with (1:= H0) ; assumption.
constructor. auto.
constructor ; auto.
Qed.
Lemma Zdivide_pol_one : forall p, Zdivide_pol 1 p.
Proof.
induction p ; constructor ; auto.
exists c. ring.
Qed.
Lemma Zgcd_minus : forall a b c, (a | c - b ) -> (Z.gcd a b | c).
Proof.
intros a b c (q,Hq).
destruct (Zgcd_is_gcd a b) as [(a',Ha) (b',Hb) _].
set (g:=Z.gcd a b) in *; clearbody g.
exists (q * a' + b').
symmetry in Hq. rewrite <- Z.add_move_r in Hq.
rewrite <- Hq, Hb, Ha. ring.
Qed.
Lemma Zdivide_pol_sub : forall p a b,
0 < Z.gcd a b ->
Zdivide_pol a (PsubC Z.sub p b) ->
Zdivide_pol (Z.gcd a b) p.
Proof.
induction p.
simpl.
intros. inversion H0.
constructor.
apply Zgcd_minus ; auto.
intros.
constructor.
simpl in H0. inversion H0 ; subst; clear H0.
apply IHp ; auto.
simpl. intros.
inv H0.
constructor.
apply Zdivide_pol_Zdivide with (1:= H3).
destruct (Zgcd_is_gcd a b) ; assumption.
apply IHp2 ; assumption.
Qed.
Lemma Zdivide_pol_sub_0 : forall p a,
Zdivide_pol a (PsubC Z.sub p 0) ->
Zdivide_pol a p.
Proof.
induction p.
simpl.
intros. inversion H.
constructor. replace (c - 0) with c in H1 ; auto with zarith.
intros.
constructor.
simpl in H. inversion H ; subst; clear H.
apply IHp ; auto.
simpl. intros.
inv H.
constructor. auto.
apply IHp2 ; assumption.
Qed.
Lemma Zgcd_pol_div : forall p g c,
Zgcd_pol p = (g, c) -> Zdivide_pol g (PsubC Z.sub p c).
Proof.
induction p ; simpl.
intros. inv H.
constructor.
exists 0. now ring.
intros.
constructor. apply IHp ; auto.
intros g c.
case_eq (Zgcd_pol p1) ; case_eq (Zgcd_pol p3) ; intros.
inv H1.
unfold ZgcdM at 1.
destruct (Zmax_spec (Z.gcd (ZgcdM z1 z2) z) 1) as [HH1 | HH1];
destruct HH1 as [HH1 HH1'] ; rewrite HH1'.
constructor.
apply Zdivide_pol_Zdivide with (x:= ZgcdM z1 z2).
unfold ZgcdM.
destruct (Zmax_spec (Z.gcd z1 z2) 1) as [HH2 | HH2].
destruct HH2.
rewrite H2.
apply Zdivide_pol_sub ; auto.
auto with zarith.
destruct HH2. rewrite H2.
apply Zdivide_pol_one.
unfold ZgcdM in HH1. unfold ZgcdM.
destruct (Zmax_spec (Z.gcd z1 z2) 1) as [HH2 | HH2].
destruct HH2. rewrite H2 in *.
destruct (Zgcd_is_gcd (Z.gcd z1 z2) z); auto.
destruct HH2. rewrite H2.
destruct (Zgcd_is_gcd 1 z); auto.
apply Zdivide_pol_Zdivide with (x:= z).
apply (IHp2 _ _ H); auto.
destruct (Zgcd_is_gcd (ZgcdM z1 z2) z); auto.
constructor. apply Zdivide_pol_one.
apply Zdivide_pol_one.
Qed.
Lemma Zgcd_pol_correct_lt : forall p env g c, Zgcd_pol p = (g,c) -> 0 < g -> eval_pol env p = g * (eval_pol env (Zdiv_pol (PsubC Z.sub p c) g)) + c.
Proof.
intros.
rewrite <- Zdiv_pol_correct ; auto.
rewrite (RingMicromega.PsubC_ok Zsor ZSORaddon).
unfold eval_pol. ring.
apply Zgcd_pol_div ; auto.
Qed.
Definition makeCuttingPlane (p : PolC Z) : PolC Z * Z :=
let (g,c) := Zgcd_pol p in
if Z.gtb g Z0
then (Zdiv_pol (PsubC Z.sub p c) g , Z.opp (ceiling (Z.opp c) g))
else (p,Z0).
Definition genCuttingPlane (f : NFormula Z) : option (PolC Z * Z * Op1) :=
let (e,op) := f in
match op with
| Equal => let (g,c) := Zgcd_pol e in
if andb (Z.gtb g Z0) (andb (negb (Zeq_bool c Z0)) (negb (Zeq_bool (Z.gcd g c) g)))
then None
else
let (p,c) := makeCuttingPlane e in
Some (p,c,Equal)
| NonEqual => Some (e,Z0,op)
| Strict => let (p,c) := makeCuttingPlane (PsubC Z.sub e 1) in
Some (p,c,NonStrict)
| NonStrict => let (p,c) := makeCuttingPlane e in
Some (p,c,NonStrict)
end.
Definition nformula_of_cutting_plane (t : PolC Z * Z * Op1) : NFormula Z :=
let (e_z, o) := t in
let (e,z) := e_z in
(padd e (Pc z) , o).
Definition is_pol_Z0 (p : PolC Z) : bool :=
match p with
| Pc Z0 => true
| _ => false
end.
Lemma is_pol_Z0_eval_pol : forall p, is_pol_Z0 p = true -> forall env, eval_pol env p = 0.
Proof.
unfold is_pol_Z0.
destruct p ; try discriminate.
destruct z ; try discriminate.
reflexivity.
Qed.
Definition eval_Psatz : list (NFormula Z) -> ZWitness -> option (NFormula Z) :=
eval_Psatz 0 1 Z.add Z.mul Zeq_bool Z.leb.
Definition valid_cut_sign (op:Op1) :=
match op with
| Equal => true
| NonStrict => true
| _ => false
end.
Fixpoint ZChecker (l:list (NFormula Z)) (pf : ZArithProof) {struct pf} : bool :=
match pf with
| DoneProof => false
| RatProof w pf =>
match eval_Psatz l w with
| None => false
| Some f =>
if Zunsat f then true
else ZChecker (f::l) pf
end
| CutProof w pf =>
match eval_Psatz l w with
| None => false
| Some f =>
match genCuttingPlane f with
| None => true
| Some cp => ZChecker (nformula_of_cutting_plane cp::l) pf
end
end
| EnumProof w1 w2 pf =>
match eval_Psatz l w1 , eval_Psatz l w2 with
| Some f1 , Some f2 =>
match genCuttingPlane f1 , genCuttingPlane f2 with
|Some (e1,z1,op1) , Some (e2,z2,op2) =>
if (valid_cut_sign op1 && valid_cut_sign op2 && is_pol_Z0 (padd e1 e2))
then
(fix label (pfs:list ZArithProof) :=
fun lb ub =>
match pfs with
| nil => if Z.gtb lb ub then true else false
| pf::rsr => andb (ZChecker ((psub e1 (Pc lb), Equal) :: l) pf) (label rsr (Z.add lb 1%Z) ub)
end) pf (Z.opp z1) z2
else false
| _ , _ => true
end
| _ , _ => false
end
end.
Fixpoint bdepth (pf : ZArithProof) : nat :=
match pf with
| DoneProof => O
| RatProof _ p => S (bdepth p)
| CutProof _ p => S (bdepth p)
| EnumProof _ _ l => S (List.fold_right (fun pf x => Max.max (bdepth pf) x) O l)
end.
Require Import Wf_nat.
Lemma in_bdepth : forall l a b y, In y l -> ltof ZArithProof bdepth y (EnumProof a b l).
Proof.
induction l.
simpl.
tauto.
simpl.
intros.
destruct H.
subst.
unfold ltof.
simpl.
generalize ( (fold_right
(fun (pf : ZArithProof) (x : nat) => Max.max (bdepth pf) x) 0%nat l)).
intros.
generalize (bdepth y) ; intros.
generalize (Max.max_l n0 n) (Max.max_r n0 n).
auto with zarith.
generalize (IHl a0 b y H).
unfold ltof.
simpl.
generalize ( (fold_right (fun (pf : ZArithProof) (x : nat) => Max.max (bdepth pf) x) 0%nat
l)).
intros.
generalize (Max.max_l (bdepth a) n) (Max.max_r (bdepth a) n).
auto with zarith.
Qed.
Lemma eval_Psatz_sound : forall env w l f',
make_conj (eval_nformula env) l ->
eval_Psatz l w = Some f' -> eval_nformula env f'.
Proof.
intros.
apply (eval_Psatz_Sound Zsor ZSORaddon) with (l:=l) (e:= w) ; auto.
apply make_conj_in ; auto.
Qed.
Lemma makeCuttingPlane_ns_sound : forall env e e' c,
eval_nformula env (e, NonStrict) ->
makeCuttingPlane e = (e',c) ->
eval_nformula env (nformula_of_cutting_plane (e', c, NonStrict)).
Proof.
unfold nformula_of_cutting_plane.
unfold eval_nformula. unfold RingMicromega.eval_nformula.
unfold eval_op1.
intros.
rewrite (RingMicromega.eval_pol_add Zsor ZSORaddon).
simpl.
unfold makeCuttingPlane in H0.
revert H0.
case_eq (Zgcd_pol e) ; intros g c0.
generalize (Zgt_cases g 0) ; destruct (Z.gtb g 0).
intros.
inv H2.
change (RingMicromega.eval_pol Z.add Z.mul (fun x : Z => x)) with eval_pol in *.
apply Zgcd_pol_correct_lt with (env:=env) in H1.
generalize (narrow_interval_lower_bound g (- c0) (eval_pol env (Zdiv_pol (PsubC Z.sub e c0) g)) H0).
auto with zarith.
auto with zarith.
intros. inv H2. auto with zarith.
Qed.
Lemma cutting_plane_sound : forall env f p,
eval_nformula env f ->
genCuttingPlane f = Some p ->
eval_nformula env (nformula_of_cutting_plane p).
Proof.
unfold genCuttingPlane.
destruct f as [e op].
destruct op.
destruct p as [[e' z] op].
case_eq (Zgcd_pol e) ; intros g c.
case_eq (Z.gtb g 0 && (negb (Zeq_bool c 0) && negb (Zeq_bool (Z.gcd g c) g))) ; [discriminate|].
case_eq (makeCuttingPlane e).
intros.
inv H3.
unfold makeCuttingPlane in H.
rewrite H1 in H.
revert H.
change (eval_pol env e = 0) in H2.
case_eq (Z.gtb g 0).
intros.
rewrite <- Zgt_is_gt_bool in H.
rewrite Zgcd_pol_correct_lt with (1:= H1) in H2; auto with zarith.
unfold nformula_of_cutting_plane.
change (eval_pol env (padd e' (Pc z)) = 0).
inv H3.
rewrite eval_pol_add.
set (x:=eval_pol env (Zdiv_pol (PsubC Z.sub e c) g)) in *; clearbody x.
simpl.
rewrite andb_false_iff in H0.
destruct H0.
rewrite Zgt_is_gt_bool in H ; congruence.
rewrite andb_false_iff in H0.
destruct H0.
rewrite negb_false_iff in H0.
apply Zeq_bool_eq in H0.
subst. simpl.
rewrite Z.add_0_r, Z.mul_eq_0 in H2.
intuition auto with zarith.
rewrite negb_false_iff in H0.
apply Zeq_bool_eq in H0.
assert (HH := Zgcd_is_gcd g c).
rewrite H0 in HH.
inv HH.
apply Zdivide_opp_r in H4.
rewrite Zdivide_ceiling ; auto.
apply Z.sub_move_0_r.
apply Z.div_unique_exact ; auto with zarith.
intros.
unfold nformula_of_cutting_plane.
inv H3.
change (eval_pol env (padd e' (Pc 0)) = 0).
rewrite eval_pol_add.
simpl.
auto with zarith.
intros.
inv H0.
unfold eval_nformula in *.
unfold RingMicromega.eval_nformula in *.
unfold nformula_of_cutting_plane.
unfold eval_op1 in *.
rewrite (RingMicromega.eval_pol_add Zsor ZSORaddon).
simpl. auto with zarith.
destruct p as [[e' z] op].
case_eq (makeCuttingPlane (PsubC Z.sub e 1)).
intros.
inv H1.
apply makeCuttingPlane_ns_sound with (env:=env) (2:= H).
simpl in *.
rewrite (RingMicromega.PsubC_ok Zsor ZSORaddon).
auto with zarith.
destruct p as [[e' z] op].
case_eq (makeCuttingPlane e).
intros.
inv H1.
apply makeCuttingPlane_ns_sound with (env:=env) (2:= H).
assumption.
Qed.
Lemma genCuttingPlaneNone : forall env f,
genCuttingPlane f = None ->
eval_nformula env f -> False.
Proof.
unfold genCuttingPlane.
destruct f.
destruct o.
case_eq (Zgcd_pol p) ; intros g c.
case_eq (Z.gtb g 0 && (negb (Zeq_bool c 0) && negb (Zeq_bool (Z.gcd g c) g))).
intros.
flatten_bool.
rewrite negb_true_iff in H5.
apply Zeq_bool_neq in H5.
rewrite <- Zgt_is_gt_bool in H3.
rewrite negb_true_iff in H.
apply Zeq_bool_neq in H.
change (eval_pol env p = 0) in H2.
rewrite Zgcd_pol_correct_lt with (1:= H0) in H2; auto with zarith.
set (x:=eval_pol env (Zdiv_pol (PsubC Z.sub p c) g)) in *; clearbody x.
contradict H5.
apply Zis_gcd_gcd; auto with zarith.
constructor; auto with zarith.
exists (-x).
rewrite Z.mul_opp_l, Z.mul_comm; auto with zarith.
destruct (makeCuttingPlane p); discriminate.
discriminate.
destruct (makeCuttingPlane (PsubC Z.sub p 1)) ; discriminate.
destruct (makeCuttingPlane p) ; discriminate.
Qed.
Lemma ZChecker_sound : forall w l, ZChecker l w = true -> forall env, make_impl (eval_nformula env) l False.
Proof.
induction w using (well_founded_ind (well_founded_ltof _ bdepth)).
destruct w as [ | w pf | w pf | w1 w2 pf].
simpl. discriminate.
simpl.
intro l. case_eq (eval_Psatz l w) ; [| discriminate].
intros f Hf.
case_eq (Zunsat f).
intros.
apply (checker_nf_sound Zsor ZSORaddon l w).
unfold check_normalised_formulas. unfold eval_Psatz in Hf. rewrite Hf.
unfold Zunsat in H0. assumption.
intros.
assert (make_impl (eval_nformula env) (f::l) False).
apply H with (2:= H1).
unfold ltof.
simpl.
auto with arith.
destruct f.
rewrite <- make_conj_impl in H2.
rewrite make_conj_cons in H2.
rewrite <- make_conj_impl.
intro.
apply H2.
split ; auto.
apply eval_Psatz_sound with (2:= Hf) ; assumption.
simpl.
intro l.
case_eq (eval_Psatz l w) ; [ | discriminate].
intros f' Hlc.
case_eq (genCuttingPlane f').
intros.
assert (make_impl (eval_nformula env) (nformula_of_cutting_plane p::l) False).
eapply (H pf) ; auto.
unfold ltof.
simpl.
auto with arith.
rewrite <- make_conj_impl in H2.
rewrite make_conj_cons in H2.
rewrite <- make_conj_impl.
intro.
apply H2.
split ; auto.
apply eval_Psatz_sound with (env:=env) in Hlc.
apply cutting_plane_sound with (1:= Hlc) (2:= H0).
auto.
intros.
rewrite <- make_conj_impl.
intros.
apply eval_Psatz_sound with (2:= Hlc) in H2.
apply genCuttingPlaneNone with (2:= H2) ; auto.
intro.
simpl.
case_eq (eval_Psatz l w1) ; [ | discriminate].
case_eq (eval_Psatz l w2) ; [ | discriminate].
intros f1 Hf1 f2 Hf2.
case_eq (genCuttingPlane f2).
destruct p as [ [p1 z1] op1].
case_eq (genCuttingPlane f1).
destruct p as [ [p2 z2] op2].
case_eq (valid_cut_sign op1 && valid_cut_sign op2 && is_pol_Z0 (padd p1 p2)).
intros Hcond.
flatten_bool.
rename H1 into HZ0.
rename H2 into Hop1.
rename H3 into Hop2.
intros HCutL HCutR Hfix env.
rewrite <- make_conj_impl.
intro.
assert (-z1 <= eval_pol env p1 <= z2).
split.
apply eval_Psatz_sound with (env:=env) in Hf2 ; auto.
apply cutting_plane_sound with (1:= Hf2) in HCutR.
unfold nformula_of_cutting_plane in HCutR.
unfold eval_nformula in HCutR.
unfold RingMicromega.eval_nformula in HCutR.
change (RingMicromega.eval_pol Z.add Z.mul (fun x : Z => x)) with eval_pol in HCutR.
unfold eval_op1 in HCutR.
destruct op1 ; simpl in Hop1 ; try discriminate;
rewrite eval_pol_add in HCutR; simpl in HCutR; auto with zarith.
apply is_pol_Z0_eval_pol with (env := env) in HZ0.
rewrite eval_pol_add in HZ0.
replace (eval_pol env p1) with (- eval_pol env p2) by omega.
apply eval_Psatz_sound with (env:=env) in Hf1 ; auto.
apply cutting_plane_sound with (1:= Hf1) in HCutL.
unfold nformula_of_cutting_plane in HCutL.
unfold eval_nformula in HCutL.
unfold RingMicromega.eval_nformula in HCutL.
change (RingMicromega.eval_pol Z.add Z.mul (fun x : Z => x)) with eval_pol in HCutL.
unfold eval_op1 in HCutL.
rewrite eval_pol_add in HCutL. simpl in HCutL.
destruct op2 ; simpl in Hop2 ; try discriminate ; omega.
revert Hfix.
match goal with
| |- context[?F pf (-z1) z2 = true] => set (FF := F)
end.
intros.
assert (HH :forall x, -z1 <= x <= z2 -> exists pr,
(In pr pf /\
ZChecker ((PsubC Z.sub p1 x,Equal) :: l) pr = true)%Z).
clear HZ0 Hop1 Hop2 HCutL HCutR H0 H1.
revert Hfix.
generalize (-z1). clear z1. intro z1.
revert z1 z2.
induction pf;simpl ;intros.
generalize (Zgt_cases z1 z2).
destruct (Z.gtb z1 z2).
intros.
apply False_ind ; omega.
discriminate.
flatten_bool.
assert (HH:(x = z1 \/ z1 +1 <=x)%Z) by omega.
destruct HH.
subst.
exists a ; auto.
assert (z1 + 1 <= x <= z2)%Z by omega.
elim IHpf with (2:=H2) (3:= H4).
destruct H4.
intros.
exists x0 ; split;tauto.
intros until 1.
apply H ; auto.
unfold ltof in *.
simpl in *.
zify. omega.
destruct (HH _ H1) as [pr [Hin Hcheker]].
assert (make_impl (eval_nformula env) ((PsubC Z.sub p1 (eval_pol env p1),Equal) :: l) False).
apply (H pr);auto.
apply in_bdepth ; auto.
rewrite <- make_conj_impl in H2.
apply H2.
rewrite make_conj_cons.
split ;auto.
unfold eval_nformula.
unfold RingMicromega.eval_nformula.
simpl.
rewrite (RingMicromega.PsubC_ok Zsor ZSORaddon).
unfold eval_pol. ring.
discriminate.
intros.
rewrite <- make_conj_impl.
intros.
apply eval_Psatz_sound with (2:= Hf1) in H3.
apply genCuttingPlaneNone with (2:= H3) ; auto.
intros.
rewrite <- make_conj_impl.
intros.
apply eval_Psatz_sound with (2:= Hf2) in H2.
apply genCuttingPlaneNone with (2:= H2) ; auto.
Qed.
Definition ZTautoChecker (f : BFormula (Formula Z)) (w: list ZArithProof): bool :=
@tauto_checker (Formula Z) (NFormula Z) Zunsat Zdeduce normalise negate ZArithProof ZChecker f w.
Lemma ZTautoChecker_sound : forall f w, ZTautoChecker f w = true -> forall env, eval_f (Zeval_formula env) f.
Proof.
intros f w.
unfold ZTautoChecker.
apply (tauto_checker_sound Zeval_formula eval_nformula).
apply Zeval_nformula_dec.
intros until env.
unfold eval_nformula. unfold RingMicromega.eval_nformula.
destruct t.
apply (check_inconsistent_sound Zsor ZSORaddon) ; auto.
unfold Zdeduce. apply (nformula_plus_nformula_correct Zsor ZSORaddon).
intros env t.
rewrite normalise_correct ; auto.
intros env t.
rewrite negate_correct ; auto.
intros t w0.
apply ZChecker_sound.
Qed.
Fixpoint xhyps_of_pt (base:nat) (acc : list nat) (pt:ZArithProof) : list nat :=
match pt with
| DoneProof => acc
| RatProof c pt => xhyps_of_pt (S base ) (xhyps_of_psatz base acc c) pt
| CutProof c pt => xhyps_of_pt (S base ) (xhyps_of_psatz base acc c) pt
| EnumProof c1 c2 l =>
let acc := xhyps_of_psatz base (xhyps_of_psatz base acc c2) c1 in
List.fold_left (xhyps_of_pt (S base)) l acc
end.
Definition hyps_of_pt (pt : ZArithProof) : list nat := xhyps_of_pt 0 nil pt.
Open Scope Z_scope.
To ease bindings from ml code
Definition make_impl := Refl.make_impl.
Definition make_conj := Refl.make_conj.
Require VarMap.
Definition env := PolEnv Z.
Definition node := @VarMap.Node Z.
Definition empty := @VarMap.Empty Z.
Definition leaf := @VarMap.Leaf Z.
Definition coneMember := ZWitness.
Definition eval := eval_formula.
Definition prod_pos_nat := prod positive nat.
Notation n_of_Z := Z.to_N (only parsing).
Definition make_conj := Refl.make_conj.
Require VarMap.
Definition env := PolEnv Z.
Definition node := @VarMap.Node Z.
Definition empty := @VarMap.Empty Z.
Definition leaf := @VarMap.Leaf Z.
Definition coneMember := ZWitness.
Definition eval := eval_formula.
Definition prod_pos_nat := prod positive nat.
Notation n_of_Z := Z.to_N (only parsing).