Library Coqprime.Z.ZSum



Require Import Arith.
Require Import ArithRing.
Require Import ListAux.
Require Import ZArith.
Require Import Iterator.
Require Import ZProgression.

Open Scope Z_scope.

Definition Zsum :=
   fun n m f =>
   if Zle_bool n m
     then iter 0 f Zplus (progression Z.succ n (Z.abs_nat ((1 + m) - n)))
     else iter 0 f Zplus (progression Z.pred n (Z.abs_nat ((1 + n) - m))).
Hint Unfold Zsum .

Lemma Zsum_nn: forall n f, Zsum n n f = f n.
intros n f; unfold Zsum; rewrite Zle_bool_refl.
replace ((1 + n) - n) with 1; auto with zarith.
simpl; ring.
Qed.

Theorem permutation_rev: forall (A:Set) (l : list A), permutation (rev l) l.
intros a l; elim l; simpl; auto.
intros a1 l1 Hl1.
apply permutation_trans with (cons a1 (rev l1)); auto.
change (permutation (rev l1 ++ (a1 :: nil)) (app (cons a1 nil) (rev l1))); auto.
Qed.

Lemma Zsum_swap: forall (n m : Z) (f : Z -> Z), Zsum n m f = Zsum m n f.
intros n m f; unfold Zsum.
generalize (Zle_cases n m) (Zle_cases m n); case (Zle_bool n m);
 case (Zle_bool m n); auto with arith.
intros; replace n with m; auto with zarith.
3:intros H1 H2; contradict H2; auto with zarith.
intros H1 H2; apply iter_permutation; auto with zarith.
apply permutation_trans
     with (rev (progression Z.succ n (Z.abs_nat ((1 + m) - n)))).
apply permutation_sym; apply permutation_rev.
rewrite Zprogression_opp; auto with zarith.
replace (n + Z_of_nat (pred (Z.abs_nat ((1 + m) - n)))) with m; auto.
replace (Z.abs_nat ((1 + m) - n)) with (S (Z.abs_nat (m - n))); auto with zarith.
simpl.
rewrite inj_Zabs_nat; auto with zarith.
rewrite Z.abs_eq; auto with zarith.
replace ((1 + m) - n) with (1 + (m - n)); auto with zarith.
cut (0 <= m - n); auto with zarith; unfold Z.abs_nat .
case (m - n); auto with zarith.
intros p; case p; simpl; auto with zarith.
intros p1 Hp1; rewrite nat_of_P_xO; rewrite nat_of_P_xI;
 rewrite nat_of_P_succ_morphism.
simpl; repeat rewrite plus_0_r.
repeat rewrite <- plus_n_Sm; simpl; auto.
intros p H3; contradict H3; auto with zarith.
intros H1 H2; apply iter_permutation; auto with zarith.
apply permutation_trans
     with (rev (progression Z.succ m (Z.abs_nat ((1 + n) - m)))).
rewrite Zprogression_opp; auto with zarith.
replace (m + Z_of_nat (pred (Z.abs_nat ((1 + n) - m)))) with n; auto.
replace (Z.abs_nat ((1 + n) - m)) with (S (Z.abs_nat (n - m))); auto with zarith.
simpl.
rewrite inj_Zabs_nat; auto with zarith.
rewrite Z.abs_eq; auto with zarith.
replace ((1 + n) - m) with (1 + (n - m)); auto with zarith.
cut (0 <= n - m); auto with zarith; unfold Z.abs_nat .
case (n - m); auto with zarith.
intros p; case p; simpl; auto with zarith.
intros p1 Hp1; rewrite nat_of_P_xO; rewrite nat_of_P_xI;
 rewrite nat_of_P_succ_morphism.
simpl; repeat rewrite plus_0_r.
repeat rewrite <- plus_n_Sm; simpl; auto.
intros p H3; contradict H3; auto with zarith.
apply permutation_rev.
Qed.

Lemma Zsum_split_up:
 forall (n m p : Z) (f : Z -> Z),
 ( n <= m < p ) -> Zsum n p f = Zsum n m f + Zsum (m + 1) p f.
intros n m p f [H H0].
case (Zle_lt_or_eq _ _ H); clear H; intros H.
unfold Zsum; (repeat rewrite Zle_imp_le_bool); auto with zarith.
assert (H1: n < p).
apply Z.lt_trans with ( 1 := H ); auto with zarith.
assert (H2: m < 1 + p).
apply Z.lt_trans with ( 1 := H0 ); auto with zarith.
assert (H3: n < 1 + m).
apply Z.lt_trans with ( 1 := H ); auto with zarith.
assert (H4: n < 1 + p).
apply Z.lt_trans with ( 1 := H1 ); auto with zarith.
replace (Z.abs_nat ((1 + p) - (m + 1)))
     with (minus (Z.abs_nat ((1 + p) - n)) (Z.abs_nat ((1 + m) - n))).
apply iter_progression_app; auto with zarith.
apply inj_le_rev.
(repeat rewrite inj_Zabs_nat); auto with zarith.
(repeat rewrite Z.abs_eq); auto with zarith.
rewrite next_n_Z; auto with zarith.
rewrite inj_Zabs_nat; auto with zarith.
rewrite Z.abs_eq; auto with zarith.
apply inj_eq_rev; auto with zarith.
rewrite inj_minus1; auto with zarith.
(repeat rewrite inj_Zabs_nat); auto with zarith.
(repeat rewrite Z.abs_eq); auto with zarith.
apply inj_le_rev.
(repeat rewrite inj_Zabs_nat); auto with zarith.
(repeat rewrite Z.abs_eq); auto with zarith.
subst m.
rewrite Zsum_nn; auto with zarith.
unfold Zsum; generalize (Zle_cases n p); generalize (Zle_cases (n + 1) p);
 case (Zle_bool n p); case (Zle_bool (n + 1) p); auto with zarith.
intros H1 H2.
replace (Z.abs_nat ((1 + p) - n)) with (S (Z.abs_nat (p - n))); auto with zarith.
replace (n + 1) with (Z.succ n); auto with zarith.
replace ((1 + p) - Z.succ n) with (p - n); auto with zarith.
apply inj_eq_rev; auto with zarith.
rewrite inj_S; (repeat rewrite inj_Zabs_nat); auto with zarith.
(repeat rewrite Z.abs_eq); auto with zarith.
Qed.

Lemma Zsum_S_left:
 forall (n m : Z) (f : Z -> Z), n < m -> Zsum n m f = f n + Zsum (n + 1) m f.
intros n m f H; rewrite (Zsum_split_up n n m f); auto with zarith.
rewrite Zsum_nn; auto with zarith.
Qed.

Lemma Zsum_S_right:
 forall (n m : Z) (f : Z -> Z),
 n <= m -> Zsum n (m + 1) f = Zsum n m f + f (m + 1).
intros n m f H; rewrite (Zsum_split_up n m (m + 1) f); auto with zarith.
rewrite Zsum_nn; auto with zarith.
Qed.

Lemma Zsum_split_down:
 forall (n m p : Z) (f : Z -> Z),
 ( p < m <= n ) -> Zsum n p f = Zsum n m f + Zsum (m - 1) p f.
intros n m p f [H H0].
case (Zle_lt_or_eq p (m - 1)); auto with zarith; intros H1.
pattern m at 1; replace m with ((m - 1) + 1); auto with zarith.
repeat rewrite (Zsum_swap n).
rewrite (Zsum_swap (m - 1)).
rewrite Zplus_comm.
apply Zsum_split_up; auto with zarith.
subst p.
repeat rewrite (Zsum_swap n).
rewrite Zsum_nn.
unfold Zsum; (repeat rewrite Zle_imp_le_bool); auto with zarith.
replace (Z.abs_nat ((1 + n) - (m - 1))) with (S (Z.abs_nat (n - (m - 1)))).
rewrite Zplus_comm.
replace (Z.abs_nat ((1 + n) - m)) with (Z.abs_nat (n - (m - 1))); auto with zarith.
pattern m at 4; replace m with (Z.succ (m - 1)); auto with zarith.
apply f_equal with ( f := Z.abs_nat ); auto with zarith.
apply inj_eq_rev; auto with zarith.
rewrite inj_S.
(repeat rewrite inj_Zabs_nat); auto with zarith.
(repeat rewrite Z.abs_eq); auto with zarith.
Qed.

Lemma Zsum_ext:
 forall (n m : Z) (f g : Z -> Z),
 n <= m ->
 (forall (x : Z), ( n <= x <= m ) -> f x = g x) -> Zsum n m f = Zsum n m g.
intros n m f g HH H.
unfold Zsum; auto.
unfold Zsum; (repeat rewrite Zle_imp_le_bool); auto with zarith.
apply iter_ext; auto with zarith.
intros a H1; apply H; auto; split.
apply Zprogression_le_init with ( 1 := H1 ).
cut (a < Z.succ m); auto with zarith.
replace (Z.succ m) with (n + Z_of_nat (Z.abs_nat ((1 + m) - n))); auto with zarith.
apply Zprogression_le_end; auto with zarith.
rewrite inj_Zabs_nat; auto with zarith.
(repeat rewrite Z.abs_eq); auto with zarith.
Qed.

Lemma Zsum_add:
 forall (n m : Z) (f g : Z -> Z),
  Zsum n m f + Zsum n m g = Zsum n m (fun (i : Z) => f i + g i).
intros n m f g; unfold Zsum; case (Zle_bool n m); apply iter_comp;
 auto with zarith.
Qed.

Lemma Zsum_times:
 forall n m x f, x * Zsum n m f = Zsum n m (fun i=> x * f i).
intros n m x f.
unfold Zsum. case (Zle_bool n m); intros; apply iter_comp_const with (k := (fun y : Z => x * y)); auto with zarith.
Qed.

Lemma inv_Zsum:
 forall (P : Z -> Prop) (n m : Z) (f : Z -> Z),
 n <= m ->
 P 0 ->
 (forall (a b : Z), P a -> P b -> P (a + b)) ->
 (forall (x : Z), ( n <= x <= m ) -> P (f x)) -> P (Zsum n m f).
intros P n m f HH H H0 H1.
unfold Zsum; rewrite Zle_imp_le_bool; auto with zarith; apply iter_inv; auto.
intros x H3; apply H1; auto; split.
apply Zprogression_le_init with ( 1 := H3 ).
cut (x < Z.succ m); auto with zarith.
replace (Z.succ m) with (n + Z_of_nat (Z.abs_nat ((1 + m) - n))); auto with zarith.
apply Zprogression_le_end; auto with zarith.
rewrite inj_Zabs_nat; auto with zarith.
(repeat rewrite Z.abs_eq); auto with zarith.
Qed.

Lemma Zsum_pred:
 forall (n m : Z) (f : Z -> Z),
  Zsum n m f = Zsum (n + 1) (m + 1) (fun (i : Z) => f (Z.pred i)).
intros n m f.
unfold Zsum.
generalize (Zle_cases n m); generalize (Zle_cases (n + 1) (m + 1));
 case (Zle_bool n m); case (Zle_bool (n + 1) (m + 1)); auto with zarith.
replace ((1 + (m + 1)) - (n + 1)) with ((1 + m) - n); auto with zarith.
intros H1 H2; cut (exists c , c = Z.abs_nat ((1 + m) - n) ).
intros [c H3]; rewrite <- H3.
generalize n; elim c; auto with zarith; clear H1 H2 H3 c n.
intros c H n; simpl; eq_tac; auto with zarith.
eq_tac; unfold Z.pred; auto with zarith.
replace (Z.succ (n + 1)) with (Z.succ n + 1); auto with zarith.
exists (Z.abs_nat ((1 + m) - n)); auto.
replace ((1 + (n + 1)) - (m + 1)) with ((1 + n) - m); auto with zarith.
intros H1 H2; cut (exists c , c = Z.abs_nat ((1 + n) - m) ).
intros [c H3]; rewrite <- H3.
generalize n; elim c; auto with zarith; clear H1 H2 H3 c n.
intros c H n; simpl; (eq_tac; auto with zarith).
eq_tac; unfold Z.pred; auto with zarith.
replace (Z.pred (n + 1)) with (Z.pred n + 1); auto with zarith.
unfold Z.pred; auto with zarith.
exists (Z.abs_nat ((1 + n) - m)); auto.
Qed.

Theorem Zsum_c:
 forall (c p q : Z), p <= q -> Zsum p q (fun x => c) = ((1 + q) - p) * c.
intros c p q Hq; unfold Zsum.
rewrite Zle_imp_le_bool; auto with zarith.
pattern ((1 + q) - p) at 2.
 rewrite <- Z.abs_eq; auto with zarith.
 rewrite <- inj_Zabs_nat; auto with zarith.
cut (exists r , r = Z.abs_nat ((1 + q) - p) );
 [intros [r H1]; rewrite <- H1 | exists (Z.abs_nat ((1 + q) - p))]; auto.
generalize p; elim r; auto with zarith.
intros n H p0; replace (Z_of_nat (S n)) with (Z_of_nat n + 1); auto with zarith.
simpl; rewrite H; ring.
rewrite inj_S; auto with zarith.
Qed.

Theorem Zsum_Zsum_f:
 forall (i j k l : Z) (f : Z -> Z -> Z),
 i <= j ->
 k < l ->
  Zsum i j (fun x => Zsum k (l + 1) (fun y => f x y)) =
  Zsum i j (fun x => Zsum k l (fun y => f x y) + f x (l + 1)).
intros; apply Zsum_ext; intros; auto with zarith.
rewrite Zsum_S_right; auto with zarith.
Qed.

Theorem Zsum_com:
 forall (i j k l : Z) (f : Z -> Z -> Z),
  Zsum i j (fun x => Zsum k l (fun y => f x y)) =
  Zsum k l (fun y => Zsum i j (fun x => f x y)).
intros; unfold Zsum; case (Zle_bool i j); case (Zle_bool k l); apply iter_com;
 auto with zarith.
Qed.

Theorem Zsum_le:
 forall (n m : Z) (f g : Z -> Z),
 n <= m ->
 (forall (x : Z), ( n <= x <= m ) -> (f x <= g x )) ->
  (Zsum n m f <= Zsum n m g ).
intros n m f g Hl H.
unfold Zsum; rewrite Zle_imp_le_bool; auto with zarith.
unfold Zsum;
 cut
  (forall x,
   In x (progression Z.succ n (Z.abs_nat ((1 + m) - n))) -> ( f x <= g x )).
elim (progression Z.succ n (Z.abs_nat ((1 + m) - n))); simpl; auto with zarith.
intros x H1; apply H; split.
apply Zprogression_le_init with ( 1 := H1 ); auto.
cut (x < m + 1); auto with zarith.
replace (m + 1) with (n + Z_of_nat (Z.abs_nat ((1 + m) - n))); auto with zarith.
apply Zprogression_le_end; auto with zarith.
rewrite inj_Zabs_nat; auto with zarith.
rewrite Z.abs_eq; auto with zarith.
Qed.

Theorem iter_le:
forall (f g: Z -> Z) l, (forall a, In a l -> f a <= g a) ->
  iter 0 f Zplus l <= iter 0 g Zplus l.
intros f g l; elim l; simpl; auto with zarith.
Qed.

Theorem Zsum_lt:
 forall n m f g,
 (forall x, n <= x -> x <= m -> f x <= g x) ->
 (exists x, n <= x /\ x <= m /\ f x < g x) ->
  Zsum n m f < Zsum n m g.
intros n m f g H (d, (Hd1, (Hd2, Hd3))); unfold Zsum; rewrite Zle_imp_le_bool; auto with zarith.
cut (In d (progression Z.succ n (Z.abs_nat (1 + m - n)))).
cut (forall x, In x (progression Z.succ n (Z.abs_nat (1 + m - n)))-> f x <= g x).
elim (progression Z.succ n (Z.abs_nat (1 + m - n))); simpl; auto with zarith.
intros a l Rec H0 [H1 | H1]; subst; auto.
apply Z.le_lt_trans with (f d + iter 0 g Zplus l); auto with zarith.
apply Zplus_le_compat_l.
apply iter_le; auto.
apply Z.lt_le_trans with (f a + iter 0 g Zplus l); auto with zarith.
intros x H1; apply H.
apply Zprogression_le_init with ( 1 := H1 ); auto.
cut (x < m + 1); auto with zarith.
replace (m + 1) with (n + Z_of_nat (Z.abs_nat ((1 + m) - n))); auto with zarith.
apply Zprogression_le_end with ( 1 := H1 ); auto with arith.
rewrite inj_Zabs_nat; auto with zarith.
rewrite Z.abs_eq; auto with zarith.
apply in_Zprogression.
rewrite inj_Zabs_nat; auto with zarith.
rewrite Z.abs_eq; auto with zarith.
Qed.

Theorem Zsum_minus:
 forall n m f g, Zsum n m f - Zsum n m g = Zsum n m (fun x => f x - g x).
intros n m f g; apply trans_equal with (Zsum n m f + (-1) * Zsum n m g); auto with zarith.
rewrite Zsum_times; rewrite Zsum_add; auto with zarith.
Qed.