Library Coqprime.num.Pock
Require Import List.
Require Import ZArith.
Require Import Zorder.
Require Import ZCAux.
Require Import LucasLehmer.
Require Import Pocklington.
Require Import ZArith Znumtheory Zpow_facts.
Require Import CyclicAxioms Cyclic31 Int31.
From Bignums Require Import DoubleCyclic BigN.
Require Import Pmod.
Require Import Mod_op.
Require Import W.
Require Import Lucas.
Require Export PocklingtonCertificat.
Require Import NEll.
Import CyclicAxioms DoubleType DoubleBase List.
Open Scope Z_scope.
Section test.
Variable w: Type.
Variable w_op: ZnZ.Ops w.
Variable op_spec: ZnZ.Specs w_op.
Variable p: positive.
Variable b: w.
Notation "[| x |]" :=
(ZnZ.to_Z x) (at level 0, x at level 99).
Hypothesis b_pos: 0 < [|b|].
Variable m_op: mod_op w.
Variable m_op_spec: mod_spec w_op b m_op.
Open Scope positive_scope.
Open Scope P_scope.
Let pow := m_op.(power_mod).
Let times := m_op.(mul_mod).
Let pred:= m_op.(pred_mod).
Definition fold_pow_mod (a: w) l :=
fold_left
(fun a' (qp:positive*positive) => pow a' (fst qp))
l a.
Lemma fold_pow_mod_spec : forall l (a:w),
([|a|] < [|b|])%Z -> [|fold_pow_mod a l|] = ([|a|]^(mkProd' l) mod [|b|])%Z.
intros l; unfold fold_pow_mod; elim l; simpl fold_left; simpl mkProd'; auto; clear l.
intros a H; rewrite Zpower_1_r; rewrite Zmod_small; auto with zarith.
case (ZnZ.spec_to_Z a); auto with zarith.
intros (p1, q1) l Rec a H.
case (ZnZ.spec_to_Z a); auto with zarith; intros U1 U2.
rewrite Rec.
rewrite m_op_spec.(power_mod_spec) with (t := [|a|]); auto with zarith.
rewrite <- Zpower_mod.
rewrite times_Zmult; rewrite Zpower_mult; auto with zarith.
apply Z.le_lt_trans with (2 := H); auto with zarith.
rewrite Zmod_small; auto with zarith.
rewrite m_op_spec.(power_mod_spec) with (t := [|a|]); auto with zarith.
match goal with |- context[(?X mod ?Y)%Z] =>
case (Z_mod_lt X Y); auto with zarith
end.
rewrite Zmod_small; auto with zarith.
Qed.
Fixpoint all_pow_mod (prod a: w) (l:dec_prime) {struct l}: w*w :=
match l with
| nil => (prod,a)
| (q,_) :: l =>
let m := pred (fold_pow_mod a l) in
all_pow_mod (times prod m) (pow a q) l
end.
Lemma snd_all_pow_mod :
forall l (prod a :w), ([|a|] < [|b|])%Z ->
[|snd (all_pow_mod prod a l)|] = ([|a|]^(mkProd' l) mod [|b|])%Z.
intros l; elim l; simpl all_pow_mod; simpl mkProd'; simpl snd; clear l.
intros _ a H; rewrite Zpower_1_r; auto with zarith.
rewrite Zmod_small; auto with zarith.
case (ZnZ.spec_to_Z a); auto with zarith.
intros (p1, q1) l Rec prod a H.
case (ZnZ.spec_to_Z a); auto with zarith; intros U1 U2.
rewrite Rec; auto with zarith.
rewrite m_op_spec.(power_mod_spec) with (t := [|a|]); auto with zarith.
rewrite <- Zpower_mod.
rewrite times_Zmult; rewrite Zpower_mult; auto with zarith.
apply Z.le_lt_trans with (2 := H); auto with zarith.
rewrite Zmod_small; auto with zarith.
rewrite m_op_spec.(power_mod_spec) with (t := [|a|]); auto with zarith.
match goal with |- context[(?X mod ?Y)%Z] =>
case (Z_mod_lt X Y); auto with zarith
end.
rewrite Zmod_small; auto with zarith.
Qed.
Lemma fold_aux : forall a N l prod,
(fold_left
(fun (r : Z) (k : positive * positive) =>
r * (a ^(N / fst k) - 1) mod [|b|]) l (prod mod [|b|]) mod [|b|] =
fold_left
(fun (r : Z) (k : positive * positive) =>
r * (a^(N / fst k) - 1)) l prod mod [|b|])%Z.
induction l;simpl;intros.
rewrite Zmod_mod; auto with zarith.
rewrite <- IHl; auto with zarith.
rewrite Zmult_mod; auto with zarith.
rewrite Zmod_mod; auto with zarith.
rewrite <- Zmult_mod; auto with zarith.
Qed.
Lemma fst_all_pow_mod :
forall l (a:w) (R:positive) (prod A :w),
[|prod|] = ([|prod|] mod [|b|])%Z ->
[|A|] = ([|a|]^R mod [|b|])%Z ->
[|fst (all_pow_mod prod A l)|] =
((fold_left
(fun r (k:positive*positive) =>
(r * ([|a|] ^ (R* mkProd' l / (fst k)) - 1))) l [|prod|]) mod [|b|])%Z.
intros l; elim l; simpl all_pow_mod; simpl fold_left; simpl fst;
auto with zarith; clear l.
intros (p1,q1) l Rec; simpl fst.
intros a R prod A H1 H2.
assert (F: (0 <= [|A|] < [|b|])%Z).
rewrite H2.
match goal with |- context[(?X mod ?Y)%Z] =>
case (Z_mod_lt X Y); auto with zarith
end.
assert (F1: ((fun x => x = x mod [|b|])%Z [|fold_pow_mod A l|])).
rewrite Zmod_small; auto.
rewrite fold_pow_mod_spec; auto with zarith.
match goal with |- context[(?X mod ?Y)%Z] =>
case (Z_mod_lt X Y); auto with zarith
end.
assert (F2: ((fun x => x = x mod [|b|])%Z [|pred (fold_pow_mod A l)|])).
rewrite Zmod_small; auto.
rewrite(fun x => m_op_spec.(pred_mod_spec) x [|x|]);
auto with zarith.
match goal with |- context[(?X mod ?Y)%Z] =>
case (Z_mod_lt X Y); auto with zarith
end.
rewrite (Rec a (R * p1)%positive); auto with zarith.
rewrite(fun x y => m_op_spec.(mul_mod_spec) x y [|x|] [|y|]);
auto with zarith.
rewrite(fun x => m_op_spec.(pred_mod_spec) x [|x|]);
auto with zarith.
rewrite fold_pow_mod_spec; auto with zarith.
rewrite H2.
repeat rewrite Zpos_mult.
repeat rewrite times_Zmult.
repeat rewrite <- Zmult_assoc.
apply sym_equal; rewrite <- fold_aux; auto with zarith.
apply sym_equal; rewrite <- fold_aux; auto with zarith.
eq_tac; auto.
match goal with |- context[fold_left ?x _ _] =>
apply f_equal2 with (f := fold_left x); auto with zarith
end.
rewrite Zmod_mod; auto with zarith.
rewrite (Zmult_comm R); repeat rewrite <- Zmult_assoc;
rewrite (Zmult_comm p1); rewrite Z_div_mult; auto with zarith.
repeat rewrite (Zmult_mod [|prod|]);auto with zmisc.
eq_tac; [idtac | eq_tac]; auto.
eq_tac; auto.
rewrite Zmod_mod; auto.
repeat rewrite (fun x => Zminus_mod x 1); auto with zarith.
eq_tac; auto; eq_tac; auto.
rewrite Zmult_comm; rewrite <- Zpower_mod; auto with zmisc.
rewrite Zpower_mult; auto with zarith.
rewrite Zmod_mod; auto with zarith.
rewrite Zmod_small; auto.
rewrite(fun x y => m_op_spec.(mul_mod_spec) x y [|x|] [|y|]);
auto with zarith.
match goal with |- context[(?X mod ?Y)%Z] =>
case (Z_mod_lt X Y); auto with zarith
end.
rewrite(fun x => m_op_spec.(power_mod_spec) x [|x|]);
auto with zarith.
apply trans_equal with ([|A|] ^ p1 mod [|b|])%Z; auto.
rewrite H2.
rewrite Zpos_mult_morphism; rewrite Zpower_mult; auto with zarith.
rewrite <- Zpower_mod; auto with zarith.
rewrite Zmod_small; auto.
Qed.
Fixpoint pow_mod_pred (a:w) (l:dec_prime) {struct l} : w :=
match l with
| nil => a
| (q, p)::l =>
if (p ?= 1) then pow_mod_pred a l
else
let a' := iter_pos _ (fun x => pow x q) a (Pos.pred p) in
pow_mod_pred a' l
end.
Lemma iter_pow_mod_spec : forall q p a, [|a|] = ([|a|] mod [|b|])%Z ->
([|iter_pos _ (fun x => pow x q) a p|] = [|a|]^q^p mod [|b|])%Z.
intros q1 p1; elim p1; simpl iter_pos; clear p1.
intros p1 Rec a Ha.
rewrite(fun x => m_op_spec.(power_mod_spec) x [|x|]);
auto with zarith.
repeat rewrite Rec; auto with zarith.
match goal with |- (Zpower_pos ?X ?Y mod ?Z = _)%Z =>
apply trans_equal with (X ^ Y mod Z)%Z; auto
end.
repeat rewrite <- Zpower_mod; auto with zmisc.
repeat rewrite <- Zpower_mult; auto with zmisc.
repeat rewrite <- Zpower_mod; auto with zmisc.
repeat rewrite <- Zpower_mult; auto with zarith zmisc.
eq_tac; auto.
eq_tac; auto.
rewrite Zpos_xI.
assert (tmp: forall x, (2 * x = x + x)%Z); auto with zarith; rewrite tmp;
clear tmp.
repeat rewrite Zpower_exp; auto with zarith.
rewrite Zpower_1_r; try ring; auto with misc.
rewrite Zmod_mod; auto with zarith.
rewrite Rec; auto with zmisc.
rewrite Zmod_mod; auto with zarith.
rewrite Rec; auto with zmisc.
rewrite Zmod_mod; auto with zarith.
intros p1 Rec a Ha.
repeat rewrite Rec; auto with zarith.
repeat rewrite <- Zpower_mod; auto with zmisc.
repeat rewrite <- Zpower_mult; auto with zmisc.
eq_tac; auto.
eq_tac; auto.
rewrite Zpos_xO.
assert (tmp: forall x, (2 * x = x + x)%Z); auto with zarith; rewrite tmp;
clear tmp.
repeat rewrite Zpower_exp; auto with zarith.
rewrite Zmod_mod; auto with zarith.
intros a Ha; rewrite Zpower_1_r; auto with zarith.
rewrite(fun x => m_op_spec.(power_mod_spec) x [|x|]);
auto with zarith.
Qed.
Lemma pow_mod_pred_spec : forall l a,
([|a|] = [|a|] mod [|b|] ->
[|pow_mod_pred a l|] = [|a|]^(mkProd_pred l) mod [|b|])%Z.
intros l; elim l; simpl pow_mod_pred; simpl mkProd_pred; clear l.
intros; rewrite Zpower_1_r; auto with zarith.
intros (p1,q1) l Rec a H; simpl snd; simpl fst.
case (q1 ?= 1)%P; auto with zarith.
rewrite Rec; auto.
rewrite iter_pow_mod_spec; auto with zarith.
rewrite times_Zmult; rewrite pow_Zpower.
rewrite <- Zpower_mod; auto with zarith.
rewrite Zpower_mult; auto with zarith.
rewrite Zmod_small; auto with zarith.
rewrite iter_pow_mod_spec; auto with zarith.
match goal with |- context[(?X mod ?Y)%Z] =>
case (Z_mod_lt X Y); auto with zarith
end.
Qed.
End test.
Require Import Bits.
Definition test_pock N a dec sqrt :=
if (2 ?< N) then
let Nm1 := Pos.pred N in
let F1 := mkProd dec in
match (Nm1 / F1)%P with
| (Npos R1, N0) =>
if is_odd R1 then
if is_even F1 then
if (1 ?< a) then
let (s,r') := (R1 / (xO F1))%P in
match r' with
| Npos r =>
if (a ?< N) then
let op := cmk_op (Peano.pred (nat_of_P (get_height 31 (plength N)))) in
let wN := znz_of_Z op (Zpos N) in
let wa := znz_of_Z op (Zpos a) in
let w1 := znz_of_Z op 1 in
let mod_op := make_mod_op op wN in
let pow := mod_op.(power_mod) in
let ttimes := mod_op.(mul_mod) in
let pred:= mod_op.(pred_mod) in
let gcd:= ZnZ.gcd in
let A := pow_mod_pred _ mod_op (pow wa R1) dec in
match all_pow_mod _ mod_op w1 A dec with
| (p, aNm1) =>
match ZnZ.to_Z aNm1 with
(Zpos xH) =>
match ZnZ.to_Z (gcd p wN) with
(Zpos xH) =>
if check_s_r s r sqrt then
(N ?< (times ((times ((xO F1)+r+1) F1) + r) F1) + 1)
else false
| _ => false
end
| _ => false
end
end else false
| _ => false
end
else false
else false
else false
| _=> false
end
else false.
Lemma test_pock_correct : forall N a dec sqrt,
(forall k, In k dec -> prime (Zpos (fst k))) ->
test_pock N a dec sqrt = true ->
prime N.
unfold test_pock;intros N a dec sqrt H.
match goal with |- context[if ?x then _ else _] =>
case_eq x; intros If1; auto
end.
2: intros; discriminate.
match goal with H: (?X ?< ?Y) = true |- _ =>
generalize (is_lt_spec X Y); rewrite H; clear H; intros H
end.
generalize (div_eucl_spec (Pos.pred N) (mkProd dec));
destruct ((Pos.pred N) / (mkProd dec))%P as (R1,n).
simpl fst; simpl snd; intros (H1, H2).
destruct R1 as [ |R1].
intros; discriminate.
destruct n.
2: intros; discriminate.
match goal with |- context[if ?x then _ else _] =>
case_eq x; intros If2; auto
end.
assert (If0: Zodd R1).
apply is_odd_Zodd; auto.
clear If2; rename If0 into If2.
2: intros; discriminate.
match goal with |- context[if ?x then _ else _] =>
case_eq x; intros If3; auto
end.
assert (If0: Zeven (mkProd dec)).
apply is_even_Zeven; auto.
clear If3; rename If0 into If3.
2: intros; discriminate.
match goal with |- context[if ?x then _ else _] =>
case_eq x; intros If4; auto
end.
match goal with H: (?X ?< ?Y) = true |- _ =>
generalize (is_lt_spec X Y); rewrite H; clear H; intros H
end.
2: intros; discriminate.
generalize (div_eucl_spec R1 (xO (mkProd dec)));
destruct ((R1 / xO (mkProd dec))%P) as (s,r'); simpl fst;
simpl snd; intros (H3, H4).
destruct r' as [ |r].
intros; discriminate.
match goal with |- context[if ?x then _ else _] =>
case_eq x; intros If5; auto
end.
match goal with H: (?X ?< ?Y) = true |- _ =>
generalize (is_lt_spec X Y); rewrite H; clear H; intros H
end.
2: intros; discriminate.
set (bb := Peano.pred (nat_of_P (get_height 31 (plength N)))).
set (w_op := cmk_op bb).
assert (op_spec: ZnZ.Specs w_op).
unfold bb, w_op; apply cmk_spec; auto.
assert (F0: N < DoubleType.base (ZnZ.digits w_op)).
apply Z.lt_le_trans with (1 := plength_correct N).
unfold w_op, DoubleType.base.
rewrite cmk_op_digits.
apply Zpower_le_monotone; split; auto with zarith.
generalize (get_height_correct 31 (plength N)); unfold bb.
set (p := plength N).
replace (Z_of_nat (Peano.pred (nat_of_P (get_height 31 p)))) with
((Zpos (get_height 31 p) - 1) ); auto with zarith.
rewrite pred_of_minus; rewrite inj_minus1; auto with zarith.
rewrite <- Zpos_eq_Z_of_nat_o_nat_of_P; auto with zarith.
generalize (lt_O_nat_of_P (get_height 31 p)); auto with zarith.
assert (F1: ZnZ.to_Z (ZnZ.of_Z N) = N).
rewrite ZnZ.of_Z_correct; auto with zarith.
assert (F2: 1 < ZnZ.to_Z (ZnZ.of_Z N)).
rewrite F1; auto with zarith.
assert (F3: 0 < ZnZ.to_Z (ZnZ.of_Z N)); auto with zarith.
assert (F4: ZnZ.to_Z (ZnZ.of_Z a) = a).
rewrite ZnZ.of_Z_correct; auto with zarith.
assert (F5: ZnZ.to_Z (ZnZ.of_Z 1) = 1).
rewrite ZnZ.of_Z_correct; auto with zarith.
assert (F6: N - 1 = (R1 * mkProd_pred dec)%positive * mkProd' dec).
rewrite Zpos_mult.
rewrite <- Zmult_assoc; rewrite mkProd_pred_mkProd; auto with zarith.
simpl in H1; rewrite Zpos_mult in H1; rewrite <- H1; rewrite Ppred_Zminus;
auto with zarith.
assert (m_spec: mod_spec w_op (znz_of_Z w_op N)
(make_mod_op w_op (znz_of_Z w_op N))).
apply make_mod_spec; auto with zarith.
match goal with |- context[all_pow_mod ?x ?y ?z ?t ?u] =>
generalize (fst_all_pow_mod x w_op op_spec _ F3 _ m_spec
u (znz_of_Z w_op a) (R1*mkProd_pred dec) z t);
generalize (snd_all_pow_mod x w_op op_spec _ F3 _ m_spec u z t);
fold bb w_op;
case (all_pow_mod x y z t u); simpl fst; simpl snd
end.
intros prod aNm1; intros H5 H6.
case_eq (ZnZ.to_Z aNm1).
intros; discriminate.
2: intros; discriminate.
intros p; case p; clear p.
intros; discriminate.
intros; discriminate.
intros If6.
case_eq (ZnZ.to_Z (ZnZ.gcd prod (znz_of_Z w_op N))).
intros; discriminate.
2: intros; discriminate.
intros p; case p; clear p.
intros; discriminate.
intros; discriminate.
intros If7.
match goal with |- context[if ?x then _ else _] =>
case_eq x; intros If8; auto
end.
2: intros; discriminate.
intros If9.
match goal with H: (?X ?< ?Y) = true |- _ =>
generalize (is_lt_spec X Y); rewrite H; clear H; intros H
end.
assert (U1: N - 1 = mkProd dec * R1).
rewrite <- Ppred_Zminus in H1; auto with zarith.
rewrite H1; simpl.
repeat rewrite Zpos_mult; auto with zarith.
assert (HH:Z_of_N s = R1 / (2 * mkProd dec) /\ Zpos r = R1 mod (2 * mkProd dec)).
apply mod_unique with (2 * mkProd dec);auto with zarith.
apply Z_mod_lt; auto with zarith.
rewrite <- Z_div_mod_eq; auto with zarith.
rewrite H3.
rewrite (Zpos_xO (mkProd dec)).
simpl Z_of_N; ring.
case HH; clear HH; intros HH1 HH2.
apply PocklingtonExtra with (F1:=mkProd dec) (R1:=R1) (m:=1);
auto with zmisc zarith.
case (Zle_lt_or_eq 1 (mkProd dec)); auto with zarith.
simpl in H2; auto with zarith.
intros HH; contradict If3; rewrite <- HH.
apply Zodd_not_Zeven; red; auto.
intros p; case p; clear p.
intros HH; contradict HH.
apply not_prime_0.
2: intros p (V1, _); contradict V1; apply Zle_not_lt; red; simpl; intros;
discriminate.
intros p Hprime Hdec; exists (Zpos a);repeat split; auto with zarith.
apply trans_equal with (2 := If6).
rewrite H5.
rewrite pow_mod_pred_spec with (2 := m_spec); auto with zarith.
rewrite F1.
rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith.
change (znz_of_Z w_op a) with (ZnZ.of_Z a).
change (znz_of_Z w_op N) with (ZnZ.of_Z N).
rewrite F1; rewrite F4.
rewrite <- Zpower_mod; auto with zarith.
rewrite <- Zpower_mult; auto with zarith.
rewrite mkProd_pred_mkProd; auto with zarith.
rewrite U1; rewrite Zmult_comm.
rewrite Zpower_mult; auto with zarith.
rewrite <- Zpower_mod; auto with zarith.
change (znz_of_Z w_op a) with (ZnZ.of_Z a).
change (znz_of_Z w_op N) with (ZnZ.of_Z N).
rewrite F1; rewrite F4; rewrite Zmod_small; auto with zarith.
rewrite Zmod_small; auto with zarith.
rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith.
match goal with |- context[?X mod ?Y] =>
case (Z_mod_lt X Y); auto with zarith
end.
change (znz_of_Z w_op a) with (ZnZ.of_Z a).
change (znz_of_Z w_op N) with (ZnZ.of_Z N).
rewrite F1; rewrite F4; rewrite Zmod_small; auto with zarith.
rewrite pow_mod_pred_spec with (2 := m_spec); auto with zarith.
match goal with |- context[?X mod ?Y] =>
case (Z_mod_lt X Y); auto with zarith
end.
rewrite Zmod_small; auto with zarith.
rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith.
match goal with |- context[?X mod ?Y] =>
case (Z_mod_lt X Y); auto with zarith
end.
change (znz_of_Z w_op a) with (ZnZ.of_Z a).
change (znz_of_Z w_op N) with (ZnZ.of_Z N).
rewrite F1; rewrite F4; rewrite Zmod_small; auto with zarith.
match type of H6 with _ -> _ -> ?X =>
assert (tmp: X); [apply H6 | clear H6; rename tmp into H6];
auto with zarith
end.
rewrite F1.
change (znz_of_Z w_op 1) with (ZnZ.of_Z 1).
rewrite F5; rewrite Zmod_small; auto with zarith.
rewrite pow_mod_pred_spec with (2 := m_spec); auto with zarith.
change (znz_of_Z w_op a) with (ZnZ.of_Z a).
change (znz_of_Z w_op N) with (ZnZ.of_Z N).
repeat (rewrite F1 || rewrite F4).
rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith.
change (znz_of_Z w_op a) with (ZnZ.of_Z a).
change (znz_of_Z w_op N) with (ZnZ.of_Z N).
repeat (rewrite F1 || rewrite F4).
rewrite Zpos_mult; rewrite <- Zpower_mod; auto with zarith.
rewrite Zpower_mult; auto with zarith.
change (znz_of_Z w_op a) with (ZnZ.of_Z a).
change (znz_of_Z w_op N) with (ZnZ.of_Z N).
repeat (rewrite F1 || rewrite F4).
rewrite Zmod_small; auto with zarith.
change (znz_of_Z w_op a) with (ZnZ.of_Z a).
change (znz_of_Z w_op N) with (ZnZ.of_Z N).
repeat (rewrite F1 || rewrite F4).
rewrite Zmod_small; auto with zarith.
rewrite (power_mod_spec m_spec) with (t := a); auto with zarith.
match goal with |- context[?X mod ?Y] =>
case (Z_mod_lt X Y); auto with zarith
end.
change (znz_of_Z w_op a) with (ZnZ.of_Z a).
change (znz_of_Z w_op N) with (ZnZ.of_Z N).
repeat (rewrite F1 || rewrite F4); auto.
rewrite Zmod_small; auto with zarith.
change (znz_of_Z w_op N) with (ZnZ.of_Z N); auto.
auto with zarith.
change (znz_of_Z w_op a) with (ZnZ.of_Z a) in H6.
change (znz_of_Z w_op N) with (ZnZ.of_Z N) in H6.
change (znz_of_Z w_op 1) with (ZnZ.of_Z 1) in H6.
rewrite F5 in H6; rewrite F1 in H6; rewrite F4 in H6.
case in_mkProd_prime_div_in with (3 := Hdec); auto.
intros p1 Hp1.
rewrite <- F6 in H6.
apply Zis_gcd_gcd; auto with zarith.
change (rel_prime (a ^ ((N - 1) / p) - 1) N).
match type of H6 with _ = ?X mod _ =>
apply rel_prime_div with (p := X); auto with zarith
end.
apply rel_prime_mod_rev; auto with zarith.
red.
pattern 1 at 4; rewrite <- If7; rewrite <- H6.
pattern N at 2; rewrite <- F1.
apply ZnZ.spec_gcd; auto with zarith.
assert (foldtmp: forall (A B: Set) (f: A -> B -> A) (P: A -> Prop) l a b,
In b l -> (forall x, P (f x b)) ->
(forall x y, P x -> P (f x y)) ->
P (fold_left f l a)).
assert (foldtmp0: forall (A B: Set) (f: A -> B -> A) (P: A -> Prop) l a,
P a ->
(forall x y, P x -> P (f x y)) ->
P (fold_left f l a)).
intros A B f P l; elim l; simpl; auto.
intros A B f P l; elim l; simpl; auto.
intros a1 b HH; case HH.
intros a1 l1 Rec a2 b [V|V] V1 V2; subst; auto.
apply foldtmp0; auto.
apply Rec with (b := b); auto with zarith.
match goal with |- context [fold_left ?f _ _] =>
apply (foldtmp _ _ f (fun k => Z.divide (a ^ ((N - 1) / p) - 1) k))
with (b := (p, p1)); auto with zarith
end.
rewrite <- HH2.
clear F0; match goal with H: ?X < ?Y |- ?X < ?Z =>
replace Z with Y; auto
end.
repeat (rewrite Zpos_plus || rewrite Zpos_mult || rewrite times_Zmult).
rewrite Zpos_xO; ring.
rewrite <- HH1; rewrite <- HH2.
apply check_s_r_correct with sqrt; auto.
Qed.
Definition test_spock N a dec :=
if (2 ?< N) then
let Nm1 := Pos.pred N in
let F1 := mkProd dec in
match (Nm1 / F1)%P with
| (Npos R1, N0) =>
if (1 ?< a) then
if (a ?< N) then
if (N ?< F1 * F1) then
let op := cmk_op (Peano.pred (nat_of_P (get_height 31 (plength N)))) in
let wN := znz_of_Z op (Zpos N) in
let wa := znz_of_Z op (Zpos a) in
let w1 := znz_of_Z op 1 in
let mod_op := make_mod_op op wN in
let pow := mod_op.(power_mod) in
let ttimes := mod_op.(mul_mod) in
let pred:= mod_op.(pred_mod) in
let gcd:= ZnZ.gcd in
let A := pow_mod_pred _ mod_op (pow wa R1) dec in
match all_pow_mod _ mod_op w1 A dec with
| (p, aNm1) =>
match ZnZ.to_Z aNm1 with
(Zpos xH) =>
match ZnZ.to_Z (gcd p wN) with
(Zpos xH) => true
| _ => false
end
| _ => false
end
end else false
else false
else false
| _=> false
end
else false.
Lemma test_spock_correct : forall N a dec,
(forall k, In k dec -> prime (Zpos (fst k))) ->
test_spock N a dec = true ->
prime N.
unfold test_spock;intros N a dec H.
match goal with |- context[if ?x then _ else _] =>
case_eq x; intros If1; auto
end.
2: intros; discriminate.
match goal with H: (?X ?< ?Y) = true |- _ =>
generalize (is_lt_spec X Y); rewrite H; clear H; intros H
end.
generalize (div_eucl_spec (Pos.pred N) (mkProd dec));
destruct ((Pos.pred N) / (mkProd dec))%P as (R1,n).
simpl fst; simpl snd; intros (H1, H2).
destruct R1 as [ |R1].
intros; discriminate.
destruct n.
2: intros; discriminate.
match goal with |- context[if ?x then _ else _] =>
case_eq x; intros If2; auto
end.
match goal with H: (?X ?< ?Y) = true |- _ =>
generalize (is_lt_spec X Y); rewrite H; clear H; intros H
end.
2: intros; discriminate.
set (bb := Peano.pred (nat_of_P (get_height 31 (plength N)))).
set (w_op := cmk_op bb).
assert (op_spec: ZnZ.Specs w_op).
unfold bb, w_op; apply cmk_spec; auto.
match goal with |- context[if ?x then _ else _] =>
case_eq x; intros If3; auto
end.
match goal with H: (?X ?< ?Y) = true |- _ =>
generalize (is_lt_spec X Y); rewrite H; clear H; intros H
end.
match goal with |- context[if ?x then _ else _] =>
case_eq x; intros If4; auto
end.
match goal with H: (?X ?< ?Y) = true |- _ =>
generalize (is_lt_spec X Y); rewrite H; clear H; intros H
end.
assert (F0: N < DoubleType.base (ZnZ.digits w_op)).
apply Z.lt_le_trans with (1 := plength_correct N).
unfold w_op, DoubleType.base.
rewrite cmk_op_digits.
apply Zpower_le_monotone; split; auto with zarith.
generalize (get_height_correct 31 (plength N)); unfold bb.
set (p := plength N).
replace (Z_of_nat (Peano.pred (nat_of_P (get_height 31 p)))) with
((Zpos (get_height 31 p) - 1) ); auto with zarith.
rewrite pred_of_minus; rewrite inj_minus1; auto with zarith.
rewrite <- Zpos_eq_Z_of_nat_o_nat_of_P; auto with zarith.
generalize (lt_O_nat_of_P (get_height 31 p)); auto with zarith.
assert (F1: ZnZ.to_Z (ZnZ.of_Z N) = N).
rewrite ZnZ.of_Z_correct; auto with zarith.
assert (F2: 1 < ZnZ.to_Z (ZnZ.of_Z N)).
rewrite F1; auto with zarith.
assert (F3: 0 < ZnZ.to_Z (ZnZ.of_Z N)); auto with zarith.
assert (F4: ZnZ.to_Z (ZnZ.of_Z a) = a).
rewrite ZnZ.of_Z_correct; auto with zarith.
assert (F5: ZnZ.to_Z (ZnZ.of_Z 1) = 1).
rewrite ZnZ.of_Z_correct; auto with zarith.
assert (F6: N - 1 = (R1 * mkProd_pred dec)%positive * mkProd' dec).
rewrite Zpos_mult.
rewrite <- Zmult_assoc; rewrite mkProd_pred_mkProd; auto with zarith.
simpl in H1; rewrite Zpos_mult in H1; rewrite <- H1; rewrite Ppred_Zminus;
auto with zarith.
assert (m_spec: mod_spec w_op (znz_of_Z w_op N)
(make_mod_op w_op (znz_of_Z w_op N))).
apply make_mod_spec; auto with zarith.
match goal with |- context[all_pow_mod ?x ?y ?z ?t ?u] =>
generalize (fst_all_pow_mod x w_op op_spec _ F3 _ m_spec
u (znz_of_Z w_op a) (R1*mkProd_pred dec) z t);
generalize (snd_all_pow_mod x w_op op_spec _ F3 _ m_spec u z t);
fold bb w_op;
case (all_pow_mod x y z t u); simpl fst; simpl snd
end.
2: intros; discriminate.
intros prod aNm1; intros H5 H6.
case_eq (ZnZ.to_Z aNm1).
intros; discriminate.
2: intros; discriminate.
intros p; case p; clear p.
intros; discriminate.
intros; discriminate.
intros If5.
case_eq (ZnZ.to_Z (ZnZ.gcd prod (znz_of_Z w_op N))).
intros; discriminate.
2: intros; discriminate.
intros p; case p; clear p.
intros; discriminate.
intros; discriminate.
intros If6 _.
assert (U1: N - 1 = mkProd dec * R1).
rewrite <- Ppred_Zminus in H1; auto with zarith.
rewrite H1; simpl.
repeat rewrite Zpos_mult; auto with zarith.
apply PocklingtonCorollary1 with (F1:=mkProd dec) (R1:=R1);
auto with zmisc zarith.
case (Zle_lt_or_eq 1 (mkProd dec)); auto with zarith.
simpl in H2; auto with zarith.
intros HH; contradict If4; rewrite Zpos_mult_morphism;
rewrite <- HH.
apply Zle_not_lt; auto with zarith.
intros p; case p; clear p.
intros HH; contradict HH.
apply not_prime_0.
2: intros p (V1, _); contradict V1; apply Zle_not_lt; red; simpl; intros;
discriminate.
intros p Hprime Hdec; exists (Zpos a);repeat split; auto with zarith.
apply trans_equal with (2 := If5).
rewrite H5.
rewrite pow_mod_pred_spec with (2 := m_spec); auto with zarith.
rewrite F1.
rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith.
change (znz_of_Z w_op N) with (ZnZ.of_Z N).
change (znz_of_Z w_op a) with (ZnZ.of_Z a).
rewrite F1; rewrite F4.
rewrite <- Zpower_mod; auto with zarith.
rewrite <- Zpower_mult; auto with zarith.
rewrite mkProd_pred_mkProd; auto with zarith.
rewrite U1; rewrite Zmult_comm.
rewrite Zpower_mult; auto with zarith.
rewrite <- Zpower_mod; auto with zarith.
change (znz_of_Z w_op N) with (ZnZ.of_Z N).
change (znz_of_Z w_op a) with (ZnZ.of_Z a).
rewrite F1; rewrite F4; rewrite Zmod_small; auto with zarith.
change (znz_of_Z w_op N) with (ZnZ.of_Z N).
change (znz_of_Z w_op a) with (ZnZ.of_Z a).
rewrite Zmod_small; auto with zarith.
rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith.
match goal with |- context[?X mod ?Y] =>
case (Z_mod_lt X Y); auto with zarith
end.
change (znz_of_Z w_op N) with (ZnZ.of_Z N).
change (znz_of_Z w_op a) with (ZnZ.of_Z a).
rewrite F1; rewrite F4; rewrite Zmod_small; auto with zarith.
rewrite pow_mod_pred_spec with (2 := m_spec); auto with zarith.
match goal with |- context[?X mod ?Y] =>
case (Z_mod_lt X Y); auto with zarith
end.
rewrite Zmod_small; auto with zarith.
rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith.
match goal with |- context[?X mod ?Y] =>
case (Z_mod_lt X Y); auto with zarith
end.
change (znz_of_Z w_op N) with (ZnZ.of_Z N).
change (znz_of_Z w_op a) with (ZnZ.of_Z a).
rewrite F1; rewrite F4; rewrite Zmod_small; auto with zarith.
match type of H6 with _ -> _ -> ?X =>
assert (tmp: X); [apply H6 | clear H6; rename tmp into H6];
auto with zarith
end.
rewrite F1.
change (znz_of_Z w_op 1) with (ZnZ.of_Z 1).
rewrite F5; rewrite Zmod_small; auto with zarith.
rewrite pow_mod_pred_spec with (2 := m_spec); auto with zarith.
change (znz_of_Z w_op N) with (ZnZ.of_Z N).
change (znz_of_Z w_op a) with (ZnZ.of_Z a).
repeat (rewrite F1 || rewrite F4).
rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith.
change (znz_of_Z w_op N) with (ZnZ.of_Z N).
repeat (rewrite F1 || rewrite F4).
rewrite Zpos_mult; rewrite <- Zpower_mod; auto with zarith.
rewrite Zpower_mult; auto with zarith.
change (znz_of_Z w_op N) with (ZnZ.of_Z N).
repeat (rewrite F1 || rewrite F4).
rewrite Zmod_small; auto with zarith.
rewrite Zmod_small; auto with zarith.
rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith.
match goal with |- context[?X mod ?Y] =>
case (Z_mod_lt X Y); auto with zarith
end.
change (znz_of_Z w_op N) with (ZnZ.of_Z N).
change (znz_of_Z w_op a) with (ZnZ.of_Z a).
repeat (rewrite F1 || rewrite F4).
rewrite Zmod_small; auto with zarith.
change (znz_of_Z w_op N) with (ZnZ.of_Z N) in H6.
change (znz_of_Z w_op a) with (ZnZ.of_Z a) in H6.
change (znz_of_Z w_op 1) with (ZnZ.of_Z 1) in H6.
rewrite F5 in H6; rewrite F1 in H6; rewrite F4 in H6.
case in_mkProd_prime_div_in with (3 := Hdec); auto.
intros p1 Hp1.
rewrite <- F6 in H6.
apply Zis_gcd_gcd; auto with zarith.
change (rel_prime (a ^ ((N - 1) / p) - 1) N).
match type of H6 with _ = ?X mod _ =>
apply rel_prime_div with (p := X); auto with zarith
end.
apply rel_prime_mod_rev; auto with zarith.
red.
pattern 1 at 4; rewrite <- If6; rewrite <- H6.
pattern N at 2; rewrite <- F1.
apply ZnZ.spec_gcd; auto with zarith.
assert (foldtmp: forall (A B: Set) (f: A -> B -> A) (P: A -> Prop) l a b,
In b l -> (forall x, P (f x b)) ->
(forall x y, P x -> P (f x y)) ->
P (fold_left f l a)).
assert (foldtmp0: forall (A B: Set) (f: A -> B -> A) (P: A -> Prop) l a,
P a ->
(forall x y, P x -> P (f x y)) ->
P (fold_left f l a)).
intros A B f P l; elim l; simpl; auto.
intros A B f P l; elim l; simpl; auto.
intros a1 b HH; case HH.
intros a1 l1 Rec a2 b [V|V] V1 V2; subst; auto.
apply foldtmp0; auto.
apply Rec with (b := b); auto with zarith.
match goal with |- context [fold_left ?f _ _] =>
apply (foldtmp _ _ f (fun k => Z.divide (a ^ ((N - 1) / p) - 1) k))
with (b := (p, p1)); auto with zarith
end.
intros; discriminate.
Qed.
Fixpoint test_Certif (lc : Certif) : bool :=
match lc with
| nil => true
| (Proof_certif _ _) :: lc => test_Certif lc
| (Lucas_certif n p) :: lc =>
let xx := test_Certif lc in
if xx then
let yy := gt2 p in
if yy then
match p with
Zpos p1 =>
let zz := Mp p in
match zz with
| Zpos n' =>
if (n ?= n')%P then
let tt := lucas p1 in
match tt with
| Z0 => true
| _ => false
end
else false
| _ => false
end
| _ => false
end
else false
else false
| (Pock_certif n a dec sqrt) :: lc =>
let xx := test_pock n a dec sqrt in
if xx then
let yy := all_in lc dec in
(if yy then test_Certif lc else false)
else false
| (SPock_certif n a dec) :: lc =>
let xx :=test_spock n a dec in
if xx then
let yy := all_in lc dec in
(if yy then test_Certif lc else false)
else false
| (Ell_certif n ss l a b x y) :: lc =>
let xx := ell_test n ss l a b x y in
if xx then
let yy := all_in lc l in
if yy then test_Certif lc else false
else false
end.
Lemma test_Certif_In_Prime :
forall lc, test_Certif lc = true ->
forall c, In c lc -> prime (nprim c).
intros lc; elim lc; simpl; auto.
intros _ c H; case H.
intros a; case a; simpl; clear a lc.
intros N p l Rec H c [H1 | H1]; subst; auto with arith.
intros n p l; case (test_Certif l); auto with zarith.
2: intros; discriminate.
intros H H1 c [H2 | H2]; subst; auto with arith.
simpl nprim.
generalize H1; clear H1.
case_eq (gt2 p).
2: intros; discriminate.
case p; clear p; try (intros; discriminate; fail).
unfold gt2; intros p H1.
match goal with H: (?X ?< ?Y) = true |- _ =>
generalize (is_lt_spec X Y); rewrite H; clear H; intros H
end.
unfold Mp; case_eq (2 ^ p -1); try (intros; discriminate; fail).
intros p1 Hp1.
case_eq (n ?= p1)%P; try rewrite <- Hp1.
2: intros; discriminate.
intros H2.
match goal with H: (?X ?= ?Y)%P = true |- _ =>
generalize (is_eq_eq _ _ H); clear H; intros H
end.
generalize (lucas_prime H1); rewrite Hp1; rewrite <- H2.
case (lucas p); try (intros; discriminate; fail); auto.
intros N a d p l H.
generalize (test_pock_correct N a d p).
case (test_pock N a d p); auto.
2: intros; discriminate.
generalize (all_in_In l d).
case (all_in l d).
2: intros; discriminate.
intros H1 H2 H3 c [H4 | H4]; subst; simpl; auto.
apply H2; auto.
intros k Hk.
case H1 with (2 := Hk); auto.
intros x (Hx1, Hx2); rewrite Hx2; auto.
intros N a d l H.
generalize (test_spock_correct N a d).
case test_spock; auto.
2: intros; discriminate.
generalize (all_in_In l d).
case (all_in l d).
2: intros; discriminate.
intros H1 H2 H3 c [H4 | H4]; subst; simpl; auto.
apply H2; auto.
intros k Hk.
case H1 with (2 := Hk); auto.
intros x (Hx1, Hx2); rewrite Hx2; auto.
intros N S l A B x y l1.
generalize (all_in_In l1 l).
generalize (ell_test_correct N S l A B x y).
case ell_test.
case all_in; auto.
intros H1 H2 H3 H4 c [H5 | H5]; try subst c; simpl; auto.
apply H1.
intros p Hp; case (H2 (refl_equal true) p); auto.
intros x1 (Hx1, Hx2); rewrite Hx2; auto.
intros; discriminate.
intros; discriminate.
Qed.
Lemma Pocklington_refl :
forall c lc, test_Certif (c::lc) = true -> prime (nprim c).
Proof.
intros c lc Heq;apply test_Certif_In_Prime with (c::lc);trivial;simpl;auto.
Qed.