Library Coquelicot.Rbar
This file is part of the Coquelicot formalization of real
analysis in Coq: http://coquelicot.saclay.inria.fr/
Copyright (C) 2011-2015 Sylvie Boldo
Copyright (C) 2011-2015 Catherine Lelay
Copyright (C) 2011-2015 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
Copyright (C) 2011-2015 Catherine Lelay
Copyright (C) 2011-2015 Guillaume Melquiond
This file contains the definition and properties of the set
R ∪ {+ ∞} ∪ {- ∞} denoted by Rbar. We have defined:
- coercions from R to Rbar and vice versa (Finite gives R0 at infinity points)
- an order Rbar_lt and Rbar_le
- total operations: Rbar_opp, Rbar_plus, Rbar_minus, Rbar_inv, Rbar_min and Rbar_abs
- lemmas about the decidability of the order and properties of the operations (such as Rbar_plus_comm or Rbar_plus_lt_compat)
Open Scope R_scope.
Inductive Rbar :=
| Finite : R -> Rbar
| p_infty : Rbar
| m_infty : Rbar.
Definition real (x : Rbar) :=
match x with
| Finite x => x
| _ => 0
end.
Coercion Finite : R >-> Rbar.
Coercion real : Rbar >-> R.
Definition is_finite (x : Rbar) := Finite (real x) = x.
Lemma is_finite_correct (x : Rbar) :
is_finite x <-> exists y : R, x = Finite y.
Proof.
rewrite /is_finite ;
case: x => /= ; split => // H.
by exists r.
by case: H.
by case: H.
Qed.
Definition Rbar_lt (x y : Rbar) : Prop :=
match x,y with
| p_infty, _ | _, m_infty => False
| m_infty, _ | _, p_infty => True
| Finite x, Finite y => Rlt x y
end.
Definition Rbar_le (x y : Rbar) : Prop :=
match x,y with
| m_infty, _ | _, p_infty => True
| p_infty, _ | _, m_infty => False
| Finite x, Finite y => Rle x y
end.
Definition Rbar_opp (x : Rbar) :=
match x with
| Finite x => Finite (-x)
| p_infty => m_infty
| m_infty => p_infty
end.
Definition Rbar_plus' (x y : Rbar) :=
match x,y with
| p_infty, m_infty | m_infty, p_infty => None
| p_infty, _ | _, p_infty => Some p_infty
| m_infty, _ | _, m_infty => Some m_infty
| Finite x', Finite y' => Some (Finite (x' + y'))
end.
Definition Rbar_plus (x y : Rbar) :=
match Rbar_plus' x y with Some z => z | None => Finite 0 end.
Arguments Rbar_plus !x !y /.
Definition is_Rbar_plus (x y z : Rbar) : Prop :=
Rbar_plus' x y = Some z.
Definition ex_Rbar_plus (x y : Rbar) : Prop :=
match Rbar_plus' x y with Some _ => True | None => False end.
Arguments ex_Rbar_plus !x !y /.
Lemma is_Rbar_plus_unique (x y z : Rbar) :
is_Rbar_plus x y z -> Rbar_plus x y = z.
Proof.
unfold is_Rbar_plus, ex_Rbar_plus, Rbar_plus.
case: Rbar_plus' => // a Ha.
by inversion Ha.
Qed.
Lemma Rbar_plus_correct (x y : Rbar) :
ex_Rbar_plus x y -> is_Rbar_plus x y (Rbar_plus x y).
Proof.
unfold is_Rbar_plus, ex_Rbar_plus, Rbar_plus.
by case: Rbar_plus'.
Qed.
Definition Rbar_minus (x y : Rbar) := Rbar_plus x (Rbar_opp y).
Arguments Rbar_minus !x !y /.
Definition is_Rbar_minus (x y z : Rbar) : Prop :=
is_Rbar_plus x (Rbar_opp y) z.
Definition ex_Rbar_minus (x y : Rbar) : Prop :=
ex_Rbar_plus x (Rbar_opp y).
Arguments ex_Rbar_minus !x !y /.
Definition Rbar_inv (x : Rbar) : Rbar :=
match x with
| Finite x => Finite (/x)
| _ => Finite 0
end.
Definition Rbar_mult' (x y : Rbar) :=
match x with
| Finite x => match y with
| Finite y => Some (Finite (x * y))
| p_infty => match (Rle_dec 0 x) with
| left H => match Rle_lt_or_eq_dec _ _ H with left _ => Some p_infty | right _ => None end
| right _ => Some m_infty
end
| m_infty => match (Rle_dec 0 x) with
| left H => match Rle_lt_or_eq_dec _ _ H with left _ => Some m_infty | right _ => None end
| right _ => Some p_infty
end
end
| p_infty => match y with
| Finite y => match (Rle_dec 0 y) with
| left H => match Rle_lt_or_eq_dec _ _ H with left _ => Some p_infty | right _ => None end
| right _ => Some m_infty
end
| p_infty => Some p_infty
| m_infty => Some m_infty
end
| m_infty => match y with
| Finite y => match (Rle_dec 0 y) with
| left H => match Rle_lt_or_eq_dec _ _ H with left _ => Some m_infty | right _ => None end
| right _ => Some p_infty
end
| p_infty => Some m_infty
| m_infty => Some p_infty
end
end.
Definition Rbar_mult (x y : Rbar) :=
match Rbar_mult' x y with Some z => z | None => Finite 0 end.
Arguments Rbar_mult !x !y /.
Definition is_Rbar_mult (x y z : Rbar) : Prop :=
Rbar_mult' x y = Some z.
Definition ex_Rbar_mult (x y : Rbar) : Prop :=
match x with
| Finite x => match y with
| Finite y => True
| p_infty => x <> 0
| m_infty => x <> 0
end
| p_infty => match y with
| Finite y => y <> 0
| p_infty => True
| m_infty => True
end
| m_infty => match y with
| Finite y => y <> 0
| p_infty => True
| m_infty => True
end
end.
Arguments ex_Rbar_mult !x !y /.
Definition Rbar_mult_pos (x : Rbar) (y : posreal) :=
match x with
| Finite x => Finite (x*y)
| _ => x
end.
Lemma is_Rbar_mult_unique (x y z : Rbar) :
is_Rbar_mult x y z -> Rbar_mult x y = z.
Proof.
unfold is_Rbar_mult ;
case: x => [x | | ] ;
case: y => [y | | ] ;
case: z => [z | | ] //= H ;
inversion H => // ;
case: Rle_dec H => // H0 ;
case: Rle_lt_or_eq_dec => //.
Qed.
Lemma Rbar_mult_correct (x y : Rbar) :
ex_Rbar_mult x y -> is_Rbar_mult x y (Rbar_mult x y).
Proof.
case: x => [x | | ] ;
case: y => [y | | ] //= H ;
apply sym_not_eq in H ;
unfold is_Rbar_mult ; simpl ;
case: Rle_dec => // H0 ;
case: Rle_lt_or_eq_dec => //.
Qed.
Lemma Rbar_mult_correct' (x y z : Rbar) :
is_Rbar_mult x y z -> ex_Rbar_mult x y.
Proof.
unfold is_Rbar_mult ;
case: x => [x | | ] ;
case: y => [y | | ] //= ;
case: Rle_dec => //= H ; try (case: Rle_lt_or_eq_dec => //=) ; intros.
by apply Rgt_not_eq.
by apply Rlt_not_eq, Rnot_le_lt.
by apply Rgt_not_eq.
by apply Rlt_not_eq, Rnot_le_lt.
by apply Rgt_not_eq.
by apply Rlt_not_eq, Rnot_le_lt.
by apply Rgt_not_eq.
by apply Rlt_not_eq, Rnot_le_lt.
Qed.
Definition Rbar_div (x y : Rbar) : Rbar :=
Rbar_mult x (Rbar_inv y).
Arguments Rbar_div !x !y /.
Definition is_Rbar_div (x y z : Rbar) : Prop :=
is_Rbar_mult x (Rbar_inv y) z.
Definition ex_Rbar_div (x y : Rbar) : Prop :=
ex_Rbar_mult x (Rbar_inv y).
Arguments ex_Rbar_div !x !y /.
Definition Rbar_div_pos (x : Rbar) (y : posreal) :=
match x with
| Finite x => Finite (x/y)
| _ => x
end.
Compatibility with real numbers
For equality and order. The compatibility of addition and multiplication is proved in Rbar_seqLemma Rbar_finite_eq (x y : R) :
Finite x = Finite y <-> x = y.
Proof.
split ; intros.
apply Rle_antisym ; apply Rnot_lt_le ; intro.
assert (Rbar_lt (Finite y) (Finite x)).
simpl ; apply H0.
rewrite H in H1 ; simpl in H1 ; by apply Rlt_irrefl in H1.
assert (Rbar_lt (Finite x) (Finite y)).
simpl ; apply H0.
rewrite H in H1 ; simpl in H1 ; by apply Rlt_irrefl in H1.
rewrite H ; reflexivity.
Qed.
Lemma Rbar_finite_neq (x y : R) :
Finite x <> Finite y <-> x <> y.
Proof.
split => H ; contradict H ; by apply Rbar_finite_eq.
Qed.
Lemma Rbar_lt_not_eq (x y : Rbar) :
Rbar_lt x y -> x<>y.
Proof.
destruct x ; destruct y ; simpl ; try easy.
intros H H0.
apply Rbar_finite_eq in H0 ; revert H0 ; apply Rlt_not_eq, H.
Qed.
Lemma Rbar_not_le_lt (x y : Rbar) :
~ Rbar_le x y -> Rbar_lt y x.
Proof.
destruct x ; destruct y ; simpl ; intuition.
Qed.
Lemma Rbar_lt_not_le (x y : Rbar) :
Rbar_lt y x -> ~ Rbar_le x y.
Proof.
destruct x ; destruct y ; simpl ; intuition.
apply (Rlt_irrefl r0).
now apply Rlt_le_trans with (1 := H).
Qed.
Lemma Rbar_not_lt_le (x y : Rbar) :
~ Rbar_lt x y -> Rbar_le y x.
Proof.
destruct x ; destruct y ; simpl ; intuition.
now apply Rnot_lt_le.
Qed.
Lemma Rbar_le_not_lt (x y : Rbar) :
Rbar_le y x -> ~ Rbar_lt x y.
Proof.
destruct x ; destruct y ; simpl ; intuition ; contradict H0.
now apply Rle_not_lt.
Qed.
Lemma Rbar_le_refl :
forall x : Rbar, Rbar_le x x.
Proof.
intros [x| |] ; try easy.
apply Rle_refl.
Qed.
Lemma Rbar_lt_le :
forall x y : Rbar,
Rbar_lt x y -> Rbar_le x y.
Proof.
intros [x| |] [y| |] ; try easy.
apply Rlt_le.
Qed.
Lemma Rbar_total_order (x y : Rbar) :
{Rbar_lt x y} + {x = y} + {Rbar_lt y x}.
Proof.
destruct x ; destruct y ; simpl ; intuition.
destruct (total_order_T r r0) ; intuition.
Qed.
Lemma Rbar_eq_dec (x y : Rbar) :
{x = y} + {x <> y}.
Proof.
intros ; destruct (Rbar_total_order x y) as [[H|H]|H].
right ; revert H ; destruct x as [x| |] ; destruct y as [y| |] ; simpl ; intros H ;
try easy.
contradict H.
apply Rbar_finite_eq in H ; try apply Rle_not_lt, Req_le ; auto.
left ; apply H.
right ; revert H ; destruct x as [x| |] ; destruct y as [y| |] ; simpl ; intros H ;
try easy.
contradict H.
apply Rbar_finite_eq in H ; apply Rle_not_lt, Req_le ; auto.
Qed.
Lemma Rbar_lt_dec (x y : Rbar) :
{Rbar_lt x y} + {~Rbar_lt x y}.
Proof.
destruct (Rbar_total_order x y) as [H|H] ; [ destruct H as [H|H]|].
now left.
right ; rewrite H ; clear H ; destruct y ; auto ; apply Rlt_irrefl ; auto.
right ; revert H ; destruct x as [x | | ] ; destruct y as [y | | ] ; intros H ; auto ;
apply Rle_not_lt, Rlt_le ; auto.
Qed.
Lemma Rbar_lt_le_dec (x y : Rbar) :
{Rbar_lt x y} + {Rbar_le y x}.
Proof.
destruct (Rbar_total_order x y) as [[H|H]|H].
now left.
right.
rewrite H.
apply Rbar_le_refl.
right.
now apply Rbar_lt_le.
Qed.
Lemma Rbar_le_dec (x y : Rbar) :
{Rbar_le x y} + {~Rbar_le x y}.
Proof.
destruct (Rbar_total_order x y) as [[H|H]|H].
left.
now apply Rbar_lt_le.
left.
rewrite H.
apply Rbar_le_refl.
right.
now apply Rbar_lt_not_le.
Qed.
Lemma Rbar_le_lt_dec (x y : Rbar) :
{Rbar_le x y} + {Rbar_lt y x}.
Proof.
destruct (Rbar_total_order x y) as [[H|H]|H].
left.
now apply Rbar_lt_le.
left.
rewrite H.
apply Rbar_le_refl.
now right.
Qed.
Lemma Rbar_le_lt_or_eq_dec (x y : Rbar) :
Rbar_le x y -> { Rbar_lt x y } + { x = y }.
Proof.
destruct (Rbar_total_order x y) as [[H|H]|H].
now left.
now right.
intros K.
now elim (Rbar_le_not_lt _ _ K).
Qed.
Lemma Rbar_lt_trans (x y z : Rbar) :
Rbar_lt x y -> Rbar_lt y z -> Rbar_lt x z.
Proof.
destruct x ; destruct y ; destruct z ; simpl ; intuition.
now apply Rlt_trans with r0.
Qed.
Lemma Rbar_lt_le_trans (x y z : Rbar) :
Rbar_lt x y -> Rbar_le y z -> Rbar_lt x z.
Proof.
destruct x ; destruct y ; destruct z ; simpl ; intuition.
now apply Rlt_le_trans with r0.
Qed.
Lemma Rbar_le_lt_trans (x y z : Rbar) :
Rbar_le x y -> Rbar_lt y z -> Rbar_lt x z.
Proof.
destruct x ; destruct y ; destruct z ; simpl ; intuition.
now apply Rle_lt_trans with r0.
Qed.
Lemma Rbar_le_trans (x y z : Rbar) :
Rbar_le x y -> Rbar_le y z -> Rbar_le x z.
Proof.
destruct x ; destruct y ; destruct z ; simpl ; intuition.
now apply Rle_trans with r0.
Qed.
Lemma Rbar_le_antisym (x y : Rbar) :
Rbar_le x y -> Rbar_le y x -> x = y.
Proof.
destruct x ; destruct y ; simpl ; intuition.
Qed.
Lemma Rbar_opp_involutive (x : Rbar) : (Rbar_opp (Rbar_opp x)) = x.
Proof.
destruct x as [x| | ] ; auto ; simpl ; rewrite Ropp_involutive ; auto.
Qed.
Lemma Rbar_opp_lt (x y : Rbar) : Rbar_lt (Rbar_opp x) (Rbar_opp y) <-> Rbar_lt y x.
Proof.
destruct x as [x | | ] ; destruct y as [y | | ] ;
split ; auto ; intro H ; simpl ; try left.
apply Ropp_lt_cancel ; auto.
apply Ropp_lt_contravar ; auto.
Qed.
Lemma Rbar_opp_le (x y : Rbar) : Rbar_le (Rbar_opp x) (Rbar_opp y) <-> Rbar_le y x.
Proof.
destruct x as [x| |] ; destruct y as [y| |] ; simpl ; intuition.
Qed.
Lemma Rbar_opp_eq (x y : Rbar) : (Rbar_opp x) = (Rbar_opp y) <-> x = y.
Proof.
split ; intros H.
rewrite <- (Rbar_opp_involutive x), H, Rbar_opp_involutive ; reflexivity.
rewrite H ; reflexivity.
Qed.
Lemma Rbar_opp_real (x : Rbar) : real (Rbar_opp x) = - real x.
Proof.
destruct x as [x | | ] ; simpl ; intuition.
Qed.
Lemma Rbar_plus'_comm :
forall x y, Rbar_plus' x y = Rbar_plus' y x.
Proof.
intros [x| |] [y| |] ; try reflexivity.
apply (f_equal (fun x => Some (Finite x))), Rplus_comm.
Qed.
Lemma ex_Rbar_plus_comm :
forall x y,
ex_Rbar_plus x y -> ex_Rbar_plus y x.
Proof.
now intros [x| |] [y| |].
Qed.
Lemma ex_Rbar_plus_opp (x y : Rbar) :
ex_Rbar_plus x y -> ex_Rbar_plus (Rbar_opp x) (Rbar_opp y).
Proof.
case: x => [x | | ] ;
case: y => [y | | ] => //.
Qed.
Lemma Rbar_plus_0_r (x : Rbar) : Rbar_plus x (Finite 0) = x.
Proof.
case: x => //= ; intuition.
Qed.
Lemma Rbar_plus_0_l (x : Rbar) : Rbar_plus (Finite 0) x = x.
Proof.
case: x => //= ; intuition.
Qed.
Lemma Rbar_plus_comm (x y : Rbar) : Rbar_plus x y = Rbar_plus y x.
Proof.
case x ; case y ; intuition.
simpl.
apply f_equal, Rplus_comm.
Qed.
Lemma Rbar_plus_lt_compat (a b c d : Rbar) :
Rbar_lt a b -> Rbar_lt c d -> Rbar_lt (Rbar_plus a c) (Rbar_plus b d).
Proof.
case: a => [a | | ] // ; case: b => [b | | ] // ;
case: c => [c | | ] // ; case: d => [d | | ] // ;
apply Rplus_lt_compat.
Qed.
Lemma Rbar_plus_le_compat (a b c d : Rbar) :
Rbar_le a b -> Rbar_le c d -> Rbar_le (Rbar_plus a c) (Rbar_plus b d).
Proof.
case: a => [a | | ] // ; case: b => [b | | ] // ;
case: c => [c | | ] // ; case: d => [d | | ] //.
apply Rplus_le_compat.
intros _ _.
apply Rle_refl.
intros _ _.
apply Rle_refl.
Qed.
Lemma Rbar_plus_opp (x y : Rbar) :
Rbar_plus (Rbar_opp x) (Rbar_opp y) = Rbar_opp (Rbar_plus x y).
Proof.
case: x => [x | | ] ;
case: y => [y | | ] //= ; apply f_equal ; ring.
Qed.
Lemma Rbar_minus_eq_0 (x : Rbar) : Rbar_minus x x = 0.
Proof.
case: x => //= x ; by apply f_equal, Rcomplements.Rminus_eq_0.
Qed.
Lemma Rbar_opp_minus (x y : Rbar) :
Rbar_opp (Rbar_minus x y) = Rbar_minus y x.
Proof.
case: x => [x | | ] ;
case: y => [y | | ] //=.
by rewrite Ropp_minus_distr'.
by rewrite Ropp_0.
by rewrite Ropp_0.
Qed.
Lemma Rbar_inv_opp (x : Rbar) :
x <> 0 -> Rbar_inv (Rbar_opp x) = Rbar_opp (Rbar_inv x).
Proof.
case: x => [x | | ] /= Hx.
rewrite Ropp_inv_permute => //.
contradict Hx.
by rewrite Hx.
by rewrite Ropp_0.
by rewrite Ropp_0.
Qed.
Lemma Rbar_mult'_comm (x y : Rbar) :
Rbar_mult' x y = Rbar_mult' y x.
Proof.
case: x => [x | | ] ;
case: y => [y | | ] //=.
by rewrite Rmult_comm.
Qed.
Lemma Rbar_mult'_opp_r (x y : Rbar) :
Rbar_mult' x (Rbar_opp y) = match Rbar_mult' x y with Some z => Some (Rbar_opp z) | None => None end.
Proof.
case: x => [x | | ] ;
case: y => [y | | ] //= ;
(try case: Rle_dec => Hx //=) ;
(try case: Rle_lt_or_eq_dec => //= Hx0).
by rewrite Ropp_mult_distr_r_reverse.
rewrite -Ropp_0 in Hx0.
apply Ropp_lt_cancel in Hx0.
case Rle_dec => Hy //=.
now elim Rle_not_lt with (1 := Hy).
case Rle_dec => Hy //=.
case Rle_lt_or_eq_dec => Hy0 //=.
elim Rlt_not_le with (1 := Hy0).
apply Ropp_le_cancel.
by rewrite Ropp_0.
elim Hy.
apply Ropp_le_cancel.
rewrite -Hx0 Ropp_0.
apply Rle_refl.
case Rle_dec => Hy //=.
case Rle_lt_or_eq_dec => Hy0 //=.
elim Hx.
rewrite -Hy0 Ropp_0.
apply Rle_refl.
elim Hx.
rewrite -Ropp_0.
apply Ropp_le_contravar.
apply Rlt_le.
now apply Rnot_le_lt.
case Rle_dec => Hy //=.
elim Rlt_not_le with (1 := Hx0).
rewrite -Ropp_0.
now apply Ropp_le_contravar.
case Rle_dec => Hy //=.
case Rle_lt_or_eq_dec => Hy0 //=.
elim Rlt_not_le with (1 := Hy0).
apply Ropp_le_cancel.
rewrite -Hx0 Ropp_0.
apply Rle_refl.
elim Hy.
apply Ropp_le_cancel.
rewrite -Hx0 Ropp_0.
apply Rle_refl.
case Rle_dec => Hy //=.
case Rle_lt_or_eq_dec => Hy0 //=.
elim Hx.
rewrite -Hy0 Ropp_0.
apply Rle_refl.
elim Hx.
rewrite -Ropp_0.
apply Ropp_le_contravar.
apply Rlt_le.
now apply Rnot_le_lt.
Qed.
Lemma Rbar_mult_comm (x y : Rbar) :
Rbar_mult x y = Rbar_mult y x.
Proof.
unfold Rbar_mult.
by rewrite Rbar_mult'_comm.
Qed.
Lemma Rbar_mult_opp_r (x y : Rbar) :
Rbar_mult x (Rbar_opp y) = (Rbar_opp (Rbar_mult x y)).
Proof.
unfold Rbar_mult.
rewrite Rbar_mult'_opp_r.
case Rbar_mult' => //=.
apply f_equal, eq_sym, Ropp_0.
Qed.
Lemma Rbar_mult_opp_l (x y : Rbar) :
Rbar_mult (Rbar_opp x) y = Rbar_opp (Rbar_mult x y).
Proof.
rewrite ?(Rbar_mult_comm _ y).
by apply Rbar_mult_opp_r.
Qed.
Lemma Rbar_mult_opp (x y : Rbar) :
Rbar_mult (Rbar_opp x) (Rbar_opp y) = Rbar_mult x y.
Proof.
by rewrite Rbar_mult_opp_l -Rbar_mult_opp_r Rbar_opp_involutive.
Qed.
Lemma Rbar_mult_0_l (x : Rbar) : Rbar_mult 0 x = 0.
Proof.
case: x => [x | | ] //=.
by rewrite Rmult_0_l.
case: Rle_dec (Rle_refl 0) => // H _.
case: Rle_lt_or_eq_dec (Rlt_irrefl 0) => // _ _.
case: Rle_dec (Rle_refl 0) => // H _.
case: Rle_lt_or_eq_dec (Rlt_irrefl 0) => // _ _.
Qed.
Lemma Rbar_mult_0_r (x : Rbar) : Rbar_mult x 0 = 0.
Proof.
rewrite Rbar_mult_comm ; by apply Rbar_mult_0_l.
Qed.
Lemma Rbar_mult_eq_0 (y x : Rbar) :
Rbar_mult x y = 0 -> x = 0 \/ y = 0.
Proof.
case: x => [x | | ] //= ;
case: y => [y | | ] //= ;
(try case: Rle_dec => //= H) ;
(try case: Rle_lt_or_eq_dec => //=) ;
(try (left ; by apply f_equal)) ;
(try (right ; by apply f_equal)).
intros H.
apply (f_equal real) in H.
simpl in H.
apply Rmult_integral in H ; case: H => ->.
by left.
by right.
Qed.
Lemma ex_Rbar_mult_sym (x y : Rbar) :
ex_Rbar_mult x y -> ex_Rbar_mult y x.
Proof.
case: x => [x | | ] ;
case: y => [y | | ] //.
Qed.
Lemma ex_Rbar_mult_opp_l (x y : Rbar) :
ex_Rbar_mult x y -> ex_Rbar_mult (Rbar_opp x) y.
Proof.
case: x => [x | | ] ;
case: y => [y | | ] //= Hx ;
by apply Ropp_neq_0_compat.
Qed.
Lemma ex_Rbar_mult_opp_r (x y : Rbar) :
ex_Rbar_mult x y -> ex_Rbar_mult x (Rbar_opp y).
Proof.
case: x => [x | | ] ;
case: y => [y | | ] //= Hx ;
by apply Ropp_neq_0_compat.
Qed.
Lemma is_Rbar_mult_sym (x y z : Rbar) :
is_Rbar_mult x y z -> is_Rbar_mult y x z.
Proof.
case: x => [x | | ] ;
case: y => [y | | ] ;
case: z => [z | | ] //= ;
unfold is_Rbar_mult, Rbar_mult' ;
try (case: Rle_dec => // H) ;
try (case: Rle_lt_or_eq_dec => // H0) ;
try (case => <-) ; try (move => _).
by rewrite Rmult_comm.
Qed.
Lemma is_Rbar_mult_opp_l (x y z : Rbar) :
is_Rbar_mult x y z -> is_Rbar_mult (Rbar_opp x) y (Rbar_opp z).
Proof.
case: x => [x | | ] ;
case: y => [y | | ] ;
case: z => [z | | ] //= ;
unfold is_Rbar_mult, Rbar_mult' ;
try (case: Rle_dec => // H) ;
try (case: Rle_lt_or_eq_dec => // H0) ;
try (case => <-) ; try (move => _).
apply (f_equal (@Some _)), f_equal ; ring.
apply Ropp_lt_contravar in H0 ; rewrite Ropp_0 in H0 ;
now move/Rlt_not_le: H0 ; case: Rle_dec.
apply Rnot_le_lt, Ropp_lt_contravar in H ; rewrite Ropp_0 in H ;
move/Rlt_le: (H) ; case: Rle_dec => // H0 _ ;
now move/Rlt_not_eq: H ; case: Rle_lt_or_eq_dec.
apply Rnot_le_lt, Ropp_lt_contravar in H ; rewrite Ropp_0 in H ;
move/Rlt_le: (H) ; case: Rle_dec => // H0 _ ;
now move/Rlt_not_eq: H ; case: Rle_lt_or_eq_dec.
apply Ropp_lt_contravar in H0 ; rewrite Ropp_0 in H0 ;
now move/Rlt_not_le: H0 ; case: Rle_dec.
Qed.
Lemma is_Rbar_mult_opp_r (x y z : Rbar) :
is_Rbar_mult x y z -> is_Rbar_mult x (Rbar_opp y) (Rbar_opp z).
Proof.
move/is_Rbar_mult_sym => H.
now apply is_Rbar_mult_sym, is_Rbar_mult_opp_l.
Qed.
Lemma is_Rbar_mult_p_infty_pos (x : Rbar) :
Rbar_lt 0 x -> is_Rbar_mult p_infty x p_infty.
Proof.
case: x => [x | | ] // Hx.
unfold is_Rbar_mult, Rbar_mult'.
case: Rle_dec (Rlt_le _ _ Hx) => // Hx' _.
now case: Rle_lt_or_eq_dec (Rlt_not_eq _ _ Hx).
Qed.
Lemma is_Rbar_mult_p_infty_neg (x : Rbar) :
Rbar_lt x 0 -> is_Rbar_mult p_infty x m_infty.
Proof.
case: x => [x | | ] // Hx.
unfold is_Rbar_mult, Rbar_mult'.
case: Rle_dec (Rlt_not_le _ _ Hx) => // Hx' _.
Qed.
Lemma is_Rbar_mult_m_infty_pos (x : Rbar) :
Rbar_lt 0 x -> is_Rbar_mult m_infty x m_infty.
Proof.
case: x => [x | | ] // Hx.
unfold is_Rbar_mult, Rbar_mult'.
case: Rle_dec (Rlt_le _ _ Hx) => // Hx' _.
now case: Rle_lt_or_eq_dec (Rlt_not_eq _ _ Hx).
Qed.
Lemma is_Rbar_mult_m_infty_neg (x : Rbar) :
Rbar_lt x 0 -> is_Rbar_mult m_infty x p_infty.
Proof.
case: x => [x | | ] // Hx.
unfold is_Rbar_mult, Rbar_mult'.
case: Rle_dec (Rlt_not_le _ _ Hx) => // Hx' _.
Qed.
Rbar_div
Lemma is_Rbar_div_p_infty (x : R) :
is_Rbar_div x p_infty 0.
Proof.
apply (f_equal (@Some _)).
by rewrite Rmult_0_r.
Qed.
Lemma is_Rbar_div_m_infty (x : R) :
is_Rbar_div x m_infty 0.
Proof.
apply (f_equal (@Some _)).
by rewrite Rmult_0_r.
Qed.
Rbar_mult_pos
Lemma Rbar_mult_pos_eq (x y : Rbar) (z : posreal) :
x = y <-> (Rbar_mult_pos x z) = (Rbar_mult_pos y z).
Proof.
case: z => z Hz ; case: x => [x | | ] ; case: y => [y | | ] ;
split => //= H ; apply Rbar_finite_eq in H.
by rewrite H.
apply Rbar_finite_eq, (Rmult_eq_reg_r (z)) => // ;
by apply Rgt_not_eq.
Qed.
Lemma Rbar_mult_pos_lt (x y : Rbar) (z : posreal) :
Rbar_lt x y <-> Rbar_lt (Rbar_mult_pos x z) (Rbar_mult_pos y z).
Proof.
case: z => z Hz ; case: x => [x | | ] ; case: y => [y | | ] ;
split => //= H.
apply (Rmult_lt_compat_r (z)) => //.
apply (Rmult_lt_reg_r (z)) => //.
Qed.
Lemma Rbar_mult_pos_le (x y : Rbar) (z : posreal) :
Rbar_le x y <-> Rbar_le (Rbar_mult_pos x z) (Rbar_mult_pos y z).
Proof.
case: z => z Hz ; case: x => [x | | ] ; case: y => [y | | ] ;
split => //= H.
apply Rmult_le_compat_r with (2 := H).
now apply Rlt_le.
now apply Rmult_le_reg_r with (2 := H).
Qed.
Rbar_div_pos
Lemma Rbar_div_pos_eq (x y : Rbar) (z : posreal) :
x = y <-> (Rbar_div_pos x z) = (Rbar_div_pos y z).
Proof.
case: z => z Hz ; case: x => [x | | ] ; case: y => [y | | ] ;
split => //= H ; apply Rbar_finite_eq in H.
by rewrite H.
apply Rbar_finite_eq, (Rmult_eq_reg_r (/z)) => // ;
by apply Rgt_not_eq, Rinv_0_lt_compat.
Qed.
Lemma Rbar_div_pos_lt (x y : Rbar) (z : posreal) :
Rbar_lt x y <-> Rbar_lt (Rbar_div_pos x z) (Rbar_div_pos y z).
Proof.
case: z => z Hz ; case: x => [x | | ] ; case: y => [y | | ] ;
split => //= H.
apply (Rmult_lt_compat_r (/z)) => // ; by apply Rinv_0_lt_compat.
apply (Rmult_lt_reg_r (/z)) => // ; by apply Rinv_0_lt_compat.
Qed.
Lemma Rbar_div_pos_le (x y : Rbar) (z : posreal) :
Rbar_le x y <-> Rbar_le (Rbar_div_pos x z) (Rbar_div_pos y z).
Proof.
case: z => z Hz ; case: x => [x | | ] ; case: y => [y | | ] ;
split => //= H.
apply Rmult_le_compat_r with (2 := H).
now apply Rlt_le, Rinv_0_lt_compat.
apply Rmult_le_reg_r with (2 := H).
now apply Rinv_0_lt_compat.
Qed.
Definition Rbar_min (x y : Rbar) : Rbar :=
match x, y with
| z, p_infty | p_infty, z => z
| _ , m_infty | m_infty, _ => m_infty
| Finite x, Finite y => Rmin x y
end.
Lemma Rbar_lt_locally (a b : Rbar) (x : R) :
Rbar_lt a x -> Rbar_lt x b ->
exists delta : posreal,
forall y, Rabs (y - x) < delta -> Rbar_lt a y /\ Rbar_lt y b.
Proof.
case: a => [ a /= Ha | | _ ] //= ; (try apply Rminus_lt_0 in Ha) ;
case: b => [ b Hb | _ | ] //= ; (try apply Rminus_lt_0 in Hb).
assert (0 < Rmin (x - a) (b - x)).
by apply Rmin_case.
exists (mkposreal _ H) => y /= Hy ; split.
apply Rplus_lt_reg_r with (-x).
replace (a+-x) with (-(x-a)) by ring.
apply (Rabs_lt_between (y - x)).
apply Rlt_le_trans with (1 := Hy).
by apply Rmin_l.
apply Rplus_lt_reg_r with (-x).
apply (Rabs_lt_between (y - x)).
apply Rlt_le_trans with (1 := Hy).
by apply Rmin_r.
exists (mkposreal _ Ha) => y /= Hy ; split => //.
apply Rplus_lt_reg_r with (-x).
replace (a+-x) with (-(x-a)) by ring.
by apply (Rabs_lt_between (y - x)).
exists (mkposreal _ Hb) => y /= Hy ; split => //.
apply Rplus_lt_reg_r with (-x).
by apply (Rabs_lt_between (y - x)).
exists (mkposreal _ Rlt_0_1) ; by split.
Qed.
Lemma Rbar_min_comm (x y : Rbar) : Rbar_min x y = Rbar_min y x.
Proof.
case: x => [x | | ] //= ;
case: y => [y | | ] //=.
by rewrite Rmin_comm.
Qed.
Lemma Rbar_min_r (x y : Rbar) : Rbar_le (Rbar_min x y) y.
Proof.
case: x => [x | | ] //= ;
case: y => [y | | ] //=.
by apply Rmin_r.
by apply Rle_refl.
Qed.
Lemma Rbar_min_l (x y : Rbar) : Rbar_le (Rbar_min x y) x.
Proof.
rewrite Rbar_min_comm.
by apply Rbar_min_r.
Qed.
Lemma Rbar_min_case (x y : Rbar) (P : Rbar -> Type) :
P x -> P y -> P (Rbar_min x y).
Proof.
case: x => [x | | ] //= ;
case: y => [y | | ] //=.
by apply Rmin_case.
Qed.
Lemma Rbar_min_case_strong (r1 r2 : Rbar) (P : Rbar -> Type) :
(Rbar_le r1 r2 -> P r1) -> (Rbar_le r2 r1 -> P r2)
-> P (Rbar_min r1 r2).
Proof.
case: r1 => [x | | ] //= ;
case: r2 => [y | | ] //= Hx Hy ;
(try by apply Hx) ; (try by apply Hy).
by apply Rmin_case_strong.
Qed.
Definition Rbar_abs (x : Rbar) :=
match x with
| Finite x => Finite (Rabs x)
| _ => p_infty
end.
Lemma Rbar_abs_lt_between (x y : Rbar) :
Rbar_lt (Rbar_abs x) y <-> (Rbar_lt (Rbar_opp y) x /\ Rbar_lt x y).
Proof.
case: x => [x | | ] ; case: y => [y | | ] /= ; try by intuition.
by apply Rabs_lt_between.
Qed.
Lemma Rbar_abs_opp (x : Rbar) :
Rbar_abs (Rbar_opp x) = Rbar_abs x.
Proof.
case: x => [x | | ] //=.
by rewrite Rabs_Ropp.
Qed.
Lemma Rbar_abs_pos (x : Rbar) :
Rbar_le 0 x -> Rbar_abs x = x.
Proof.
case: x => [x | | ] //= Hx.
by apply f_equal, Rabs_pos_eq.
Qed.
Lemma Rbar_abs_neg (x : Rbar) :
Rbar_le x 0 -> Rbar_abs x = Rbar_opp x.
Proof.
case: x => [x | | ] //= Hx.
rewrite -Rabs_Ropp.
apply f_equal, Rabs_pos_eq.
now rewrite -Ropp_0 ; apply Ropp_le_contravar.
Qed.