Library ExtLib.Core.Type

Require Import Coq.Setoids.Setoid.
Require Import ExtLib.Structures.Proper.

Types are defined by their equivalence relations

Proper elements are the elements for which the equivalence

relation is reflexive.

Polymorphic Class type@{t} (T : Type@{t}) : Type :=
{ equal : T -> T -> Prop
; proper : T -> Prop
}.

Polymorphic Definition type_from_equal@{t} {T : Type@{t}} (r : T -> T -> Prop) : type@{t} T :=
{| equal := r
 ; proper := fun x => r x x
 |}.

Polymorphic Definition type_libniz@{t} (T : Type@{t}) : type@{t} T :=
{| equal := @eq T
 ; proper := fun _ => True
 |}.

Existing Class proper.

Section type.
  Polymorphic Context {T : Type}.
  Polymorphic Variable tT : type T.
  Polymorphic Class typeOk :=
  { only_proper : forall x y, equal x y -> proper x /\ proper y
  ; equiv_prefl :> PReflexive proper equal
  ; equiv_sym :> Symmetric equal
  ; equiv_trans :> Transitive equal
  }.

  Global Polymorphic Instance proper_left :
    typeOk ->
    forall x y : T, equal x y -> proper x.
  Proof.
    clear. intros.
    match goal with
    | H : equal _ _ |- _ => eapply only_proper in H
    end; intuition.
  Qed.
  Global Polymorphic Instance proper_right :
    typeOk ->
    forall x y : T, equal x y -> proper y.
  Proof.
    clear. intros.
    match goal with
    | H : equal _ _ |- _ => eapply only_proper in H
    end; intuition.
  Qed.

End type.

Polymorphic Definition type1@{d r z} (F : Type@{d} -> Type@{r}) : Type@{z} :=
  forall {T:Type@{d}}, type@{d} T -> type@{r} (F T).

Polymorphic Definition type2@{t u v z} (F : Type@{t} -> Type@{u} -> Type@{v}) : Type@{z} :=
  forall {T:Type@{t}}, type T -> forall {U:Type@{u}}, type U -> type (F T U).

Polymorphic Definition type3@{t u v w z} (F : Type@{t} -> Type@{u} -> Type@{v} -> Type@{w}) : Type@{z} :=
  forall {T:Type@{t}}, type T -> forall {U:Type@{u}}, type U -> forall {V:Type@{w}}, type V -> type (F T U V).

Polymorphic Definition typeOk1@{d r z} (F : Type@{d} -> Type@{r}) (tF : type1@{d r z} F) : Type@{z} :=
  forall (T : Type@{d}) tT, @typeOk T tT -> typeOk (tF _ tT).

Polymorphic Definition typeOk2@{t u v z}
            (F : Type@{t} -> Type@{u} -> Type@{v}) (tF : type2@{t u v z} F)
: Type@{z} :=
  forall (T : Type@{t}) (tT : type@{t} T), @typeOk@{t} T tT -> typeOk1@{u v z} _ (tF _ tT).

Polymorphic Definition typeOk3@{t u v w z} F (tF : type3 F) : Type@{z} :=
  forall (T : Type@{t}) (tT : type T), @typeOk@{t} T tT -> typeOk2@{u v w z} _ (tF _ tT).

Existing Class type1.
Existing Class type2.
Existing Class type3.

Global Polymorphic Instance type_type1 F (tF : type1 F) T (tT : type T) : type (F T) :=
  tF _ tT.

Global Polymorphic Instance type1_type2 F (tF : type2 F) T (tT : type T) : type1 (F T) :=
  tF _ tT.

Global Polymorphic Instance type2_type3 F (tF : type3 F) T (tT : type T) : type2 (F T) :=
  tF _ tT.

Polymorphic Class Oktype T : Type :=
{ the_type :> type T
; the_proof :> typeOk the_type
}.

Coercion the_type : Oktype >-> type.

Global Instance typeOk_typeOk1 F (tF : type1 F) T (tT : type T) : type (F T) :=
  tF _ tT.

Global Instance typeOk1_typeOk2 F (tF : type2 F) T (tT : type T) : type1 (F T) :=
  tF _ tT.

Global Instance typeOk2_typeOk3 F (tF : type3 F) T (tT : type T) : type2 (F T) :=
  tF _ tT.

Section typeOk_from_equal.
  Context {T} (r : relation T).
  Hypothesis p : forall x y, r x y -> r x x /\ r y y.
  Hypothesis sym : Symmetric r.
  Hypothesis trans : Transitive r.

  Theorem typeOk_from_equal : typeOk (type_from_equal r).
  Proof.
    constructor; auto.
    { simpl. red. auto. }
  Qed.
End typeOk_from_equal.

Theorem typeOk_libniz T : typeOk (type_libniz T).
Proof.
  constructor; unfold equal, type_libniz; auto with typeclass_instances.
  { split; exact I. }
Qed.