Library Flocq.Calc.Div

This file is part of the Flocq formalization of floating-point arithmetic in Coq: http://flocq.gforge.inria.fr/
Copyright (C) 2010-2018 Sylvie Boldo
Copyright (C) 2010-2018 Guillaume Melquiond
This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the COPYING file for more details.

Helper function and theorem for computing the rounded quotient of two floating-point numbers.


Require Import Raux Defs Generic_fmt Float_prop Digits Bracket.

Set Implicit Arguments.
Set Strongly Strict Implicit.

Section Fcalc_div.

Variable beta : radix.
Notation bpow e := (bpow beta e).

Variable fexp : Z -> Z.

Computes a mantissa of precision p, the corresponding exponent, and the position with respect to the real quotient of the input floating-point numbers.
The algorithm performs the following steps:
  • Shift dividend mantissa so that it has at least p2 + p digits.
  • Perform the Euclidean division.
  • Compute the position according to the division remainder.
Complexity is fine as long as p1 <= 2p and p2 <= p.

Lemma mag_div_F2R :
  forall m1 e1 m2 e2,
  (0 < m1)%Z -> (0 < m2)%Z ->
  let e := ((Zdigits beta m1 + e1) - (Zdigits beta m2 + e2))%Z in
  (e <= mag beta (F2R (Float beta m1 e1) / F2R (Float beta m2 e2)) <= e + 1)%Z.
Proof.
intros m1 e1 m2 e2 Hm1 Hm2.
rewrite <- (mag_F2R_Zdigits beta m1 e1) by now apply Zgt_not_eq.
rewrite <- (mag_F2R_Zdigits beta m2 e2) by now apply Zgt_not_eq.
apply mag_div.
now apply F2R_neq_0, Zgt_not_eq.
now apply F2R_neq_0, Zgt_not_eq.
Qed.

Definition Fdiv_core m1 e1 m2 e2 e :=
  let (m1', m2') :=
    if Zle_bool e (e1 - e2)%Z
    then (m1 * Zpower beta (e1 - e2 - e), m2)%Z
    else (m1, m2 * Zpower beta (e - (e1 - e2)))%Z in
  let '(q, r) := Z.div_eucl m1' m2' in
  (q, new_location m2' r loc_Exact).

Theorem Fdiv_core_correct :
  forall m1 e1 m2 e2 e,
  (0 < m1)%Z -> (0 < m2)%Z ->
  let '(m, l) := Fdiv_core m1 e1 m2 e2 e in
  inbetween_float beta m e (F2R (Float beta m1 e1) / F2R (Float beta m2 e2)) l.
Proof.
intros m1 e1 m2 e2 e Hm1 Hm2.
unfold Fdiv_core.
match goal with |- context [if ?b then ?b1 else ?b2] => set (m12 := if b then b1 else b2) end.
case_eq m12 ; intros m1' m2' Hm.
assert ((F2R (Float beta m1 e1) / F2R (Float beta m2 e2) = IZR m1' / IZR m2' * bpow e)%R /\ (0 < m2')%Z) as [Hf Hm2'].
{ unfold F2R, Zminus ; simpl.
  destruct (Zle_bool e (e1 - e2)) eqn:He' ; injection Hm ; intros ; subst.
  - split ; try easy.
    apply Zle_bool_imp_le in He'.
    rewrite mult_IZR, IZR_Zpower by omega.
    unfold Zminus ; rewrite 2!bpow_plus, 2!bpow_opp.
    field.
    repeat split ; try apply Rgt_not_eq, bpow_gt_0.
    now apply IZR_neq, Zgt_not_eq.
  - apply Z.leb_gt in He'.
    split ; cycle 1.
    { apply Z.mul_pos_pos with (1 := Hm2).
      apply Zpower_gt_0 ; omega. }
    rewrite mult_IZR, IZR_Zpower by omega.
    unfold Zminus ; rewrite bpow_plus, bpow_opp, bpow_plus, bpow_opp.
    field.
    repeat split ; try apply Rgt_not_eq, bpow_gt_0.
    now apply IZR_neq, Zgt_not_eq. }
clearbody m12 ; clear Hm Hm1 Hm2.
generalize (Z_div_mod m1' m2' (Z.lt_gt _ _ Hm2')).
destruct (Z.div_eucl m1' m2') as (q, r).
intros (Hq, Hr).
rewrite Hf.
unfold inbetween_float, F2R. simpl.
rewrite Hq, 2!plus_IZR, mult_IZR.
apply inbetween_mult_compat.
  apply bpow_gt_0.
destruct (Z_lt_le_dec 1 m2') as [Hm2''|Hm2''].
- replace 1%R with (IZR m2' * /IZR m2')%R.
  apply new_location_correct ; try easy.
  apply Rinv_0_lt_compat.
  now apply IZR_lt.
  constructor.
  field.
  now apply IZR_neq, Zgt_not_eq.
  field.
  now apply IZR_neq, Zgt_not_eq.
- assert (r = 0 /\ m2' = 1)%Z as [-> ->] by (clear -Hr Hm2'' ; omega).
  unfold Rdiv.
  rewrite Rmult_1_l, Rplus_0_r, Rinv_1, Rmult_1_r.
  now constructor.
Qed.

Definition Fdiv (x y : float beta) :=
  let (m1, e1) := x in
  let (m2, e2) := y in
  let e' := ((Zdigits beta m1 + e1) - (Zdigits beta m2 + e2))%Z in
  let e := Z.min (Z.min (fexp e') (fexp (e' + 1))) (e1 - e2) in
  let '(m, l) := Fdiv_core m1 e1 m2 e2 e in
  (m, e, l).

Theorem Fdiv_correct :
  forall x y,
  (0 < F2R x)%R -> (0 < F2R y)%R ->
  let '(m, e, l) := Fdiv x y in
  (e <= cexp beta fexp (F2R x / F2R y))%Z /\
  inbetween_float beta m e (F2R x / F2R y) l.
Proof.
intros [m1 e1] [m2 e2] Hm1 Hm2.
apply gt_0_F2R in Hm1.
apply gt_0_F2R in Hm2.
unfold Fdiv.
generalize (mag_div_F2R m1 e1 m2 e2 Hm1 Hm2).
set (e := Zminus _ _).
set (e' := Z.min (Z.min (fexp e) (fexp (e + 1))) (e1 - e2)).
intros [H1 H2].
generalize (Fdiv_core_correct m1 e1 m2 e2 e' Hm1 Hm2).
destruct Fdiv_core as [m' l].
apply conj.
apply Z.le_trans with (1 := Z.le_min_l _ _).
unfold cexp.
destruct (Zle_lt_or_eq _ _ H1) as [H|H].
- replace (fexp (mag _ _)) with (fexp (e + 1)).
  apply Z.le_min_r.
  clear -H1 H2 H ; apply f_equal ; omega.
- replace (fexp (mag _ _)) with (fexp e).
  apply Z.le_min_l.
  clear -H1 H2 H ; apply f_equal ; omega.
Qed.

End Fcalc_div.