Library Flocq.Core.FLT

This file is part of the Flocq formalization of floating-point arithmetic in Coq: http://flocq.gforge.inria.fr/
Copyright (C) 2009-2018 Sylvie Boldo
Copyright (C) 2009-2018 Guillaume Melquiond
This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the COPYING file for more details.

Floating-point format with gradual underflow

Require Import Raux Defs Round_pred Generic_fmt Float_prop.
Require Import FLX FIX Ulp Round_NE.
Require Import Psatz.

Section RND_FLT.

Variable beta : radix.

Notation bpow e := (bpow beta e).

Variable emin prec : Z.

Context { prec_gt_0_ : Prec_gt_0 prec }.

Inductive FLT_format (x : R) : Prop :=
  FLT_spec (f : float beta) :
    x = F2R f -> (Z.abs (Fnum f) < Zpower beta prec)%Z ->
    (emin <= Fexp f)%Z -> FLT_format x.

Definition FLT_exp e := Z.max (e - prec) emin.

Properties of the FLT format
Global Instance FLT_exp_valid : Valid_exp FLT_exp.
Proof.
intros k.
unfold FLT_exp.
generalize (prec_gt_0 prec).
repeat split ;
  intros ; zify ; omega.
Qed.

Theorem generic_format_FLT :
  forall x, FLT_format x -> generic_format beta FLT_exp x.
Proof.
clear prec_gt_0_.
intros x [[mx ex] H1 H2 H3].
simpl in H2, H3.
rewrite H1.
apply generic_format_F2R.
intros Zmx.
unfold cexp, FLT_exp.
rewrite mag_F2R with (1 := Zmx).
apply Z.max_lub with (2 := H3).
apply Zplus_le_reg_r with (prec - ex)%Z.
ring_simplify.
now apply mag_le_Zpower.
Qed.

Theorem FLT_format_generic :
  forall x, generic_format beta FLT_exp x -> FLT_format x.
Proof.
intros x.
unfold generic_format.
set (ex := cexp beta FLT_exp x).
set (mx := Ztrunc (scaled_mantissa beta FLT_exp x)).
intros Hx.
rewrite Hx.
eexists ; repeat split ; simpl.
apply lt_IZR.
rewrite IZR_Zpower. 2: now apply Zlt_le_weak.
apply Rmult_lt_reg_r with (bpow ex).
apply bpow_gt_0.
rewrite <- bpow_plus.
change (F2R (Float beta (Z.abs mx) ex) < bpow (prec + ex))%R.
rewrite F2R_Zabs.
rewrite <- Hx.
destruct (Req_dec x 0) as [Hx0|Hx0].
rewrite Hx0, Rabs_R0.
apply bpow_gt_0.
unfold cexp in ex.
destruct (mag beta x) as (ex', He).
simpl in ex.
specialize (He Hx0).
apply Rlt_le_trans with (1 := proj2 He).
apply bpow_le.
cut (ex' - prec <= ex)%Z. omega.
unfold ex, FLT_exp.
apply Z.le_max_l.
apply Z.le_max_r.
Qed.

Theorem FLT_format_bpow :
  forall e, (emin <= e)%Z -> generic_format beta FLT_exp (bpow e).
Proof.
intros e He.
apply generic_format_bpow; unfold FLT_exp.
apply Z.max_case; try assumption.
unfold Prec_gt_0 in prec_gt_0_; omega.
Qed.

Theorem FLT_format_satisfies_any :
  satisfies_any FLT_format.
Proof.
refine (satisfies_any_eq _ _ _ (generic_format_satisfies_any beta FLT_exp)).
intros x.
split.
apply FLT_format_generic.
apply generic_format_FLT.
Qed.

Theorem cexp_FLT_FLX :
  forall x,
  (bpow (emin + prec - 1) <= Rabs x)%R ->
  cexp beta FLT_exp x = cexp beta (FLX_exp prec) x.
Proof.
intros x Hx.
assert (Hx0: x <> 0%R).
intros H1; rewrite H1, Rabs_R0 in Hx.
contradict Hx; apply Rlt_not_le, bpow_gt_0.
unfold cexp.
apply Zmax_left.
destruct (mag beta x) as (ex, He).
unfold FLX_exp. simpl.
specialize (He Hx0).
cut (emin + prec - 1 < ex)%Z. omega.
apply (lt_bpow beta).
apply Rle_lt_trans with (1 := Hx).
apply He.
Qed.

Links between FLT and FLX
Theorem generic_format_FLT_FLX :
  forall x : R,
  (bpow (emin + prec - 1) <= Rabs x)%R ->
  generic_format beta (FLX_exp prec) x ->
  generic_format beta FLT_exp x.
Proof.
intros x Hx H.
destruct (Req_dec x 0) as [Hx0|Hx0].
rewrite Hx0.
apply generic_format_0.
unfold generic_format, scaled_mantissa.
now rewrite cexp_FLT_FLX.
Qed.

Theorem generic_format_FLX_FLT :
  forall x : R,
  generic_format beta FLT_exp x -> generic_format beta (FLX_exp prec) x.
Proof.
clear prec_gt_0_.
intros x Hx.
unfold generic_format in Hx; rewrite Hx.
apply generic_format_F2R.
intros _.
rewrite <- Hx.
unfold cexp, FLX_exp, FLT_exp.
apply Z.le_max_l.
Qed.

Theorem round_FLT_FLX : forall rnd x,
  (bpow (emin + prec - 1) <= Rabs x)%R ->
  round beta FLT_exp rnd x = round beta (FLX_exp prec) rnd x.
Proof.
intros rnd x Hx.
unfold round, scaled_mantissa.
rewrite cexp_FLT_FLX ; trivial.
Qed.

Links between FLT and FIX (underflow)
Theorem cexp_FLT_FIX :
  forall x, x <> 0%R ->
  (Rabs x < bpow (emin + prec))%R ->
  cexp beta FLT_exp x = cexp beta (FIX_exp emin) x.
Proof.
intros x Hx0 Hx.
unfold cexp.
apply Zmax_right.
unfold FIX_exp.
destruct (mag beta x) as (ex, Hex).
simpl.
cut (ex - 1 < emin + prec)%Z. omega.
apply (lt_bpow beta).
apply Rle_lt_trans with (2 := Hx).
now apply Hex.
Qed.

Theorem generic_format_FIX_FLT :
  forall x : R,
  generic_format beta FLT_exp x ->
  generic_format beta (FIX_exp emin) x.
Proof.
clear prec_gt_0_.
intros x Hx.
rewrite Hx.
apply generic_format_F2R.
intros _.
rewrite <- Hx.
apply Z.le_max_r.
Qed.

Theorem generic_format_FLT_FIX :
  forall x : R,
  (Rabs x <= bpow (emin + prec))%R ->
  generic_format beta (FIX_exp emin) x ->
  generic_format beta FLT_exp x.
Proof with auto with typeclass_instances.
apply generic_inclusion_le...
intros e He.
unfold FIX_exp.
apply Z.max_lub.
omega.
apply Z.le_refl.
Qed.

Lemma negligible_exp_FLT :
  exists n, negligible_exp FLT_exp = Some n /\ (n <= emin)%Z.
Proof.
case (negligible_exp_spec FLT_exp).
{ intro H; exfalso; specialize (H emin); revert H.
  apply Zle_not_lt, Z.le_max_r. }
intros n Hn; exists n; split; [now simpl|].
destruct (Z.max_spec (n - prec) emin) as [(Hm, Hm')|(Hm, Hm')].
{ now revert Hn; unfold FLT_exp; rewrite Hm'. }
revert Hn prec_gt_0_; unfold FLT_exp, Prec_gt_0; rewrite Hm'; lia.
Qed.

Theorem generic_format_FLT_1 (Hemin : (emin <= 0)%Z) :
  generic_format beta FLT_exp 1.
Proof.
unfold generic_format, scaled_mantissa, cexp, F2R; simpl.
rewrite Rmult_1_l, (mag_unique beta 1 1).
{ unfold FLT_exp.
  destruct (Z.max_spec_le (1 - prec) emin) as [(H,Hm)|(H,Hm)]; rewrite Hm;
    (rewrite <- IZR_Zpower; [|unfold Prec_gt_0 in prec_gt_0_; omega]);
    (rewrite Ztrunc_IZR, IZR_Zpower, <-bpow_plus;
     [|unfold Prec_gt_0 in prec_gt_0_; omega]);
    now replace (_ + _)%Z with Z0 by ring. }
rewrite Rabs_R1; simpl; split; [now right|].
rewrite IZR_Zpower_pos; simpl; rewrite Rmult_1_r; apply IZR_lt.
apply (Z.lt_le_trans _ 2); [omega|]; apply Zle_bool_imp_le, beta.
Qed.

Theorem ulp_FLT_small: forall x, (Rabs x < bpow (emin+prec))%R ->
    ulp beta FLT_exp x = bpow emin.
Proof with auto with typeclass_instances.
intros x Hx.
unfold ulp; case Req_bool_spec; intros Hx2.
case (negligible_exp_spec FLT_exp).
intros T; specialize (T (emin-1)%Z); contradict T.
apply Zle_not_lt; unfold FLT_exp.
apply Z.le_trans with (2:=Z.le_max_r _ _); omega.
assert (V:FLT_exp emin = emin).
unfold FLT_exp; apply Z.max_r.
unfold Prec_gt_0 in prec_gt_0_; omega.
intros n H2; rewrite <-V.
apply f_equal, fexp_negligible_exp_eq...
omega.
apply f_equal; unfold cexp, FLT_exp.
apply Z.max_r.
assert (mag beta x-1 < emin+prec)%Z;[idtac|omega].
destruct (mag beta x) as (e,He); simpl.
apply lt_bpow with beta.
apply Rle_lt_trans with (2:=Hx).
now apply He.
Qed.

Theorem ulp_FLT_le :
  forall x, (bpow (emin + prec - 1) <= Rabs x)%R ->
  (ulp beta FLT_exp x <= Rabs x * bpow (1 - prec))%R.
Proof.
intros x Hx.
assert (Zx : (x <> 0)%R).
  intros Z; contradict Hx; apply Rgt_not_le, Rlt_gt.
  rewrite Z, Rabs_R0; apply bpow_gt_0.
rewrite ulp_neq_0 with (1 := Zx).
unfold cexp, FLT_exp.
destruct (mag beta x) as (e,He).
apply Rle_trans with (bpow (e-1)*bpow (1-prec))%R.
rewrite <- bpow_plus.
right; apply f_equal.
replace (e - 1 + (1 - prec))%Z with (e - prec)%Z by ring.
apply Z.max_l.
assert (emin+prec-1 < e)%Z; try omega.
apply lt_bpow with beta.
apply Rle_lt_trans with (1:=Hx).
now apply He.
apply Rmult_le_compat_r.
apply bpow_ge_0.
now apply He.
Qed.

Theorem ulp_FLT_gt :
  forall x, (Rabs x * bpow (-prec) < ulp beta FLT_exp x)%R.
Proof.
intros x; case (Req_dec x 0); intros Hx.
rewrite Hx, ulp_FLT_small, Rabs_R0, Rmult_0_l; try apply bpow_gt_0.
rewrite Rabs_R0; apply bpow_gt_0.
rewrite ulp_neq_0; try exact Hx.
unfold cexp, FLT_exp.
apply Rlt_le_trans with (bpow (mag beta x)*bpow (-prec))%R.
apply Rmult_lt_compat_r.
apply bpow_gt_0.
now apply bpow_mag_gt.
rewrite <- bpow_plus.
apply bpow_le.
apply Z.le_max_l.
Qed.

Lemma ulp_FLT_exact_shift :
  forall x e,
  (x <> 0)%R ->
  (emin + prec <= mag beta x)%Z ->
  (emin + prec - mag beta x <= e)%Z ->
  (ulp beta FLT_exp (x * bpow e) = ulp beta FLT_exp x * bpow e)%R.
Proof.
intros x e Nzx Hmx He.
unfold ulp; rewrite Req_bool_false;
  [|now intro H; apply Nzx, (Rmult_eq_reg_r (bpow e));
    [rewrite Rmult_0_l|apply Rgt_not_eq, Rlt_gt, bpow_gt_0]].
rewrite (Req_bool_false _ _ Nzx), <- bpow_plus; f_equal; unfold cexp, FLT_exp.
rewrite (mag_mult_bpow _ _ _ Nzx), !Z.max_l; omega.
Qed.

Lemma succ_FLT_exact_shift_pos :
  forall x e,
  (0 < x)%R ->
  (emin + prec <= mag beta x)%Z ->
  (emin + prec - mag beta x <= e)%Z ->
  (succ beta FLT_exp (x * bpow e) = succ beta FLT_exp x * bpow e)%R.
Proof.
intros x e Px Hmx He.
rewrite succ_eq_pos; [|now apply Rlt_le, Rmult_lt_0_compat, bpow_gt_0].
rewrite (succ_eq_pos _ _ _ (Rlt_le _ _ Px)).
now rewrite Rmult_plus_distr_r; f_equal; apply ulp_FLT_exact_shift; [lra| |].
Qed.

Lemma succ_FLT_exact_shift :
  forall x e,
  (x <> 0)%R ->
  (emin + prec + 1 <= mag beta x)%Z ->
  (emin + prec - mag beta x + 1 <= e)%Z ->
  (succ beta FLT_exp (x * bpow e) = succ beta FLT_exp x * bpow e)%R.
Proof.
intros x e Nzx Hmx He.
destruct (Rle_or_lt 0 x) as [Px|Nx].
{ now apply succ_FLT_exact_shift_pos; [lra|lia|lia]. }
unfold succ.
rewrite Rle_bool_false; [|assert (H := bpow_gt_0 beta e); nra].
rewrite Rle_bool_false; [|now simpl].
rewrite Ropp_mult_distr_l_reverse, <-Ropp_mult_distr_l_reverse; f_equal.
unfold pred_pos.
rewrite mag_mult_bpow; [|lra].
replace (_ - 1)%Z with (mag beta (- x) - 1 + e)%Z; [|ring]; rewrite bpow_plus.
unfold Req_bool; rewrite Rcompare_mult_r; [|now apply bpow_gt_0].
fold (Req_bool (-x) (bpow (mag beta (-x) - 1))); case Req_bool.
{ rewrite mag_opp; unfold FLT_exp; do 2 (rewrite Z.max_l; [|lia]).
  replace (_ - _)%Z with (mag beta x - 1 - prec + e)%Z; [|ring].
  rewrite bpow_plus; ring. }
rewrite ulp_FLT_exact_shift; [ring|lra| |]; rewrite mag_opp; lia.
Qed.

FLT is a nice format: it has a monotone exponent...
Global Instance FLT_exp_monotone : Monotone_exp FLT_exp.
Proof.
intros ex ey.
unfold FLT_exp.
zify ; omega.
Qed.

and it allows a rounding to nearest, ties to even.
Hypothesis NE_prop : Z.even beta = false \/ (1 < prec)%Z.

Global Instance exists_NE_FLT : Exists_NE beta FLT_exp.
Proof.
destruct NE_prop as [H|H].
now left.
right.
intros e.
unfold FLT_exp.
destruct (Zmax_spec (e - prec) emin) as [(H1,H2)|(H1,H2)] ;
  rewrite H2 ; clear H2.
generalize (Zmax_spec (e + 1 - prec) emin).
generalize (Zmax_spec (e - prec + 1 - prec) emin).
omega.
generalize (Zmax_spec (e + 1 - prec) emin).
generalize (Zmax_spec (emin + 1 - prec) emin).
omega.
Qed.

End RND_FLT.