Library GeoCoq.Axioms.tarski_axioms

This version of the axioms of Tarski is the one given in Wolfram Schwabhäuser, Wanda Szmielew and Alfred Tarski, Metamathematische Methoden in der Geometrie, Springer-Verlag, Berlin, 1983.
This axioms system is the result of a long history of axiom systems for geometry studied by Tarski, Schwabhäuser, Szmielew and Gupta.

Class Tarski_neutral_dimensionless :=
{
 Tpoint : Type;
 Bet : Tpoint -> Tpoint -> Tpoint -> Prop;
 Cong : Tpoint -> Tpoint -> Tpoint -> Tpoint -> Prop;
 cong_pseudo_reflexivity : forall A B, Cong A B B A;
 cong_inner_transitivity : forall A B C D E F,
   Cong A B C D -> Cong A B E F -> Cong C D E F;
 cong_identity : forall A B C, Cong A B C C -> A = B;
 segment_construction : forall A B C D,
   exists E, Bet A B E /\ Cong B E C D;
 five_segment : forall A A' B B' C C' D D',
   Cong A B A' B' ->
   Cong B C B' C' ->
   Cong A D A' D' ->
   Cong B D B' D' ->
   Bet A B C -> Bet A' B' C' -> A <> B -> Cong C D C' D';
 between_identity : forall A B, Bet A B A -> A = B;
 inner_pasch : forall A B C P Q,
   Bet A P C -> Bet B Q C ->
   exists X, Bet P X B /\ Bet Q X A;
 PA : Tpoint;
 PB : Tpoint;
 PC : Tpoint;
 lower_dim : ~ (Bet PA PB PC \/ Bet PB PC PA \/ Bet PC PA PB)
}.

Class Tarski_neutral_dimensionless_with_decidable_point_equality
 `(Tn : Tarski_neutral_dimensionless) :=
{
 point_equality_decidability : forall A B : Tpoint, A = B \/ ~ A = B
}.

Class Tarski_2D
 `(TnEQD : Tarski_neutral_dimensionless_with_decidable_point_equality) :=
{
 upper_dim : forall A B C P Q,
   P <> Q -> Cong A P A Q -> Cong B P B Q -> Cong C P C Q ->
   (Bet A B C \/ Bet B C A \/ Bet C A B)
}.

Class Tarski_2D_euclidean `(T2D : Tarski_2D) :=
{
 euclid : forall A B C D T,
   Bet A D T -> Bet B D C -> A<>D ->
   exists X, exists Y,
   Bet A B X /\ Bet A C Y /\ Bet X T Y
}.