Library GeoCoq.Axioms.tarski_axioms
This version of the axioms of Tarski is the one given in
Wolfram Schwabhäuser, Wanda Szmielew and Alfred Tarski,
Metamathematische Methoden in der Geometrie, Springer-Verlag, Berlin, 1983.
This axioms system is the result of a long history of axiom systems for geometry studied by
Tarski, Schwabhäuser, Szmielew and Gupta.
Class Tarski_neutral_dimensionless :=
{
Tpoint : Type;
Bet : Tpoint -> Tpoint -> Tpoint -> Prop;
Cong : Tpoint -> Tpoint -> Tpoint -> Tpoint -> Prop;
cong_pseudo_reflexivity : forall A B, Cong A B B A;
cong_inner_transitivity : forall A B C D E F,
Cong A B C D -> Cong A B E F -> Cong C D E F;
cong_identity : forall A B C, Cong A B C C -> A = B;
segment_construction : forall A B C D,
exists E, Bet A B E /\ Cong B E C D;
five_segment : forall A A' B B' C C' D D',
Cong A B A' B' ->
Cong B C B' C' ->
Cong A D A' D' ->
Cong B D B' D' ->
Bet A B C -> Bet A' B' C' -> A <> B -> Cong C D C' D';
between_identity : forall A B, Bet A B A -> A = B;
inner_pasch : forall A B C P Q,
Bet A P C -> Bet B Q C ->
exists X, Bet P X B /\ Bet Q X A;
PA : Tpoint;
PB : Tpoint;
PC : Tpoint;
lower_dim : ~ (Bet PA PB PC \/ Bet PB PC PA \/ Bet PC PA PB)
}.
Class Tarski_neutral_dimensionless_with_decidable_point_equality
`(Tn : Tarski_neutral_dimensionless) :=
{
point_equality_decidability : forall A B : Tpoint, A = B \/ ~ A = B
}.
Class Tarski_2D
`(TnEQD : Tarski_neutral_dimensionless_with_decidable_point_equality) :=
{
upper_dim : forall A B C P Q,
P <> Q -> Cong A P A Q -> Cong B P B Q -> Cong C P C Q ->
(Bet A B C \/ Bet B C A \/ Bet C A B)
}.
Class Tarski_2D_euclidean `(T2D : Tarski_2D) :=
{
euclid : forall A B C D T,
Bet A D T -> Bet B D C -> A<>D ->
exists X, exists Y,
Bet A B X /\ Bet A C Y /\ Bet X T Y
}.