Library GeoCoq.Elements.OriginalProofs.lemma_angleorderrespectscongruence2
Require Export GeoCoq.Elements.OriginalProofs.lemma_equalanglestransitive.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_angleorderrespectscongruence2 :
forall A B C D E F a b c,
LtA A B C D E F -> CongA a b c A B C ->
LtA a b c D E F.
Proof.
intros.
let Tf:=fresh in
assert (Tf:exists P Q R, (BetS P Q R /\ Out E D P /\ Out E F R /\ CongA A B C D E Q)) by (conclude_def LtA );destruct Tf as [P[Q[R]]];spliter.
assert (CongA a b c D E Q) by (conclude lemma_equalanglestransitive).
assert (LtA a b c D E F) by (conclude_def LtA ).
close.
Qed.
End Euclid.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_angleorderrespectscongruence2 :
forall A B C D E F a b c,
LtA A B C D E F -> CongA a b c A B C ->
LtA a b c D E F.
Proof.
intros.
let Tf:=fresh in
assert (Tf:exists P Q R, (BetS P Q R /\ Out E D P /\ Out E F R /\ CongA A B C D E Q)) by (conclude_def LtA );destruct Tf as [P[Q[R]]];spliter.
assert (CongA a b c D E Q) by (conclude lemma_equalanglestransitive).
assert (LtA a b c D E F) by (conclude_def LtA ).
close.
Qed.
End Euclid.