Library GeoCoq.Elements.OriginalProofs.lemma_parallelNC
Require Export GeoCoq.Elements.OriginalProofs.lemma_collinearorder.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_parallelNC :
forall A B C D,
Par A B C D ->
nCol A B C /\ nCol A C D /\ nCol B C D /\ nCol A B D.
Proof.
intros.
let Tf:=fresh in
assert (Tf:exists M a b c d, (neq A B /\ neq C D /\ Col A B a /\ Col A B b /\ neq a b /\ Col C D c /\ Col C D d /\ neq c d /\ ~ Meet A B C D /\ BetS a M d /\ BetS c M b)) by (conclude_def Par );destruct Tf as [M[a[b[c[d]]]]];spliter.
assert (~ Col A C D).
{
intro.
assert (Col C D A) by (forward_using lemma_collinearorder).
assert (eq A A) by (conclude cn_equalityreflexive).
assert (Col A B A) by (conclude_def Col ).
assert (Meet A B C D) by (conclude_def Meet ).
contradict.
}
assert (~ Col A B C).
{
intro.
assert (eq C C) by (conclude cn_equalityreflexive).
assert (Col C D C) by (conclude_def Col ).
assert (Meet A B C D) by (conclude_def Meet ).
contradict.
}
assert (~ Col B C D).
{
intro.
assert (Col C D B) by (forward_using lemma_collinearorder).
assert (eq B B) by (conclude cn_equalityreflexive).
assert (Col A B B) by (conclude_def Col ).
assert (Meet A B C D) by (conclude_def Meet ).
contradict.
}
assert (~ Col A B D).
{
intro.
assert (eq D D) by (conclude cn_equalityreflexive).
assert (Col C D D) by (conclude_def Col ).
assert (Meet A B C D) by (conclude_def Meet ).
contradict.
}
close.
Qed.
End Euclid.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_parallelNC :
forall A B C D,
Par A B C D ->
nCol A B C /\ nCol A C D /\ nCol B C D /\ nCol A B D.
Proof.
intros.
let Tf:=fresh in
assert (Tf:exists M a b c d, (neq A B /\ neq C D /\ Col A B a /\ Col A B b /\ neq a b /\ Col C D c /\ Col C D d /\ neq c d /\ ~ Meet A B C D /\ BetS a M d /\ BetS c M b)) by (conclude_def Par );destruct Tf as [M[a[b[c[d]]]]];spliter.
assert (~ Col A C D).
{
intro.
assert (Col C D A) by (forward_using lemma_collinearorder).
assert (eq A A) by (conclude cn_equalityreflexive).
assert (Col A B A) by (conclude_def Col ).
assert (Meet A B C D) by (conclude_def Meet ).
contradict.
}
assert (~ Col A B C).
{
intro.
assert (eq C C) by (conclude cn_equalityreflexive).
assert (Col C D C) by (conclude_def Col ).
assert (Meet A B C D) by (conclude_def Meet ).
contradict.
}
assert (~ Col B C D).
{
intro.
assert (Col C D B) by (forward_using lemma_collinearorder).
assert (eq B B) by (conclude cn_equalityreflexive).
assert (Col A B B) by (conclude_def Col ).
assert (Meet A B C D) by (conclude_def Meet ).
contradict.
}
assert (~ Col A B D).
{
intro.
assert (eq D D) by (conclude cn_equalityreflexive).
assert (Col C D D) by (conclude_def Col ).
assert (Meet A B C D) by (conclude_def Meet ).
contradict.
}
close.
Qed.
End Euclid.