Library GeoCoq.Elements.OriginalProofs.lemma_parallelsymmetric
Require Export GeoCoq.Elements.OriginalProofs.euclidean_tactics.
Section Euclid.
Context `{Ax1:euclidean_neutral}.
Lemma lemma_parallelsymmetric :
forall A B C D,
Par A B C D ->
Par C D A B.
Proof.
intros.
let Tf:=fresh in
assert (Tf:exists a b c d m, (neq A B /\ neq C D /\ Col A B a /\ Col A B b /\ neq a b /\ Col C D c /\ Col C D d /\ neq c d /\ ~ Meet A B C D /\ BetS a m d /\ BetS c m b)) by (conclude_def Par );destruct Tf as [a[b[c[d[m]]]]];spliter.
assert (~ Meet C D A B).
{
intro.
let Tf:=fresh in
assert (Tf:exists P, (neq C D /\ neq A B /\ Col C D P /\ Col A B P)) by (conclude_def Meet );destruct Tf as [P];spliter.
assert (Meet A B C D) by (conclude_def Meet ).
contradict.
}
assert (Par C D A B) by (conclude_def Par ).
close.
Qed.
End Euclid.
Section Euclid.
Context `{Ax1:euclidean_neutral}.
Lemma lemma_parallelsymmetric :
forall A B C D,
Par A B C D ->
Par C D A B.
Proof.
intros.
let Tf:=fresh in
assert (Tf:exists a b c d m, (neq A B /\ neq C D /\ Col A B a /\ Col A B b /\ neq a b /\ Col C D c /\ Col C D d /\ neq c d /\ ~ Meet A B C D /\ BetS a m d /\ BetS c m b)) by (conclude_def Par );destruct Tf as [a[b[c[d[m]]]]];spliter.
assert (~ Meet C D A B).
{
intro.
let Tf:=fresh in
assert (Tf:exists P, (neq C D /\ neq A B /\ Col C D P /\ Col A B P)) by (conclude_def Meet );destruct Tf as [P];spliter.
assert (Meet A B C D) by (conclude_def Meet ).
contradict.
}
assert (Par C D A B) by (conclude_def Par ).
close.
Qed.
End Euclid.