Library GeoCoq.Elements.OriginalProofs.lemma_samesideflip
Require Export GeoCoq.Elements.OriginalProofs.lemma_NCorder.
Section Euclid.
Context `{Ax1:euclidean_neutral}.
Lemma lemma_samesideflip :
forall A B P Q,
OS P Q A B ->
OS P Q B A.
Proof.
intros.
let Tf:=fresh in
assert (Tf:exists p q r, (Col A B p /\ Col A B q /\ BetS P p r /\ BetS Q q r /\ nCol A B P /\ nCol A B Q)) by (conclude_def OS );destruct Tf as [p[q[r]]];spliter.
assert (Col B A p) by (forward_using lemma_collinearorder).
assert (Col B A q) by (forward_using lemma_collinearorder).
assert (nCol B A P) by (forward_using lemma_NCorder).
assert (nCol B A Q) by (forward_using lemma_NCorder).
assert (OS P Q B A) by (conclude_def OS ).
close.
Qed.
End Euclid.
Section Euclid.
Context `{Ax1:euclidean_neutral}.
Lemma lemma_samesideflip :
forall A B P Q,
OS P Q A B ->
OS P Q B A.
Proof.
intros.
let Tf:=fresh in
assert (Tf:exists p q r, (Col A B p /\ Col A B q /\ BetS P p r /\ BetS Q q r /\ nCol A B P /\ nCol A B Q)) by (conclude_def OS );destruct Tf as [p[q[r]]];spliter.
assert (Col B A p) by (forward_using lemma_collinearorder).
assert (Col B A q) by (forward_using lemma_collinearorder).
assert (nCol B A P) by (forward_using lemma_NCorder).
assert (nCol B A Q) by (forward_using lemma_NCorder).
assert (OS P Q B A) by (conclude_def OS ).
close.
Qed.
End Euclid.