Library GeoCoq.Elements.OriginalProofs.lemma_trichotomy2
Require Export GeoCoq.Elements.OriginalProofs.lemma_lessthancongruence.
Require Export GeoCoq.Elements.OriginalProofs.lemma_3_6b.
Require Export GeoCoq.Elements.OriginalProofs.lemma_partnotequalwhole.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_trichotomy2 :
forall A B C D,
Lt A B C D ->
~ Lt C D A B.
Proof.
intros.
let Tf:=fresh in
assert (Tf:exists E, (BetS C E D /\ Cong C E A B)) by (conclude_def Lt );destruct Tf as [E];spliter.
assert (Cong A B C E) by (conclude lemma_congruencesymmetric).
assert (~ Lt C D A B).
{
intro.
assert (Lt C D C E) by (conclude lemma_lessthancongruence).
let Tf:=fresh in
assert (Tf:exists F, (BetS C F E /\ Cong C F C D)) by (conclude_def Lt );destruct Tf as [F];spliter.
assert (BetS C F D) by (conclude lemma_3_6b).
assert (~ Cong C F C D) by (conclude lemma_partnotequalwhole).
contradict.
}
close.
Qed.
End Euclid.
Require Export GeoCoq.Elements.OriginalProofs.lemma_3_6b.
Require Export GeoCoq.Elements.OriginalProofs.lemma_partnotequalwhole.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_trichotomy2 :
forall A B C D,
Lt A B C D ->
~ Lt C D A B.
Proof.
intros.
let Tf:=fresh in
assert (Tf:exists E, (BetS C E D /\ Cong C E A B)) by (conclude_def Lt );destruct Tf as [E];spliter.
assert (Cong A B C E) by (conclude lemma_congruencesymmetric).
assert (~ Lt C D A B).
{
intro.
assert (Lt C D C E) by (conclude lemma_lessthancongruence).
let Tf:=fresh in
assert (Tf:exists F, (BetS C F E /\ Cong C F C D)) by (conclude_def Lt );destruct Tf as [F];spliter.
assert (BetS C F D) by (conclude lemma_3_6b).
assert (~ Cong C F C D) by (conclude lemma_partnotequalwhole).
contradict.
}
close.
Qed.
End Euclid.