Library GeoCoq.Elements.OriginalProofs.proposition_26B
Require Export GeoCoq.Elements.OriginalProofs.lemma_26helper.
Require Export GeoCoq.Elements.OriginalProofs.lemma_trichotomy1.
Section Euclid.
Context `{Ax:euclidean_neutral_ruler_compass}.
Lemma proposition_26B :
forall A B C D E F,
Triangle A B C -> Triangle D E F -> CongA A B C D E F -> CongA B C A E F D -> Cong A B D E ->
Cong B C E F /\ Cong A C D F /\ CongA B A C E D F.
Proof.
intros.
assert (~ Lt E F B C) by (conclude lemma_26helper).
assert (CongA D E F A B C) by (conclude lemma_equalanglessymmetric).
assert (CongA E F D B C A) by (conclude lemma_equalanglessymmetric).
assert (Cong D E A B) by (conclude lemma_congruencesymmetric).
assert (~ Lt B C E F) by (conclude lemma_26helper).
assert (~ eq B C).
{
intro.
assert (Col A B C) by (conclude_def Col ).
assert (nCol A B C) by (conclude_def Triangle ).
contradict.
}
assert (~ eq E F).
{
intro.
assert (Col D E F) by (conclude_def Col ).
assert (nCol D E F) by (conclude_def Triangle ).
contradict.
}
assert (Cong B C E F) by (conclude lemma_trichotomy1).
assert (Cong B A E D) by (forward_using lemma_congruenceflip).
assert ((Cong A C D F /\ CongA B A C E D F /\ CongA B C A E F D)) by (conclude proposition_04).
close.
Qed.
End Euclid.
Require Export GeoCoq.Elements.OriginalProofs.lemma_trichotomy1.
Section Euclid.
Context `{Ax:euclidean_neutral_ruler_compass}.
Lemma proposition_26B :
forall A B C D E F,
Triangle A B C -> Triangle D E F -> CongA A B C D E F -> CongA B C A E F D -> Cong A B D E ->
Cong B C E F /\ Cong A C D F /\ CongA B A C E D F.
Proof.
intros.
assert (~ Lt E F B C) by (conclude lemma_26helper).
assert (CongA D E F A B C) by (conclude lemma_equalanglessymmetric).
assert (CongA E F D B C A) by (conclude lemma_equalanglessymmetric).
assert (Cong D E A B) by (conclude lemma_congruencesymmetric).
assert (~ Lt B C E F) by (conclude lemma_26helper).
assert (~ eq B C).
{
intro.
assert (Col A B C) by (conclude_def Col ).
assert (nCol A B C) by (conclude_def Triangle ).
contradict.
}
assert (~ eq E F).
{
intro.
assert (Col D E F) by (conclude_def Col ).
assert (nCol D E F) by (conclude_def Triangle ).
contradict.
}
assert (Cong B C E F) by (conclude lemma_trichotomy1).
assert (Cong B A E D) by (forward_using lemma_congruenceflip).
assert ((Cong A C D F /\ CongA B A C E D F /\ CongA B C A E F D)) by (conclude proposition_04).
close.
Qed.
End Euclid.