Library Mtac2Tests.typed_term_decomposition

From Mtac2 Require Import Base MTele DecomposeApp Tactics List.
Import M.notations.
Import ProdNotations.
Import Mtac2.lib.List.ListNotations.

Import TeleNotation.
Definition test_tele : MTele := [tele (x y : nat)].

Check ltac:(mrun (
                M.decompose_app'
                  (B := fun _ => (nat*nat)%type)
                  (m := test_tele)
                  UniMatchNoRed
                  (3+5)
                  (@plus)
                  (fun x y => M.ret (x,y)))
           ).

Fail Check ltac:(mrun (
                M.decompose_app'
                  (B := fun _ => nat)
                  (m := [tele _])
                  UniMatchNoRed
                  (3+5)
                  (@plus _)
                  (fun y => M.ret (y)))
           ).
Check ltac:(mrun (
                M.decompose_app'
                  (B := fun _ => nat)
                  (m := [tele _])
                  UniCoq
                  (3+5)
                  (@plus _)
                  (fun y => M.ret (y)))
           ).

Definition prop_tele : MTele :=
  mTele (fun _ : Prop => mTele (fun _ : Prop => mBase)).

Check ltac:(mrun (
                M.decompose_app'
                  (B := fun _ => (_*_)%type)
                  (m := prop_tele)
                  UniMatchNoRed
                  (True \/ False)
                  (@or)
                  (fun x y => M.ret (x,y)))
           ).

Import T.notations.
Goal True.
MProof.
(<[decapp (3+5) with @plus]> UniMatchNoRed (fun x y => M.print_term (x,y);; T.idtac)).
Abort.

Example dep_type (n1 n2: nat) :
  match n1 with
  | O => bool
  | S _ => unit
  end -> n2 = n2 := fun _ => eq_refl n2.

Local Close Scope tactic_scope.
Local Open Scope M_scope.
Import M.notations.
Mtac Do (
       mtry
       <[decapp dep_type O 2 true with dep_type 1 2]> UniCoq (fun u => M.print_term u)
       with | WrongTerm => M.ret tt end
     ).

Notation app := (3 + 4).

Definition test1 : M unit := M.decompose_app'' (S:=fun _ _ => _) app (fun A B f h => M.ret tt).
Mtac Do (test1).

Definition decompose_app {A} (a : A) : M (dyn *m mlist dyn) :=
  let rec :=
  mfix3 f (A : _) (a : A) (args : mlist dyn) : M (dyn *m mlist dyn) :=
    mtry
      M.decompose_app'' (S:=fun _ _ => _) a
      (fun X Y h x =>
         f _ h (Dyn x :m: args)
      )
    with NotAnApplication =n>
          M.ret (m: Dyn a, args)
      end
  in
    rec _ a mnil
.

Mtac Do (M.decompose app >>= M.print_term).
Mtac Do (decompose_app app >>= M.print_term).
Mtac Do (decompose_app app).

Notation FA := (forall n : nat, n = n).

Definition test3 := M.decompose_forallT (B:=fun _ => _) FA (fun A B => M.ret tt) (M.raise NotAForall).

Mtac Do (test3).

Notation FA_Prop := (forall n : nat, n = n).

Definition test3_Prop := M.decompose_forallP (B:=fun _ => _) FA_Prop (fun A B => M.ret tt) (M.raise NotAForall).

Mtac Do (test3_Prop).