Library Paco.paco1

Require Export paconotation pacotacuser.
Require Import paconotation_internal pacotac pacon.
Set Implicit Arguments.

Section PACO1.

Variable T0 : Type.

Record sig1T :=
  exist1T {
      proj1T0: @T0;
    }.

Definition uncurry1 (R: rel1 T0): rel1 sig1T := fun x => R (proj1T0 x).

Definition curry1 (R: rel1 sig1T): rel1 T0 :=
  fun x0 => R (exist1T x0).

Lemma uncurry_map1 r0 r1 (LE : r0 <1== r1) : uncurry1 r0 <1== uncurry1 r1.
Proof. intros [] H. apply LE. apply H. Qed.

Lemma uncurry_map_rev1 r0 r1 (LE: uncurry1 r0 <1== uncurry1 r1) : r0 <1== r1.
Proof.
  repeat_intros 1. intros H. apply (LE (exist1T x0) H).
Qed.

Lemma curry_map1 r0 r1 (LE: r0 <1== r1) : curry1 r0 <1== curry1 r1.
Proof.
  repeat_intros 1. intros H. apply (LE (exist1T x0) H).
Qed.

Lemma curry_map_rev1 r0 r1 (LE: curry1 r0 <1== curry1 r1) : r0 <1== r1.
Proof.
  intros [] H. apply LE. apply H.
Qed.

Lemma uncurry_bij1_1 r : curry1 (uncurry1 r) <1== r.
Proof. unfold le1. repeat_intros 1. intros H. apply H. Qed.

Lemma uncurry_bij2_1 r : r <1== curry1 (uncurry1 r).
Proof. unfold le1. repeat_intros 1. intros H. apply H. Qed.

Lemma curry_bij1_1 r : uncurry1 (curry1 r) <1== r.
Proof. intros []. intro H. apply H. Qed.

Lemma curry_bij2_1 r : r <1== uncurry1 (curry1 r).
Proof. intros []. intro H. apply H. Qed.

Lemma uncurry_adjoint1_1 r0 r1 (LE: uncurry1 r0 <1== r1) : r0 <1== curry1 r1.
Proof.
  apply uncurry_map_rev1. eapply le1_trans; [apply LE|]. apply curry_bij2_1.
Qed.

Lemma uncurry_adjoint2_1 r0 r1 (LE: r0 <1== curry1 r1) : uncurry1 r0 <1== r1.
Proof.
  apply curry_map_rev1. eapply le1_trans; [|apply LE]. apply uncurry_bij2_1.
Qed.

Lemma curry_adjoint1_1 r0 r1 (LE: curry1 r0 <1== r1) : r0 <1== uncurry1 r1.
Proof.
  apply curry_map_rev1. eapply le1_trans; [apply LE|]. apply uncurry_bij2_1.
Qed.

Lemma curry_adjoint2_1 r0 r1 (LE: r0 <1== uncurry1 r1) : curry1 r0 <1== r1.
Proof.
  apply uncurry_map_rev1. eapply le1_trans; [|apply LE]. apply curry_bij1_1.
Qed.

Predicates of Arity 1


Definition paco1(gf : rel1 T0 -> rel1 T0)(r: rel1 T0) : rel1 T0 :=
  curry1 (paco (fun R0 => uncurry1 (gf (curry1 R0))) (uncurry1 r)).

Definition upaco1(gf : rel1 T0 -> rel1 T0)(r: rel1 T0) := paco1 gf r \1/ r.
Arguments paco1 : clear implicits.
Arguments upaco1 : clear implicits.
Hint Unfold upaco1.

Definition monotone1 (gf: rel1 T0 -> rel1 T0) :=
  forall x0 r r' (IN: gf r x0) (LE: r <1= r'), gf r' x0.

Definition _monotone1 (gf: rel1 T0 -> rel1 T0) :=
  forall r r'(LE: r <1= r'), gf r <1== gf r'.

Lemma monotone1_eq (gf: rel1 T0 -> rel1 T0) :
  monotone1 gf <-> _monotone1 gf.
Proof. unfold monotone1, _monotone1, le1. split; intros; eapply H; eassumption. Qed.

Lemma monotone1_map (gf: rel1 T0 -> rel1 T0)
      (MON: _monotone1 gf) :
  _monotone (fun R0 => uncurry1 (gf (curry1 R0))).
Proof.
  repeat_intros 3. apply uncurry_map1. apply MON; apply curry_map1; assumption.
Qed.

Lemma _paco1_mon_gen (gf gf': rel1 T0 -> rel1 T0) r r'
    (LEgf: gf <2= gf')
    (LEr: r <1= r'):
  paco1 gf r <1== paco1 gf' r'.
Proof.
  apply curry_map1. red; intros. eapply paco_mon_gen. apply PR.
  - intros. apply LEgf, PR0.
  - intros. apply LEr, PR0.
Qed.

Lemma paco1_mon_gen (gf gf': rel1 T0 -> rel1 T0) r r' x0
    (REL: paco1 gf r x0)
    (LEgf: gf <2= gf')
    (LEr: r <1= r'):
  paco1 gf' r' x0.
Proof.
  eapply _paco1_mon_gen; [apply LEgf | apply LEr | apply REL].
Qed.

Lemma upaco1_mon_gen (gf gf': rel1 T0 -> rel1 T0) r r' x0
    (REL: upaco1 gf r x0)
    (LEgf: gf <2= gf')
    (LEr: r <1= r'):
  upaco1 gf' r' x0.
Proof.
  destruct REL.
  - left. eapply paco1_mon_gen; [apply H | apply LEgf | apply LEr].
  - right. apply LEr, H.
Qed.

Section Arg1.

Variable gf : rel1 T0 -> rel1 T0.
Arguments gf : clear implicits.

Theorem _paco1_mon: _monotone1 (paco1 gf).
Proof.
  repeat_intros 3. eapply curry_map1, _paco_mon; apply uncurry_map1; assumption.
Qed.

Theorem _paco1_acc: forall
  l r (OBG: forall rr (INC: r <1== rr) (CIH: l <1== rr), l <1== paco1 gf rr),
  l <1== paco1 gf r.
Proof.
  intros. apply uncurry_adjoint1_1.
  eapply _paco_acc. intros.
  apply uncurry_adjoint1_1 in INC. apply uncurry_adjoint1_1 in CIH.
  apply uncurry_adjoint2_1.
  eapply le1_trans. eapply (OBG _ INC CIH).
  apply curry_map1.
  apply _paco_mon; try apply le1_refl; apply curry_bij1_1.
Qed.

Theorem _paco1_mult_strong: forall r,
  paco1 gf (upaco1 gf r) <1== paco1 gf r.
Proof.
  intros. apply curry_map1.
  eapply le1_trans; [| eapply _paco_mult_strong].
  apply _paco_mon; intros []; intros H; apply H.
Qed.

Theorem _paco1_fold: forall r,
  gf (upaco1 gf r) <1== paco1 gf r.
Proof.
  intros. apply uncurry_adjoint1_1.
  eapply le1_trans; [| apply _paco_fold]. apply le1_refl.
Qed.

Theorem _paco1_unfold: forall (MON: _monotone1 gf) r,
  paco1 gf r <1== gf (upaco1 gf r).
Proof.
  intros. apply curry_adjoint2_1.
  eapply _paco_unfold; apply monotone1_map; assumption.
Qed.

Theorem paco1_acc: forall
  l r (OBG: forall rr (INC: r <1= rr) (CIH: l <1= rr), l <1= paco1 gf rr),
  l <1= paco1 gf r.
Proof.
  apply _paco1_acc.
Qed.

Theorem paco1_mon: monotone1 (paco1 gf).
Proof.
  apply monotone1_eq.
  apply _paco1_mon.
Qed.

Theorem upaco1_mon: monotone1 (upaco1 gf).
Proof.
  repeat_intros 3. intros R LE0.
  destruct R.
  - left. eapply paco1_mon. apply H. apply LE0.
  - right. apply LE0, H.
Qed.

Theorem paco1_mult_strong: forall r,
  paco1 gf (upaco1 gf r) <1= paco1 gf r.
Proof.
  apply _paco1_mult_strong.
Qed.

Corollary paco1_mult: forall r,
  paco1 gf (paco1 gf r) <1= paco1 gf r.
Proof. intros; eapply paco1_mult_strong, paco1_mon; [apply PR|..]; intros; left; assumption. Qed.

Theorem paco1_fold: forall r,
  gf (upaco1 gf r) <1= paco1 gf r.
Proof.
  apply _paco1_fold.
Qed.

Theorem paco1_unfold: forall (MON: monotone1 gf) r,
  paco1 gf r <1= gf (upaco1 gf r).
Proof.
  repeat_intros 1. eapply _paco1_unfold; apply monotone1_eq; assumption.
Qed.

End Arg1.

Arguments paco1_acc : clear implicits.
Arguments paco1_mon : clear implicits.
Arguments upaco1_mon : clear implicits.
Arguments paco1_mult_strong : clear implicits.
Arguments paco1_mult : clear implicits.
Arguments paco1_fold : clear implicits.
Arguments paco1_unfold : clear implicits.

Global Instance paco1_inst (gf : rel1 T0->_) r x0 : paco_class (paco1 gf r x0) :=
{ pacoacc := paco1_acc gf;
  pacomult := paco1_mult gf;
  pacofold := paco1_fold gf;
  pacounfold := paco1_unfold gf }.

End PACO1.

Global Opaque paco1.

Hint Unfold upaco1.
Hint Resolve paco1_fold.
Hint Unfold monotone1.