Library fcsl.pcm.pred
From Coq Require Import ssreflect ssrbool ssrfun Setoid.
From mathcomp Require Import seq.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Set Warnings "-projection-no-head-constant".
Lemma andTp p : True /\ p <-> p. Proof. by intuition. Qed.
Lemma andpT p : p /\ True <-> p. Proof. by intuition. Qed.
Lemma andFp p : False /\ p <-> False. Proof. by intuition. Qed.
Lemma andpF p : p /\ False <-> False. Proof. by intuition. Qed.
Lemma orTp p : True \/ p <-> True. Proof. by intuition. Qed.
Lemma orpT p : p \/ True <-> True. Proof. by intuition. Qed.
Lemma orFp p : False \/ p <-> p. Proof. by intuition. Qed.
Lemma orpF p : p \/ False <-> p. Proof. by intuition. Qed.
Delimit Scope rel_scope with rel.
Open Scope rel_scope.
Definition Pred T := T -> Prop.
Identity Coercion fun_of_Pred : Pred >-> Funclass.
Notation xPred0 := (fun _ => False).
Notation xPred1 := (fun x y => x = y).
Notation xPredT := (fun _ => True).
Notation xPredI := (fun (p1 p2 : Pred _) x => p1 x /\ p2 x).
Notation xPredU := (fun (p1 p2 : Pred _) x => p1 x \/ p2 x).
Notation xPredC := (fun (p : Pred _) x => ~ p x).
Notation xPredD := (fun (p1 p2 : Pred _) x => ~ p2 x /\ p1 x).
Notation xPreim := (fun f (p : Pred _) x => p (f x)).
Section Predicates.
Variable T : Type.
Definition Simpl_Pred := simpl_fun T Prop.
Definition SimplPred (p : Pred T) : Simpl_Pred := SimplFun p.
Coercion Pred_of_Simpl (p : Simpl_Pred) : Pred T := p : T -> Prop.
Definition Pred0 := SimplPred xPred0.
Definition Pred1 x := SimplPred (xPred1 x).
Definition PredT := SimplPred xPredT.
Definition PredI p1 p2 := SimplPred (xPredI p1 p2).
Definition PredU p1 p2 := SimplPred (xPredU p1 p2).
Definition PredC p := SimplPred (xPredC p).
Definition PredD p1 p2 := SimplPred (xPredD p1 p2).
Definition Preim rT f (d : Pred rT) := SimplPred (xPreim f d).
CoInductive Mem_Pred : Type := MemProp of Pred T.
Definition isMem pT toPred mem := mem = (fun p : pT => MemProp [eta toPred p]).
Structure PredType : Type := PropPredType {
Pred_Sort :> Type;
toPred : Pred_Sort -> Pred T;
_ : {mem | isMem toPred mem}}.
Definition mkPredType pT toP :=
PropPredType (exist (@isMem pT toP) _ (erefl _)).
Canonical Structure PredPredType := Eval hnf in @mkPredType (Pred T) id.
Canonical Structure SimplPredPredType := Eval hnf in mkPredType Pred_of_Simpl.
Coercion Pred_of_Mem mp : Pred_Sort PredPredType :=
let: MemProp p := mp in [eta p].
Canonical Structure MemPredType := Eval hnf in mkPredType Pred_of_Mem.
Canonical Structure predPredType := Eval hnf in @mkPredType (pred T) id.
Canonical Structure simplpredPredType :=
Eval hnf in @mkPredType (simpl_pred T) (fun p x => p x).
End Predicates.
Arguments Pred0 [T].
Arguments PredT [T].
Prenex Implicits Pred0 PredT PredI PredU PredC PredD Preim.
Notation "r1 +p r2" := (PredU r1 r2 : Pred _)
(at level 55, right associativity) : rel_scope.
Notation "r1 *p r2" := (xPredI r1 r2 : Pred _)
(at level 45, right associativity) : rel_scope.
Notation "[ 'Pred' : T | E ]" := (SimplPred (fun _ : T => E))
(at level 0, format "[ 'Pred' : T | E ]") : fun_scope.
Notation "[ 'Pred' x | E ]" := (SimplPred (fun x => E))
(at level 0, x ident, format "[ 'Pred' x | E ]") : fun_scope.
Notation "[ 'Pred' x : T | E ]" := (SimplPred (fun x : T => E))
(at level 0, x ident, only parsing) : fun_scope.
Notation "[ 'Pred' x y | E ]" := (SimplPred (fun t => let: (x, y) := t in E))
(at level 0, x ident, y ident, format "[ 'Pred' x y | E ]") : fun_scope.
Notation "[ 'Pred' x y : T | E ]" :=
(SimplPred (fun t : (T*T) => let: (x, y) := t in E))
(at level 0, x ident, y ident, only parsing) : fun_scope.
Definition repack_Pred T pT :=
let: PropPredType _ a mP := pT return {type of @PropPredType T for pT} -> _ in
fun k => k a mP.
Notation "[ 'PredType' 'of' T ]" := (repack_Pred (fun a => @PropPredType _ T a))
(at level 0, format "[ 'PredType' 'of' T ]") : form_scope.
Notation Pred_Class := (Pred_Sort (PredPredType _)).
Coercion Sort_of_Simpl_Pred T (p : Simpl_Pred T) : Pred_Class := p : Pred T.
Definition PredArgType := Type.
Coercion Pred_of_argType (T : PredArgType) : Simpl_Pred T := PredT.
Notation "{ :: T }" := (T%type : PredArgType)
(at level 0, format "{ :: T }") : type_scope.
Definition Mem T (pT : PredType T) : pT -> Mem_Pred T :=
nosimpl (let: PropPredType _ _ (exist mem _) := pT return pT -> _ in mem).
Definition InMem T x mp := nosimpl Pred_of_Mem T mp x.
Prenex Implicits Mem.
Coercion Pred_of_Mem_Pred T mp := [Pred x : T | InMem x mp].
Definition EqPredType T (pT : PredType T) (p1 p2 : pT) :=
forall x : T, toPred p1 x <-> toPred p2 x.
Definition SubPredType T (pT : PredType T) (p1 p2 : pT) :=
forall x : T, toPred p1 x -> toPred p2 x.
Definition EqSimplPred T (p1 p2 : Simpl_Pred T) := EqPredType p1 p2.
Definition SubSimplPred T (p1 p2 : Simpl_Pred T) := SubPredType p1 p2.
Definition EqPredFun T1 T2 (pT2 : PredType T2) p1 p2 :=
forall x : T1, @EqPredType T2 pT2 (p1 x) (p2 x).
Definition SubPredFun T1 T2 (pT2 : PredType T2) p1 p2 :=
forall x : T1, @SubPredType T2 pT2 (p1 x) (p2 x).
Definition EqMem T p1 p2 := forall x : T, InMem x p1 <-> InMem x p2.
Definition SubMem T p1 p2 := forall x : T, InMem x p1 -> InMem x p2.
Notation "A <~> B" := (@EqPredType _ _ A B)
(at level 70, no associativity) : rel_scope.
Notation "A ~> B" := (@SubPredType _ _ A B)
(at level 70, no associativity) : rel_scope.
Notation "A <~1> B" := (@EqPredFun _ _ _ A B)
(at level 70, no associativity) : rel_scope.
Notation "A ~1> B" := (@SubPredFun _ _ _ A B)
(at level 70, no associativity) : rel_scope.
Notation "x \In A" := (InMem x (Mem A))
(at level 70, no associativity) : rel_scope.
Notation "x \Notin A" := (~ (x \In A))
(at level 70, no associativity) : rel_scope.
Notation "A =p B" := (EqMem (Mem A) (Mem B))
(at level 70, no associativity) : type_scope.
Notation "A <=p B" := (SubMem (Mem A) (Mem B))
(at level 70, no associativity) : type_scope.
Notation "[ 'Mem' A ]" := (Pred_of_Simpl (Pred_of_Mem_Pred (Mem A)))
(at level 0, only parsing) : fun_scope.
Notation "[ 'PredI' A & B ]" := (PredI [Mem A] [Mem B])
(at level 0, format "[ 'PredI' A & B ]") : fun_scope.
Notation "[ 'PredU' A & B ]" := (PredU [Mem A] [Mem B])
(at level 0, format "[ 'PredU' A & B ]") : fun_scope.
Notation "[ 'PredD' A & B ]" := (PredD [Mem A] [Mem B])
(at level 0, format "[ 'PredD' A & B ]") : fun_scope.
Notation "[ 'PredC' A ]" := (PredC [Mem A])
(at level 0, format "[ 'PredC' A ]") : fun_scope.
Notation "[ 'Preim' f 'of' A ]" := (Preim f [Mem A])
(at level 0, format "[ 'Preim' f 'of' A ]") : fun_scope.
Notation "[ 'Pred' x \In A ]" := [Pred x | x \In A]
(at level 0, x ident, format "[ 'Pred' x \In A ]") : fun_scope.
Notation "[ 'Pred' x \In A | E ]" := [Pred x | (x \In A) /\ E]
(at level 0, x ident, format "[ 'Pred' x \In A | E ]") : fun_scope.
Notation "[ 'Pred' x y \In A & B | E ]" :=
[Pred x y | (x \In A) /\ (y \In B) /\ E]
(at level 0, x ident, y ident,
format "[ 'Pred' x y \In A & B | E ]") : fun_scope.
Notation "[ 'Pred' x y \In A & B ]" := [Pred x y | (x \In A) /\ (y \In B)]
(at level 0, x ident, y ident,
format "[ 'Pred' x y \In A & B ]") : fun_scope.
Notation "[ 'Pred' x y \In A | E ]" := [Pred x y \In A & A | E]
(at level 0, x ident, y ident,
format "[ 'Pred' x y \In A | E ]") : fun_scope.
Notation "[ 'Pred' x y \In A ]" := [Pred x y \In A & A]
(at level 0, x ident, y ident,
format "[ 'Pred' x y \In A ]") : fun_scope.
Section Simplifications.
Variables (T : Type) (pT : PredType T).
Lemma Mem_toPred : forall (p : pT), Mem (toPred p) = Mem p.
Proof. by rewrite /Mem; case: pT => T1 app1 [mem1 /= ->]. Qed.
Lemma toPredE x (p : pT) : toPred p x = (x \In p).
Proof. by rewrite -Mem_toPred. Qed.
Lemma In_Simpl x (p : Simpl_Pred T) : (x \In p) = p x.
Proof. by []. Qed.
Lemma Simpl_PredE (p : Pred T) : p <~> [Pred x | p x].
Proof. by []. Qed.
Lemma Mem_Simpl (p : Simpl_Pred T) : Mem p = p :> Pred T.
Proof. by []. Qed.
Definition MemE := Mem_Simpl.
Lemma Mem_Mem (p : pT) : (Mem (Mem p) = Mem p) * (Mem [Mem p] = Mem p).
Proof. by rewrite -Mem_toPred. Qed.
End Simplifications.
Section RelProperties.
Variables (T : Type) (pT : PredType T).
Lemma EqPredType_refl (r : pT) : EqPredType r r. Proof. by []. Qed.
Lemma SubPredType_refl (r : pT) : SubPredType r r. Proof. by []. Qed.
Lemma EqPredType_sym (r1 r2 : pT) : EqPredType r1 r2 -> EqPredType r2 r1.
Proof. by move=>H1 x; split; move/H1. Qed.
Lemma EqPredType_trans' (r1 r2 r3 : pT) :
EqPredType r1 r2 -> EqPredType r2 r3 -> EqPredType r1 r3.
Proof. by move=>H1 H2 x; split; [move/H1; move/H2 | move/H2; move/H1]. Qed.
Lemma SubPredType_trans' (r1 r2 r3 : pT) :
SubPredType r1 r2 -> SubPredType r2 r3 -> SubPredType r1 r3.
Proof. by move=>H1 H2 x; move/H1; move/H2. Qed.
Definition EqPredType_trans r2 r1 r3 := @EqPredType_trans' r1 r2 r3.
Definition SubPredType_trans r2 r1 r3 := @SubPredType_trans' r1 r2 r3.
End RelProperties.
Hint Resolve EqPredType_refl SubPredType_refl.
Add Parametric Relation T (pT : PredType T) : pT (@EqPredType _ pT)
reflexivity proved by (@EqPredType_refl _ _)
symmetry proved by (@EqPredType_sym _ _)
transitivity proved by (@EqPredType_trans' _ _) as EqPredType_rel.
Add Parametric Relation T : (Simpl_Pred T) (@EqSimplPred _)
reflexivity proved by (@EqPredType_refl _ _)
symmetry proved by (@EqPredType_sym _ _)
transitivity proved by (@EqPredType_trans' _ _) as EqSimplPred_rel.
Add Parametric Relation T : (Simpl_Pred T) (@SubSimplPred _)
reflexivity proved by (@SubPredType_refl _ _)
transitivity proved by (@SubPredType_trans' _ _) as SubSimplPred_rel.
Add Parametric Relation T : (Mem_Pred T) (@EqMem T)
reflexivity proved by (@EqPredType_refl _ _)
symmetry proved by (@EqPredType_sym _ _)
transitivity proved by (@EqPredType_trans' _ _) as EqMem_rel.
Add Parametric Relation T : (Mem_Pred T) (@SubMem _)
reflexivity proved by (@SubPredType_refl _ _)
transitivity proved by (@SubPredType_trans' _ _) as SubMem_rel.
Add Parametric Morphism T : (@Pred_of_Simpl T) with signature
@EqSimplPred _ ==> @EqPredType T (PredPredType T) as Pred_of_Simpl_morph.
Proof. by []. Qed.
Add Parametric Morphism T (pT : PredType T) : (@EqPredType T pT) with signature
@EqPredType _ _ ==> @EqPredType _ _ ==> iff as EqPredType_morph.
Proof. by move=>r1 s1 H1 r2 s2 H2; rewrite H1 H2. Qed.
Add Parametric Morphism T (pT : PredType T) : (@SubPredType T pT) with signature
@EqPredType _ _ ==> @EqPredType _ _ ==> iff as SubPred_morph.
Proof. by move=>r1 s1 H1 r2 s2 H2; split=>H x; move/H1; move/H; move/H2. Qed.
Add Parametric Morphism T : (@InMem T) with signature
@eq _ ==> @EqMem _ ==> iff as InMem_morph.
Proof. by move=>x r s H; split; move/H. Qed.
Add Parametric Morphism T (pT : PredType T) : (@Mem T pT) with signature
@EqPredType _ _ ==> @EqMem _ as Mem_morhp.
Proof. by move=>x y H p; rewrite /EqPredType -!toPredE in H *; rewrite H. Qed.
Add Parametric Morphism T : (@PredU T) with signature
@EqPredType _ _ ==> @EqPredType _ _ ==> @EqSimplPred _ as predU_morph.
Proof.
move=>r1 s1 H1 r2 h2 H2 x; split;
by case; [move/H1 | move/H2]=>/=; auto.
Qed.
Add Parametric Morphism T : (@PredI T) with signature
@EqPredType _ _ ==> @EqPredType _ _ ==> @EqPredType _ _ as predI_morph.
Proof.
move=>r1 s1 H1 r2 s2 H2 x; split;
by case; move/H1=>T1; move/H2=>T2.
Qed.
Add Parametric Morphism T : (@PredC T) with signature
@EqPredType _ _ ==> @EqPredType _ _ as predC_morph.
Proof. by move=>r s H x; split=>H1; apply/H. Qed.
Section RelLaws.
Variable (T : Type).
Lemma orrI (r : Pred nat) : r +p r <~> r.
Proof. by move=>x; split; [case | left]. Qed.
Lemma orrC (r1 r2 : Pred T) : r1 +p r2 <~> r2 +p r1.
Proof. move=>x; split=>/=; tauto. Qed.
Lemma orr0 (r : Pred T) : r +p Pred0 <~> r.
Proof. by move=>x; split; [case | left]. Qed.
Lemma or0r (r : Pred T) : Pred0 +p r <~> r.
Proof. by rewrite orrC orr0. Qed.
Lemma orrCA (r1 r2 r3 : Pred T) : r1 +p r2 +p r3 <~> r2 +p r1 +p r3.
Proof. by move=>x; split=>/=; intuition. Qed.
Lemma orrAC (r1 r2 r3 : Pred T) : (r1 +p r2) +p r3 <~> (r1 +p r3) +p r2.
Proof. by move=>?; split=>/=; intuition. Qed.
Lemma orrA (r1 r2 r3 : Pred T) : (r1 +p r2) +p r3 <~> r1 +p r2 +p r3.
Proof. by rewrite (orrC r2) orrCA orrC. Qed.
Lemma orrAb (r1 a : Pred T) : r1 <~> r1 +p a <-> a ~> r1.
Proof.
split; first by move=>-> x /=; auto.
move=>H x /=; split; first by auto.
by case=>//; move/H.
Qed.
Lemma sub_orl (r1 r2 : Pred T) : r1 ~> r1 +p r2. Proof. by left. Qed.
Lemma sub_orr (r1 r2 : Pred T) : r2 ~> r1 +p r2. Proof. by right. Qed.
End RelLaws.
Section SubMemLaws.
Variable T : Type.
Lemma subp_refl (p : Pred T) : p <=p p.
Proof. by []. Qed.
Lemma subp_asym (p1 p2 : Pred T) : p1 <=p p2 -> p2 <=p p1 -> p1 =p p2.
Proof. by move=>H1 H2 x; split; [move/H1 | move/H2]. Qed.
Lemma subp_trans (p2 p1 p3 : Pred T) : p1 <=p p2 -> p2 <=p p3 -> p1 <=p p3.
Proof. by move=>H1 H2 x; move/H1; move/H2. Qed.
Lemma subp_or (p1 p2 q : Pred T) : p1 <=p q /\ p2 <=p q <-> p1 +p p2 <=p q.
Proof.
split=>[[H1] H2 x|H1]; first by case; [move/H1 | move/H2].
by split=>x H2; apply: H1; [left | right].
Qed.
Lemma subp_and (p1 p2 q : Pred T) : q <=p p1 /\ q <=p p2 <-> q <=p p1 *p p2.
Proof.
split=>[[H1] H2 x|] H; last by split=>x; case/H.
by split; [apply: H1 | apply: H2].
Qed.
Lemma subp_orl (p1 p2 q : Pred T) : p1 <=p p2 -> p1 +p q <=p p2 +p q.
Proof. by move=>H x; case; [move/H; left|right]. Qed.
Lemma subp_orr (p1 p2 q : Pred T) : p1 <=p p2 -> q +p p1 <=p q +p p2.
Proof. by move=>H x; case; [left | move/H; right]. Qed.
Lemma subp_andl (p1 p2 q : Pred T) : p1 <=p p2 -> p1 *p q <=p p2 *p q.
Proof. by by move=>H x [H1 H2]; split; [apply: H|]. Qed.
Lemma subp_andr (p1 p2 q : Pred T) : p1 <=p p2 -> q *p p1 <=p q *p p2.
Proof. by move=>H x [H1 H2]; split; [|apply: H]. Qed.
End SubMemLaws.
Hint Resolve subp_refl.
Section ListMembership.
Variable T : Type.
Fixpoint Mem_Seq (s : seq T) :=
if s is y::s' then (fun x => x = y \/ Mem_Seq s' x) else xPred0.
Definition EqSeq_Class := seq T.
Identity Coercion seq_of_EqSeq : EqSeq_Class >-> seq.
Coercion Pred_of_Eq_Seq (s : EqSeq_Class) : Pred_Class := [eta Mem_Seq s].
Canonical Structure seq_PredType := @mkPredType T (seq T) Pred_of_Eq_Seq.
Canonical Structure Mem_Seq_PredType := mkPredType Mem_Seq.
Lemma In_cons y s x : (x \In y :: s) <-> (x = y) \/ (x \In s).
Proof. by []. Qed.
Lemma In_nil x : (x \In [::]) <-> False.
Proof. by []. Qed.
Lemma Mem_Seq1 x y : (x \In [:: y]) <-> (x = y).
Proof. by rewrite In_cons orpF. Qed.
Definition InE := (Mem_Seq1, In_cons, In_Simpl).
Lemma Mem_cat x : forall s1 s2, (x \In s1 ++ s2) <-> x \In s1 \/ x \In s2.
Proof.
elim=>[|y s1 IH] s2 /=; first by split; [right | case].
rewrite !InE /=.
split.
- case=>[->|/IH]; first by left; left.
by case; [left; right | right].
case; first by case; [left | move=>H; right; apply/IH; left].
by move=>H; right; apply/IH; right.
Qed.
Lemma In_split x s : x \In s -> exists s1 s2, s = s1 ++ x :: s2.
Proof.
elim:s=>[|y s IH] //=; rewrite InE.
case=>[<-|]; first by exists [::], s.
by case/IH=>s1 [s2 ->]; exists (y :: s1), s2.
Qed.
End ListMembership.
Lemma Mem_map T T' (f : T -> T') x (s : seq T) :
x \In s -> f x \In (map f s).
Proof.
elim: s=>[|y s IH] //; rewrite InE /=.
by case=>[<-|/IH]; [left | right].
Qed.
Lemma Mem_map_inv T T' (f : T -> T') x (s : seq T) :
x \In (map f s) -> exists y, x = f y /\ y \In s.
Proof.
elim: s=>[|y s IH] //=; rewrite InE /=.
case; first by move=>->; exists y; split=>//; left.
by case/IH=>z [->]; exists z; split=>//; right.
Qed.
Prenex Implicits Mem_map_inv.
Lemma eqfun_refl A B (f : A -> B) : f =1 f. Proof. by []. Qed.
Lemma eqfun_sym A B (f1 f2 : A -> B) : f1 =1 f2 -> f2 =1 f1.
Proof. by move=>H x; rewrite H. Qed.
Lemma eqfun_trans A B (f1 f2 f3 : A -> B) : f1 =1 f2 -> f2 =1 f3 -> f1 =1 f3.
Proof. by move=>H1 H2 x; rewrite H1 H2. Qed.
Add Parametric Relation A B : (A -> B) (@eqfun _ _)
reflexivity proved by (@eqfun_refl A B)
symmetry proved by (@eqfun_sym A B)
transitivity proved by (@eqfun_trans A B) as eqfun_morph.
Section Image.
Variables (A B : Type) (P : Pred A) (f : A -> B).
Inductive image_spec b : Prop := Im_mem a of b = f a & a \In P.
Definition Image' : Pred B := image_spec.
End Image.
Notation Image f P := (Image' P f).
Notation "[ 'Image' E | i <- s ]" := (Image (fun i => E) s)
(at level 0, E at level 99, i ident,
format "[ '[hv' 'Image' E '/ ' | i <- s ] ']'") : rel_scope.
Notation "[ 'Image' E | i <- s & C ]" := [Image E | i <- [PredI s & C]]
(at level 0, E at level 99, i ident,
format "[ '[hv' 'Image' E '/ ' | i <- s '/ ' & C ] ']'") : rel_scope.
Notation "[ 'Image' E | i : T <- s ]" := (Image (fun i : T => E) s)
(at level 0, E at level 99, i ident, only parsing) : rel_scope.
Notation "[ 'Image' E | i : T <- s & C ]" :=
[Image E | i : T <- [PredI s & C]]
(at level 0, E at level 99, i ident, only parsing) : rel_scope.
Lemma Image_mem A B (f : A -> B) (P : Pred A) x : x \In P -> f x \In Image f P.
Proof. by apply: Im_mem. Qed.
Lemma Image_inj_sub A B (f : A -> B) (X1 X2 : Pred A) :
injective f -> Image f X1 <=p Image f X2 -> X1 <=p X2.
Proof. by move=>H E x /(Image_mem f) /E [y] /H ->. Qed.
Lemma Image_inj_eqmem A B (f : A -> B) (X1 X2 : Pred A) :
injective f -> Image f X1 =p Image f X2 -> X1 =p X2.
Proof. by move=>H E; split; apply: Image_inj_sub H _ _; rewrite E. Qed.
Lemma ImageU A B (f : A -> B) (X1 X2 : Pred A) :
Image f (PredU X1 X2) =p [PredU Image f X1 & Image f X2].
Proof.
move=>x; split.
- by case=>y -> [H|H]; [left | right]; apply: Image_mem.
by case; case=>y -> H; apply: Image_mem; [left | right].
Qed.
Lemma ImageIm A B C (f1 : B -> C) (f2 : A -> B) (X : Pred A) :
Image f1 (Image f2 X) =p Image (f1 \o f2) X.
Proof.
move=>x; split; first by case=>_ -> [x' ->] H; exists x'.
by case=>a -> H; exists (f2 a)=>//; exists a.
Qed.
Lemma ImageEq A B (f1 f2 : A -> B) (X : Pred A) :
f1 =1 f2 -> Image f1 X =p Image f2 X.
Proof. by move=>H x; split; case=>a ->; exists a. Qed.