Library mathcomp.ssreflect.div
Require Import mathcomp.ssreflect.ssreflect.
From mathcomp
Require Import ssrfun ssrbool eqtype ssrnat seq.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
From mathcomp
Require Import ssrfun ssrbool eqtype ssrnat seq.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Euclidean division
Definition edivn_rec d :=
fix loop m q := if m - d is m'.+1 then loop m' q.+1 else (q, m).
Definition edivn m d := if d > 0 then edivn_rec d.-1 m 0 else (0, m).
CoInductive edivn_spec m d : nat * nat -> Type :=
EdivnSpec q r of m = q * d + r & (d > 0) ==> (r < d) : edivn_spec m d (q, r).
Lemma edivnP m d : edivn_spec m d (edivn m d).
Proof.
rewrite -{1}[m]/(0 * d + m) /edivn; case: d => //= d.
elim: m {-2}m 0 (leqnn m) => [|n IHn] [|m] q //= le_mn.
have le_m'n: m - d <= n by rewrite (leq_trans (leq_subr d m)).
rewrite subn_if_gt; case: ltnP => [// | le_dm].
by rewrite -{1}(subnKC le_dm) -addSn addnA -mulSnr; apply: IHn.
Qed.
Lemma edivn_eq d q r : r < d -> edivn (q * d + r) d = (q, r).
Proof.
move=> lt_rd; have d_gt0: 0 < d by apply: leq_trans lt_rd.
case: edivnP lt_rd => q' r'; rewrite d_gt0 /=.
wlog: q q' r r' / q <= q' by case/orP: (leq_total q q'); last symmetry; eauto.
rewrite leq_eqVlt; case/predU1P => [-> /addnI-> |] //=.
rewrite -(leq_pmul2r d_gt0) => /leq_add lt_qr eq_qr _ /lt_qr {lt_qr}.
by rewrite addnS ltnNge mulSn -addnA eq_qr addnCA addnA leq_addr.
Qed.
Definition divn m d := (edivn m d).1.
Notation "m %/ d" := (divn m d) : nat_scope.
Definition modn_rec d := fix loop m := if m - d is m'.+1 then loop m' else m.
Definition modn m d := if d > 0 then modn_rec d.-1 m else m.
Notation "m %% d" := (modn m d) : nat_scope.
Notation "m = n %[mod d ]" := (m %% d = n %% d) : nat_scope.
Notation "m == n %[mod d ]" := (m %% d == n %% d) : nat_scope.
Notation "m <> n %[mod d ]" := (m %% d <> n %% d) : nat_scope.
Notation "m != n %[mod d ]" := (m %% d != n %% d) : nat_scope.
Lemma modn_def m d : m %% d = (edivn m d).2.
Proof.
case: d => //= d; rewrite /modn /edivn /=.
elim: m {-2}m 0 (leqnn m) => [|n IHn] [|m] q //=.
rewrite ltnS !subn_if_gt; case: (d <= m) => // le_mn.
by apply: IHn; apply: leq_trans le_mn; apply: leq_subr.
Qed.
Lemma edivn_def m d : edivn m d = (m %/ d, m %% d).
Proof. by rewrite /divn modn_def; case: (edivn m d). Qed.
Lemma divn_eq m d : m = m %/ d * d + m %% d.
Proof. by rewrite /divn modn_def; case: edivnP. Qed.
Lemma div0n d : 0 %/ d = 0. Proof. by case: d. Qed.
Lemma divn0 m : m %/ 0 = 0. Proof. by []. Qed.
Lemma mod0n d : 0 %% d = 0. Proof. by case: d. Qed.
Lemma modn0 m : m %% 0 = m. Proof. by []. Qed.
Lemma divn_small m d : m < d -> m %/ d = 0.
Proof. by move=> lt_md; rewrite /divn (edivn_eq 0). Qed.
Lemma divnMDl q m d : 0 < d -> (q * d + m) %/ d = q + m %/ d.
Proof.
move=> d_gt0; rewrite {1}(divn_eq m d) addnA -mulnDl.
by rewrite /divn edivn_eq // modn_def; case: edivnP; rewrite d_gt0.
Qed.
Lemma mulnK m d : 0 < d -> m * d %/ d = m.
Proof. by move=> d_gt0; rewrite -[m * d]addn0 divnMDl // div0n addn0. Qed.
Lemma mulKn m d : 0 < d -> d * m %/ d = m.
Proof. by move=> d_gt0; rewrite mulnC mulnK. Qed.
Lemma expnB p m n : p > 0 -> m >= n -> p ^ (m - n) = p ^ m %/ p ^ n.
Proof.
by move=> p_gt0 /subnK{2}<-; rewrite expnD mulnK // expn_gt0 p_gt0.
Qed.
Lemma modn1 m : m %% 1 = 0.
Proof. by rewrite modn_def; case: edivnP => ? []. Qed.
Lemma divn1 m : m %/ 1 = m.
Proof. by rewrite {2}(@divn_eq m 1) // modn1 addn0 muln1. Qed.
Lemma divnn d : d %/ d = (0 < d).
Proof. by case: d => // d; rewrite -{1}[d.+1]muln1 mulKn. Qed.
Lemma divnMl p m d : p > 0 -> p * m %/ (p * d) = m %/ d.
Proof.
move=> p_gt0; case: (posnP d) => [-> | d_gt0]; first by rewrite muln0.
rewrite {2}/divn; case: edivnP; rewrite d_gt0 /= => q r ->{m} lt_rd.
rewrite mulnDr mulnCA divnMDl; last by rewrite muln_gt0 p_gt0.
by rewrite addnC divn_small // ltn_pmul2l.
Qed.
Arguments divnMl [p m d].
Lemma divnMr p m d : p > 0 -> m * p %/ (d * p) = m %/ d.
Proof. by move=> p_gt0; rewrite -!(mulnC p) divnMl. Qed.
Arguments divnMr [p m d].
Lemma ltn_mod m d : (m %% d < d) = (0 < d).
Proof. by case: d => // d; rewrite modn_def; case: edivnP. Qed.
Lemma ltn_pmod m d : 0 < d -> m %% d < d.
Proof. by rewrite ltn_mod. Qed.
Lemma leq_trunc_div m d : m %/ d * d <= m.
Proof. by rewrite {2}(divn_eq m d) leq_addr. Qed.
Lemma leq_mod m d : m %% d <= m.
Proof. by rewrite {2}(divn_eq m d) leq_addl. Qed.
Lemma leq_div m d : m %/ d <= m.
Proof.
by case: d => // d; apply: leq_trans (leq_pmulr _ _) (leq_trunc_div _ _).
Qed.
Lemma ltn_ceil m d : 0 < d -> m < (m %/ d).+1 * d.
Proof.
by move=> d_gt0; rewrite {1}(divn_eq m d) -addnS mulSnr leq_add2l ltn_mod.
Qed.
Lemma ltn_divLR m n d : d > 0 -> (m %/ d < n) = (m < n * d).
Proof.
move=> d_gt0; apply/idP/idP.
by rewrite -(leq_pmul2r d_gt0); apply: leq_trans (ltn_ceil _ _).
rewrite !ltnNge -(@leq_pmul2r d n) //; apply: contra => le_nd_floor.
exact: leq_trans le_nd_floor (leq_trunc_div _ _).
Qed.
Lemma leq_divRL m n d : d > 0 -> (m <= n %/ d) = (m * d <= n).
Proof. by move=> d_gt0; rewrite leqNgt ltn_divLR // -leqNgt. Qed.
Lemma ltn_Pdiv m d : 1 < d -> 0 < m -> m %/ d < m.
Proof. by move=> d_gt1 m_gt0; rewrite ltn_divLR ?ltn_Pmulr // ltnW. Qed.
Lemma divn_gt0 d m : 0 < d -> (0 < m %/ d) = (d <= m).
Proof. by move=> d_gt0; rewrite leq_divRL ?mul1n. Qed.
Lemma leq_div2r d m n : m <= n -> m %/ d <= n %/ d.
Proof.
have [-> //| d_gt0 le_mn] := posnP d.
by rewrite leq_divRL // (leq_trans _ le_mn) -?leq_divRL.
Qed.
Lemma leq_div2l m d e : 0 < d -> d <= e -> m %/ e <= m %/ d.
Proof.
move/leq_divRL=> -> le_de.
by apply: leq_trans (leq_trunc_div m e); apply: leq_mul.
Qed.
Lemma leq_divDl p m n : (m + n) %/ p <= m %/ p + n %/ p + 1.
Proof.
have [-> //| p_gt0] := posnP p; rewrite -ltnS -addnS ltn_divLR // ltnW //.
rewrite {1}(divn_eq n p) {1}(divn_eq m p) addnACA !mulnDl -3!addnS leq_add2l.
by rewrite mul2n -addnn -addSn leq_add // ltn_mod.
Qed.
Lemma geq_divBl k m p : k %/ p - m %/ p <= (k - m) %/ p + 1.
Proof.
rewrite leq_subLR addnA; apply: leq_trans (leq_divDl _ _ _).
by rewrite -maxnE leq_div2r ?leq_maxr.
Qed.
Lemma divnMA m n p : m %/ (n * p) = m %/ n %/ p.
Proof.
case: n p => [|n] [|p]; rewrite ?muln0 ?div0n //.
rewrite {2}(divn_eq m (n.+1 * p.+1)) mulnA mulnAC !divnMDl //.
by rewrite [_ %/ p.+1]divn_small ?addn0 // ltn_divLR // mulnC ltn_mod.
Qed.
Lemma divnAC m n p : m %/ n %/ p = m %/ p %/ n.
Proof. by rewrite -!divnMA mulnC. Qed.
Lemma modn_small m d : m < d -> m %% d = m.
Proof. by move=> lt_md; rewrite {2}(divn_eq m d) divn_small. Qed.
Lemma modn_mod m d : m %% d = m %[mod d].
Proof. by case: d => // d; apply: modn_small; rewrite ltn_mod. Qed.
Lemma modnMDl p m d : p * d + m = m %[mod d].
Proof.
case: (posnP d) => [-> | d_gt0]; first by rewrite muln0.
by rewrite {1}(divn_eq m d) addnA -mulnDl modn_def edivn_eq // ltn_mod.
Qed.
Lemma muln_modr {p m d} : 0 < p -> p * (m %% d) = (p * m) %% (p * d).
Proof.
move=> p_gt0; apply: (@addnI (p * (m %/ d * d))).
by rewrite -mulnDr -divn_eq mulnCA -(divnMl p_gt0) -divn_eq.
Qed.
Lemma muln_modl {p m d} : 0 < p -> (m %% d) * p = (m * p) %% (d * p).
Proof. by rewrite -!(mulnC p); apply: muln_modr. Qed.
Lemma modnDl m d : d + m = m %[mod d].
Proof. by rewrite -{1}[d]mul1n modnMDl. Qed.
Lemma modnDr m d : m + d = m %[mod d].
Proof. by rewrite addnC modnDl. Qed.
Lemma modnn d : d %% d = 0.
Proof. by rewrite -{1}[d]addn0 modnDl mod0n. Qed.
Lemma modnMl p d : p * d %% d = 0.
Proof. by rewrite -[p * d]addn0 modnMDl mod0n. Qed.
Lemma modnMr p d : d * p %% d = 0.
Proof. by rewrite mulnC modnMl. Qed.
Lemma modnDml m n d : m %% d + n = m + n %[mod d].
Proof. by rewrite {2}(divn_eq m d) -addnA modnMDl. Qed.
Lemma modnDmr m n d : m + n %% d = m + n %[mod d].
Proof. by rewrite !(addnC m) modnDml. Qed.
Lemma modnDm m n d : m %% d + n %% d = m + n %[mod d].
Proof. by rewrite modnDml modnDmr. Qed.
Lemma eqn_modDl p m n d : (p + m == p + n %[mod d]) = (m == n %[mod d]).
Proof.
case: d => [|d]; first by rewrite !modn0 eqn_add2l.
apply/eqP/eqP=> eq_mn; last by rewrite -modnDmr eq_mn modnDmr.
rewrite -(modnMDl p m) -(modnMDl p n) !mulnSr -!addnA.
by rewrite -modnDmr eq_mn modnDmr.
Qed.
Lemma eqn_modDr p m n d : (m + p == n + p %[mod d]) = (m == n %[mod d]).
Proof. by rewrite -!(addnC p) eqn_modDl. Qed.
Lemma modnMml m n d : m %% d * n = m * n %[mod d].
Proof. by rewrite {2}(divn_eq m d) mulnDl mulnAC modnMDl. Qed.
Lemma modnMmr m n d : m * (n %% d) = m * n %[mod d].
Proof. by rewrite !(mulnC m) modnMml. Qed.
Lemma modnMm m n d : m %% d * (n %% d) = m * n %[mod d].
Proof. by rewrite modnMml modnMmr. Qed.
Lemma modn2 m : m %% 2 = odd m.
Proof. by elim: m => //= m IHm; rewrite -addn1 -modnDml IHm; case odd. Qed.
Lemma divn2 m : m %/ 2 = m./2.
Proof. by rewrite {2}(divn_eq m 2) modn2 muln2 addnC half_bit_double. Qed.
Lemma odd_mod m d : odd d = false -> odd (m %% d) = odd m.
Proof.
by move=> d_even; rewrite {2}(divn_eq m d) odd_add odd_mul d_even andbF.
Qed.
Lemma modnXm m n a : (a %% n) ^ m = a ^ m %[mod n].
Proof.
by elim: m => // m IHm; rewrite !expnS -modnMmr IHm modnMml modnMmr.
Qed.
Divisibility
Definition dvdn d m := m %% d == 0.
Notation "m %| d" := (dvdn m d) : nat_scope.
Lemma dvdnP d m : reflect (exists k, m = k * d) (d %| m).
Proof.
apply: (iffP eqP) => [md0 | [k ->]]; last by rewrite modnMl.
by exists (m %/ d); rewrite {1}(divn_eq m d) md0 addn0.
Qed.
Arguments dvdnP [d m].
Prenex Implicits dvdnP.
Lemma dvdn0 d : d %| 0.
Proof. by case: d. Qed.
Lemma dvd0n n : (0 %| n) = (n == 0).
Proof. by case: n. Qed.
Lemma dvdn1 d : (d %| 1) = (d == 1).
Proof. by case: d => [|[|d]] //; rewrite /dvdn modn_small. Qed.
Lemma dvd1n m : 1 %| m.
Proof. by rewrite /dvdn modn1. Qed.
Lemma dvdn_gt0 d m : m > 0 -> d %| m -> d > 0.
Proof. by case: d => // /prednK <-. Qed.
Lemma dvdnn m : m %| m.
Proof. by rewrite /dvdn modnn. Qed.
Lemma dvdn_mull d m n : d %| n -> d %| m * n.
Proof. by case/dvdnP=> n' ->; rewrite /dvdn mulnA modnMl. Qed.
Lemma dvdn_mulr d m n : d %| m -> d %| m * n.
Proof. by move=> d_m; rewrite mulnC dvdn_mull. Qed.
Hint Resolve dvdn0 dvd1n dvdnn dvdn_mull dvdn_mulr.
Lemma dvdn_mul d1 d2 m1 m2 : d1 %| m1 -> d2 %| m2 -> d1 * d2 %| m1 * m2.
Proof.
by move=> /dvdnP[q1 ->] /dvdnP[q2 ->]; rewrite mulnCA -mulnA 2?dvdn_mull.
Qed.
Lemma dvdn_trans n d m : d %| n -> n %| m -> d %| m.
Proof. by move=> d_dv_n /dvdnP[n1 ->]; apply: dvdn_mull. Qed.
Lemma dvdn_eq d m : (d %| m) = (m %/ d * d == m).
Proof.
apply/eqP/eqP=> [modm0 | <-]; last exact: modnMl.
by rewrite {2}(divn_eq m d) modm0 addn0.
Qed.
Lemma dvdn2 n : (2 %| n) = ~~ odd n.
Proof. by rewrite /dvdn modn2; case (odd n). Qed.
Lemma dvdn_odd m n : m %| n -> odd n -> odd m.
Proof.
by move=> m_dv_n; apply: contraTT; rewrite -!dvdn2 => /dvdn_trans->.
Qed.
Lemma divnK d m : d %| m -> m %/ d * d = m.
Proof. by rewrite dvdn_eq; move/eqP. Qed.
Lemma leq_divLR d m n : d %| m -> (m %/ d <= n) = (m <= n * d).
Proof. by case: d m => [|d] [|m] ///divnK=> {2}<-; rewrite leq_pmul2r. Qed.
Lemma ltn_divRL d m n : d %| m -> (n < m %/ d) = (n * d < m).
Proof. by move=> dv_d_m; rewrite !ltnNge leq_divLR. Qed.
Lemma eqn_div d m n : d > 0 -> d %| m -> (n == m %/ d) = (n * d == m).
Proof. by move=> d_gt0 dv_d_m; rewrite -(eqn_pmul2r d_gt0) divnK. Qed.
Lemma eqn_mul d m n : d > 0 -> d %| m -> (m == n * d) = (m %/ d == n).
Proof. by move=> d_gt0 dv_d_m; rewrite eq_sym -eqn_div // eq_sym. Qed.
Lemma divn_mulAC d m n : d %| m -> m %/ d * n = m * n %/ d.
Proof.
case: d m => [[] //| d m] dv_d_m; apply/eqP.
by rewrite eqn_div ?dvdn_mulr // mulnAC divnK.
Qed.
Lemma muln_divA d m n : d %| n -> m * (n %/ d) = m * n %/ d.
Proof. by move=> dv_d_m; rewrite !(mulnC m) divn_mulAC. Qed.
Lemma muln_divCA d m n : d %| m -> d %| n -> m * (n %/ d) = n * (m %/ d).
Proof. by move=> dv_d_m dv_d_n; rewrite mulnC divn_mulAC ?muln_divA. Qed.
Lemma divnA m n p : p %| n -> m %/ (n %/ p) = m * p %/ n.
Proof. by case: p => [|p] dv_n; rewrite -{2}(divnK dv_n) // divnMr. Qed.
Lemma modn_dvdm m n d : d %| m -> n %% m = n %[mod d].
Proof.
by case/dvdnP=> q def_m; rewrite {2}(divn_eq n m) {3}def_m mulnA modnMDl.
Qed.
Lemma dvdn_leq d m : 0 < m -> d %| m -> d <= m.
Proof. by move=> m_gt0 /dvdnP[[|k] Dm]; rewrite Dm // leq_addr in m_gt0 *. Qed.
Lemma gtnNdvd n d : 0 < n -> n < d -> (d %| n) = false.
Proof. by move=> n_gt0 lt_nd; rewrite /dvdn eqn0Ngt modn_small ?n_gt0. Qed.
Lemma eqn_dvd m n : (m == n) = (m %| n) && (n %| m).
Proof.
case: m n => [|m] [|n] //; apply/idP/andP; first by move/eqP->; auto.
rewrite eqn_leq => [[Hmn Hnm]]; apply/andP; have:= dvdn_leq; auto.
Qed.
Lemma dvdn_pmul2l p d m : 0 < p -> (p * d %| p * m) = (d %| m).
Proof. by case: p => // p _; rewrite /dvdn -muln_modr // muln_eq0. Qed.
Arguments dvdn_pmul2l [p d m].
Lemma dvdn_pmul2r p d m : 0 < p -> (d * p %| m * p) = (d %| m).
Proof. by move=> p_gt0; rewrite -!(mulnC p) dvdn_pmul2l. Qed.
Arguments dvdn_pmul2r [p d m].
Lemma dvdn_divLR p d m : 0 < p -> p %| d -> (d %/ p %| m) = (d %| m * p).
Proof. by move=> /(@dvdn_pmul2r p _ m) <- /divnK->. Qed.
Lemma dvdn_divRL p d m : p %| m -> (d %| m %/ p) = (d * p %| m).
Proof.
have [-> | /(@dvdn_pmul2r p d) <- /divnK-> //] := posnP p.
by rewrite divn0 muln0 dvdn0.
Qed.
Lemma dvdn_div d m : d %| m -> m %/ d %| m.
Proof. by move/divnK=> {2}<-; apply: dvdn_mulr. Qed.
Lemma dvdn_exp2l p m n : m <= n -> p ^ m %| p ^ n.
Proof. by move/subnK <-; rewrite expnD dvdn_mull. Qed.
Lemma dvdn_Pexp2l p m n : p > 1 -> (p ^ m %| p ^ n) = (m <= n).
Proof.
move=> p_gt1; case: leqP => [|gt_n_m]; first exact: dvdn_exp2l.
by rewrite gtnNdvd ?ltn_exp2l ?expn_gt0 // ltnW.
Qed.
Lemma dvdn_exp2r m n k : m %| n -> m ^ k %| n ^ k.
Proof. by case/dvdnP=> q ->; rewrite expnMn dvdn_mull. Qed.
Lemma dvdn_addr m d n : d %| m -> (d %| m + n) = (d %| n).
Proof. by case/dvdnP=> q ->; rewrite /dvdn modnMDl. Qed.
Lemma dvdn_addl n d m : d %| n -> (d %| m + n) = (d %| m).
Proof. by rewrite addnC; apply: dvdn_addr. Qed.
Lemma dvdn_add d m n : d %| m -> d %| n -> d %| m + n.
Proof. by move/dvdn_addr->. Qed.
Lemma dvdn_add_eq d m n : d %| m + n -> (d %| m) = (d %| n).
Proof. by move=> dv_d_mn; apply/idP/idP => [/dvdn_addr | /dvdn_addl] <-. Qed.
Lemma dvdn_subr d m n : n <= m -> d %| m -> (d %| m - n) = (d %| n).
Proof. by move=> le_n_m dv_d_m; apply: dvdn_add_eq; rewrite subnK. Qed.
Lemma dvdn_subl d m n : n <= m -> d %| n -> (d %| m - n) = (d %| m).
Proof. by move=> le_n_m dv_d_m; rewrite -(dvdn_addl _ dv_d_m) subnK. Qed.
Lemma dvdn_sub d m n : d %| m -> d %| n -> d %| m - n.
Proof.
by case: (leqP n m) => [le_nm /dvdn_subr <- // | /ltnW/eqnP ->]; rewrite dvdn0.
Qed.
Lemma dvdn_exp k d m : 0 < k -> d %| m -> d %| (m ^ k).
Proof. by case: k => // k _ d_dv_m; rewrite expnS dvdn_mulr. Qed.
Lemma dvdn_fact m n : 0 < m <= n -> m %| n`!.
Proof.
case: m => //= m; elim: n => //= n IHn; rewrite ltnS leq_eqVlt.
by case/predU1P=> [-> | /IHn]; [apply: dvdn_mulr | apply: dvdn_mull].
Qed.
Hint Resolve dvdn_add dvdn_sub dvdn_exp.
Lemma eqn_mod_dvd d m n : n <= m -> (m == n %[mod d]) = (d %| m - n).
Proof.
by move=> le_mn; rewrite -{1}[n]add0n -{1}(subnK le_mn) eqn_modDr mod0n.
Qed.
Lemma divnDl m n d : d %| m -> (m + n) %/ d = m %/ d + n %/ d.
Proof. by case: d => // d /divnK{1}<-; rewrite divnMDl. Qed.
Lemma divnDr m n d : d %| n -> (m + n) %/ d = m %/ d + n %/ d.
Proof. by move=> dv_n; rewrite addnC divnDl // addnC. Qed.
Fixpoint gcdn_rec m n :=
let n' := n %% m in if n' is 0 then m else
if m - n'.-1 is m'.+1 then gcdn_rec (m' %% n') n' else n'.
Definition gcdn := nosimpl gcdn_rec.
Lemma gcdnE m n : gcdn m n = if m == 0 then n else gcdn (n %% m) m.
Proof.
rewrite /gcdn; elim: m {-2}m (leqnn m) n => [|s IHs] [|m] le_ms [|n] //=.
case def_n': (_ %% _) => // [n'].
have{def_n'} lt_n'm: n' < m by rewrite -def_n' -ltnS ltn_pmod.
rewrite {}IHs ?(leq_trans lt_n'm) // subn_if_gt ltnW //=; congr gcdn_rec.
by rewrite -{2}(subnK (ltnW lt_n'm)) -addnS modnDr.
Qed.
Lemma gcdnn : idempotent gcdn.
Proof. by case=> // n; rewrite gcdnE modnn. Qed.
Lemma gcdnC : commutative gcdn.
Proof.
move=> m n; wlog lt_nm: m n / n < m.
by case: (ltngtP n m) => [||-> //]; last symmetry; auto.
by rewrite gcdnE -{1}(ltn_predK lt_nm) modn_small.
Qed.
Lemma gcd0n : left_id 0 gcdn. Proof. by case. Qed.
Lemma gcdn0 : right_id 0 gcdn. Proof. by case. Qed.
Lemma gcd1n : left_zero 1 gcdn.
Proof. by move=> n; rewrite gcdnE modn1. Qed.
Lemma gcdn1 : right_zero 1 gcdn.
Proof. by move=> n; rewrite gcdnC gcd1n. Qed.
Lemma dvdn_gcdr m n : gcdn m n %| n.
Proof.
elim: m {-2}m (leqnn m) n => [|s IHs] [|m] le_ms [|n] //.
rewrite gcdnE; case def_n': (_ %% _) => [|n']; first by rewrite /dvdn def_n'.
have lt_n's: n' < s by rewrite -ltnS (leq_trans _ le_ms) // -def_n' ltn_pmod.
rewrite /= (divn_eq n.+1 m.+1) def_n' dvdn_addr ?dvdn_mull //; last exact: IHs.
by rewrite gcdnE /= IHs // (leq_trans _ lt_n's) // ltnW // ltn_pmod.
Qed.
Lemma dvdn_gcdl m n : gcdn m n %| m.
Proof. by rewrite gcdnC dvdn_gcdr. Qed.
Lemma gcdn_gt0 m n : (0 < gcdn m n) = (0 < m) || (0 < n).
Proof.
by case: m n => [|m] [|n] //; apply: (@dvdn_gt0 _ m.+1) => //; apply: dvdn_gcdl.
Qed.
Lemma gcdnMDl k m n : gcdn m (k * m + n) = gcdn m n.
Proof. by rewrite !(gcdnE m) modnMDl mulnC; case: m. Qed.
Lemma gcdnDl m n : gcdn m (m + n) = gcdn m n.
Proof. by rewrite -{2}(mul1n m) gcdnMDl. Qed.
Lemma gcdnDr m n : gcdn m (n + m) = gcdn m n.
Proof. by rewrite addnC gcdnDl. Qed.
Lemma gcdnMl n m : gcdn n (m * n) = n.
Proof. by case: n => [|n]; rewrite gcdnE modnMl gcd0n. Qed.
Lemma gcdnMr n m : gcdn n (n * m) = n.
Proof. by rewrite mulnC gcdnMl. Qed.
Lemma gcdn_idPl {m n} : reflect (gcdn m n = m) (m %| n).
Proof.
by apply: (iffP idP) => [/dvdnP[q ->] | <-]; rewrite (gcdnMl, dvdn_gcdr).
Qed.
Lemma gcdn_idPr {m n} : reflect (gcdn m n = n) (n %| m).
Proof. by rewrite gcdnC; apply: gcdn_idPl. Qed.
Lemma expn_min e m n : e ^ minn m n = gcdn (e ^ m) (e ^ n).
Proof.
rewrite /minn; case: leqP; [rewrite gcdnC | move/ltnW];
by move/(dvdn_exp2l e)/gcdn_idPl.
Qed.
Lemma gcdn_modr m n : gcdn m (n %% m) = gcdn m n.
Proof. by rewrite {2}(divn_eq n m) gcdnMDl. Qed.
Lemma gcdn_modl m n : gcdn (m %% n) n = gcdn m n.
Proof. by rewrite !(gcdnC _ n) gcdn_modr. Qed.
Fixpoint Bezout_rec km kn qs :=
if qs is q :: qs' then Bezout_rec kn (NatTrec.add_mul q kn km) qs'
else (km, kn).
Fixpoint egcdn_rec m n s qs :=
if s is s'.+1 then
let: (q, r) := edivn m n in
if r > 0 then egcdn_rec n r s' (q :: qs) else
if odd (size qs) then qs else q.-1 :: qs
else [::0].
Definition egcdn m n := Bezout_rec 0 1 (egcdn_rec m n n [::]).
CoInductive egcdn_spec m n : nat * nat -> Type :=
EgcdnSpec km kn of km * m = kn * n + gcdn m n & kn * gcdn m n < m :
egcdn_spec m n (km, kn).
Lemma egcd0n n : egcdn 0 n = (1, 0).
Proof. by case: n. Qed.
Lemma egcdnP m n : m > 0 -> egcdn_spec m n (egcdn m n).
Proof.
rewrite /egcdn; have: (n, m) = Bezout_rec n m [::] by [].
case: (posnP n) => [-> /=|]; first by split; rewrite // mul1n gcdn0.
move: {2 6}n {4 6}n {1 4}m [::] (ltnSn n) => s n0 m0.
elim: s n m => [[]//|s IHs] n m qs /= le_ns n_gt0 def_mn0 m_gt0.
case: edivnP => q r def_m; rewrite n_gt0 /= => lt_rn.
case: posnP => [r0 {s le_ns IHs lt_rn}|r_gt0]; last first.
by apply: IHs => //=; [rewrite (leq_trans lt_rn) | rewrite natTrecE -def_m].
rewrite {r}r0 addn0 in def_m; set b := odd _; pose d := gcdn m n.
pose km := ~~ b : nat; pose kn := if b then 1 else q.-1.
rewrite (_ : Bezout_rec _ _ _ = Bezout_rec km kn qs); last first.
by rewrite /kn /km; case: (b) => //=; rewrite natTrecE addn0 muln1.
have def_d: d = n by rewrite /d def_m gcdnC gcdnE modnMl gcd0n -[n]prednK.
have: km * m + 2 * b * d = kn * n + d.
rewrite {}/kn {}/km def_m def_d -mulSnr; case: b; rewrite //= addn0 mul1n.
by rewrite prednK //; apply: dvdn_gt0 m_gt0 _; rewrite def_m dvdn_mulr.
have{def_m}: kn * d <= m.
have q_gt0 : 0 < q by rewrite def_m muln_gt0 n_gt0 ?andbT in m_gt0.
by rewrite /kn; case b; rewrite def_d def_m leq_pmul2r // leq_pred.
have{def_d}: km * d <= n by rewrite -[n]mul1n def_d leq_pmul2r // leq_b1.
move: km {q}kn m_gt0 n_gt0 def_mn0; rewrite {}/d {}/b.
elim: qs m n => [|q qs IHq] n r kn kr n_gt0 r_gt0 /=.
case=> -> -> {m0 n0}; rewrite !addn0 => le_kn_r _ def_d; split=> //.
have d_gt0: 0 < gcdn n r by rewrite gcdn_gt0 n_gt0.
have: 0 < kn * n by rewrite def_d addn_gt0 d_gt0 orbT.
rewrite muln_gt0 n_gt0 andbT; move/ltn_pmul2l <-.
by rewrite def_d -addn1 leq_add // mulnCA leq_mul2l le_kn_r orbT.
rewrite !natTrecE; set m:= _ + r; set km := _ * _ + kn; pose d := gcdn m n.
have ->: gcdn n r = d by rewrite [d]gcdnC gcdnMDl.
have m_gt0: 0 < m by rewrite addn_gt0 r_gt0 orbT.
have d_gt0: 0 < d by rewrite gcdn_gt0 m_gt0.
move/IHq=> {IHq} IHq le_kn_r le_kr_n def_d; apply: IHq => //; rewrite -/d.
by rewrite mulnDl leq_add // -mulnA leq_mul2l le_kr_n orbT.
apply: (@addIn d); rewrite -!addnA addnn addnCA mulnDr -addnA addnCA.
rewrite /km mulnDl mulnCA mulnA -addnA; congr (_ + _).
by rewrite -def_d addnC -addnA -mulnDl -mulnDr addn_negb -mul2n.
Qed.
Lemma Bezoutl m n : m > 0 -> {a | a < m & m %| gcdn m n + a * n}.
Proof.
move=> m_gt0; case: (egcdnP n m_gt0) => km kn def_d lt_kn_m.
exists kn; last by rewrite addnC -def_d dvdn_mull.
apply: leq_ltn_trans lt_kn_m.
by rewrite -{1}[kn]muln1 leq_mul2l gcdn_gt0 m_gt0 orbT.
Qed.
Lemma Bezoutr m n : n > 0 -> {a | a < n & n %| gcdn m n + a * m}.
Proof. by rewrite gcdnC; apply: Bezoutl. Qed.
Lemma dvdn_gcd p m n : p %| gcdn m n = (p %| m) && (p %| n).
Proof.
apply/idP/andP=> [dv_pmn | [dv_pm dv_pn]].
by rewrite !(dvdn_trans dv_pmn) ?dvdn_gcdl ?dvdn_gcdr.
case (posnP n) => [->|n_gt0]; first by rewrite gcdn0.
case: (Bezoutr m n_gt0) => // km _ /(dvdn_trans dv_pn).
by rewrite dvdn_addl // dvdn_mull.
Qed.
Lemma gcdnAC : right_commutative gcdn.
Proof.
suffices dvd m n p: gcdn (gcdn m n) p %| gcdn (gcdn m p) n.
by move=> m n p; apply/eqP; rewrite eqn_dvd !dvd.
rewrite !dvdn_gcd dvdn_gcdr.
by rewrite !(dvdn_trans (dvdn_gcdl _ p)) ?dvdn_gcdl ?dvdn_gcdr.
Qed.
Lemma gcdnA : associative gcdn.
Proof. by move=> m n p; rewrite !(gcdnC m) gcdnAC. Qed.
Lemma gcdnCA : left_commutative gcdn.
Proof. by move=> m n p; rewrite !gcdnA (gcdnC m). Qed.
Lemma gcdnACA : interchange gcdn gcdn.
Proof. by move=> m n p q; rewrite -!gcdnA (gcdnCA n). Qed.
Lemma muln_gcdr : right_distributive muln gcdn.
Proof.
move=> p m n; case: (posnP p) => [-> //| p_gt0].
elim: {m}m.+1 {-2}m n (ltnSn m) => // s IHs m n; rewrite ltnS => le_ms.
rewrite gcdnE [rhs in _ = rhs]gcdnE muln_eq0 (gtn_eqF p_gt0) -muln_modr //=.
by case: posnP => // m_gt0; apply: IHs; apply: leq_trans le_ms; apply: ltn_pmod.
Qed.
Lemma muln_gcdl : left_distributive muln gcdn.
Proof. by move=> m n p; rewrite -!(mulnC p) muln_gcdr. Qed.
Lemma gcdn_def d m n :
d %| m -> d %| n -> (forall d', d' %| m -> d' %| n -> d' %| d) ->
gcdn m n = d.
Proof.
move=> dv_dm dv_dn gdv_d; apply/eqP.
by rewrite eqn_dvd dvdn_gcd dv_dm dv_dn gdv_d ?dvdn_gcdl ?dvdn_gcdr.
Qed.
Lemma muln_divCA_gcd n m : n * (m %/ gcdn n m) = m * (n %/ gcdn n m).
Proof. by rewrite muln_divCA ?dvdn_gcdl ?dvdn_gcdr. Qed.
Definition lcmn m n := m * n %/ gcdn m n.
Lemma lcmnC : commutative lcmn.
Proof. by move=> m n; rewrite /lcmn mulnC gcdnC. Qed.
Lemma lcm0n : left_zero 0 lcmn. Proof. by move=> n; apply: div0n. Qed.
Lemma lcmn0 : right_zero 0 lcmn. Proof. by move=> n; rewrite lcmnC lcm0n. Qed.
Lemma lcm1n : left_id 1 lcmn.
Proof. by move=> n; rewrite /lcmn gcd1n mul1n divn1. Qed.
Lemma lcmn1 : right_id 1 lcmn.
Proof. by move=> n; rewrite lcmnC lcm1n. Qed.
Lemma muln_lcm_gcd m n : lcmn m n * gcdn m n = m * n.
Proof. by apply/eqP; rewrite divnK ?dvdn_mull ?dvdn_gcdr. Qed.
Lemma lcmn_gt0 m n : (0 < lcmn m n) = (0 < m) && (0 < n).
Proof. by rewrite -muln_gt0 ltn_divRL ?dvdn_mull ?dvdn_gcdr. Qed.
Lemma muln_lcmr : right_distributive muln lcmn.
Proof.
case=> // m n p; rewrite /lcmn -muln_gcdr -!mulnA divnMl // mulnCA.
by rewrite muln_divA ?dvdn_mull ?dvdn_gcdr.
Qed.
Lemma muln_lcml : left_distributive muln lcmn.
Proof. by move=> m n p; rewrite -!(mulnC p) muln_lcmr. Qed.
Lemma lcmnA : associative lcmn.
Proof.
move=> m n p; rewrite {1 3}/lcmn mulnC !divn_mulAC ?dvdn_mull ?dvdn_gcdr //.
rewrite -!divnMA ?dvdn_mulr ?dvdn_gcdl // mulnC mulnA !muln_gcdr.
by rewrite ![_ * lcmn _ _]mulnC !muln_lcm_gcd !muln_gcdl -!(mulnC m) gcdnA.
Qed.
Lemma lcmnCA : left_commutative lcmn.
Proof. by move=> m n p; rewrite !lcmnA (lcmnC m). Qed.
Lemma lcmnAC : right_commutative lcmn.
Proof. by move=> m n p; rewrite -!lcmnA (lcmnC n). Qed.
Lemma lcmnACA : interchange lcmn lcmn.
Proof. by move=> m n p q; rewrite -!lcmnA (lcmnCA n). Qed.
Lemma dvdn_lcml d1 d2 : d1 %| lcmn d1 d2.
Proof. by rewrite /lcmn -muln_divA ?dvdn_gcdr ?dvdn_mulr. Qed.
Lemma dvdn_lcmr d1 d2 : d2 %| lcmn d1 d2.
Proof. by rewrite lcmnC dvdn_lcml. Qed.
Lemma dvdn_lcm d1 d2 m : lcmn d1 d2 %| m = (d1 %| m) && (d2 %| m).
Proof.
case: d1 d2 => [|d1] [|d2]; try by case: m => [|m]; rewrite ?lcmn0 ?andbF.
rewrite -(@dvdn_pmul2r (gcdn d1.+1 d2.+1)) ?gcdn_gt0 // muln_lcm_gcd.
by rewrite muln_gcdr dvdn_gcd {1}mulnC andbC !dvdn_pmul2r.
Qed.
Lemma lcmnMl m n : lcmn m (m * n) = m * n.
Proof. by case: m => // m; rewrite /lcmn gcdnMr mulKn. Qed.
Lemma lcmnMr m n : lcmn n (m * n) = m * n.
Proof. by rewrite mulnC lcmnMl. Qed.
Lemma lcmn_idPr {m n} : reflect (lcmn m n = n) (m %| n).
Proof.
by apply: (iffP idP) => [/dvdnP[q ->] | <-]; rewrite (lcmnMr, dvdn_lcml).
Qed.
Lemma lcmn_idPl {m n} : reflect (lcmn m n = m) (n %| m).
Proof. by rewrite lcmnC; apply: lcmn_idPr. Qed.
Lemma expn_max e m n : e ^ maxn m n = lcmn (e ^ m) (e ^ n).
Proof.
rewrite /maxn; case: leqP; [rewrite lcmnC | move/ltnW];
by move/(dvdn_exp2l e)/lcmn_idPr.
Qed.
Definition coprime m n := gcdn m n == 1.
Lemma coprime1n n : coprime 1 n.
Proof. by rewrite /coprime gcd1n. Qed.
Lemma coprimen1 n : coprime n 1.
Proof. by rewrite /coprime gcdn1. Qed.
Lemma coprime_sym m n : coprime m n = coprime n m.
Proof. by rewrite /coprime gcdnC. Qed.
Lemma coprime_modl m n : coprime (m %% n) n = coprime m n.
Proof. by rewrite /coprime gcdn_modl. Qed.
Lemma coprime_modr m n : coprime m (n %% m) = coprime m n.
Proof. by rewrite /coprime gcdn_modr. Qed.
Lemma coprime2n n : coprime 2 n = odd n.
Proof. by rewrite -coprime_modr modn2; case: (odd n). Qed.
Lemma coprimen2 n : coprime n 2 = odd n.
Proof. by rewrite coprime_sym coprime2n. Qed.
Lemma coprimeSn n : coprime n.+1 n.
Proof. by rewrite -coprime_modl (modnDr 1) coprime_modl coprime1n. Qed.
Lemma coprimenS n : coprime n n.+1.
Proof. by rewrite coprime_sym coprimeSn. Qed.
Lemma coprimePn n : n > 0 -> coprime n.-1 n.
Proof. by case: n => // n _; rewrite coprimenS. Qed.
Lemma coprimenP n : n > 0 -> coprime n n.-1.
Proof. by case: n => // n _; rewrite coprimeSn. Qed.
Lemma coprimeP n m :
n > 0 -> reflect (exists u, u.1 * n - u.2 * m = 1) (coprime n m).
Proof.
move=> n_gt0; apply: (iffP eqP) => [<-| [[kn km] /= kn_km_1]].
by have [kn km kg _] := egcdnP m n_gt0; exists (kn, km); rewrite kg addKn.
apply gcdn_def; rewrite ?dvd1n // => d dv_d_n dv_d_m.
by rewrite -kn_km_1 dvdn_subr ?dvdn_mull // ltnW // -subn_gt0 kn_km_1.
Qed.
Lemma modn_coprime k n : 0 < k -> (exists u, (k * u) %% n = 1) -> coprime k n.
Proof.
move=> k_gt0 [u Hu]; apply/coprimeP=> //.
by exists (u, k * u %/ n); rewrite /= mulnC {1}(divn_eq (k * u) n) addKn.
Qed.
Lemma Gauss_dvd m n p : coprime m n -> (m * n %| p) = (m %| p) && (n %| p).
Proof. by move=> co_mn; rewrite -muln_lcm_gcd (eqnP co_mn) muln1 dvdn_lcm. Qed.
Lemma Gauss_dvdr m n p : coprime m n -> (m %| n * p) = (m %| p).
Proof.
case: n => [|n] co_mn; first by case: m co_mn => [|[]] // _; rewrite !dvd1n.
by symmetry; rewrite mulnC -(@dvdn_pmul2r n.+1) ?Gauss_dvd // andbC dvdn_mull.
Qed.
Lemma Gauss_dvdl m n p : coprime m p -> (m %| n * p) = (m %| n).
Proof. by rewrite mulnC; apply: Gauss_dvdr. Qed.
Lemma dvdn_double_leq m n : m %| n -> odd m -> ~~ odd n -> 0 < n -> m.*2 <= n.
Proof.
move=> m_dv_n odd_m even_n n_gt0.
by rewrite -muln2 dvdn_leq // Gauss_dvd ?coprimen2 ?m_dv_n ?dvdn2.
Qed.
Lemma dvdn_double_ltn m n : m %| n.-1 -> odd m -> odd n -> 1 < n -> m.*2 < n.
Proof. by case: n => //; apply: dvdn_double_leq. Qed.
Lemma Gauss_gcdr p m n : coprime p m -> gcdn p (m * n) = gcdn p n.
Proof.
move=> co_pm; apply/eqP; rewrite eqn_dvd !dvdn_gcd !dvdn_gcdl /=.
rewrite andbC dvdn_mull ?dvdn_gcdr //= -(@Gauss_dvdr _ m) ?dvdn_gcdr //.
by rewrite /coprime gcdnAC (eqnP co_pm) gcd1n.
Qed.
Lemma Gauss_gcdl p m n : coprime p n -> gcdn p (m * n) = gcdn p m.
Proof. by move=> co_pn; rewrite mulnC Gauss_gcdr. Qed.
Lemma coprime_mulr p m n : coprime p (m * n) = coprime p m && coprime p n.
Proof.
case co_pm: (coprime p m) => /=; first by rewrite /coprime Gauss_gcdr.
apply/eqP=> co_p_mn; case/eqnP: co_pm; apply gcdn_def => // d dv_dp dv_dm.
by rewrite -co_p_mn dvdn_gcd dv_dp dvdn_mulr.
Qed.
Lemma coprime_mull p m n : coprime (m * n) p = coprime m p && coprime n p.
Proof. by rewrite -!(coprime_sym p) coprime_mulr. Qed.
Lemma coprime_pexpl k m n : 0 < k -> coprime (m ^ k) n = coprime m n.
Proof.
case: k => // k _; elim: k => [|k IHk]; first by rewrite expn1.
by rewrite expnS coprime_mull -IHk; case coprime.
Qed.
Lemma coprime_pexpr k m n : 0 < k -> coprime m (n ^ k) = coprime m n.
Proof. by move=> k_gt0; rewrite !(coprime_sym m) coprime_pexpl. Qed.
Lemma coprime_expl k m n : coprime m n -> coprime (m ^ k) n.
Proof. by case: k => [|k] co_pm; rewrite ?coprime1n // coprime_pexpl. Qed.
Lemma coprime_expr k m n : coprime m n -> coprime m (n ^ k).
Proof. by rewrite !(coprime_sym m); apply: coprime_expl. Qed.
Lemma coprime_dvdl m n p : m %| n -> coprime n p -> coprime m p.
Proof. by case/dvdnP=> d ->; rewrite coprime_mull => /andP[]. Qed.
Lemma coprime_dvdr m n p : m %| n -> coprime p n -> coprime p m.
Proof. by rewrite !(coprime_sym p); apply: coprime_dvdl. Qed.
Lemma coprime_egcdn n m : n > 0 -> coprime (egcdn n m).1 (egcdn n m).2.
Proof.
move=> n_gt0; case: (egcdnP m n_gt0) => kn km /= /eqP.
have [/dvdnP[u defn] /dvdnP[v defm]] := (dvdn_gcdl n m, dvdn_gcdr n m).
rewrite -[gcdn n m]mul1n {1}defm {1}defn !mulnA -mulnDl addnC.
rewrite eqn_pmul2r ?gcdn_gt0 ?n_gt0 //; case: kn => // kn /eqP def_knu _.
by apply/coprimeP=> //; exists (u, v); rewrite mulnC def_knu mulnC addnK.
Qed.
Lemma dvdn_pexp2r m n k : k > 0 -> (m ^ k %| n ^ k) = (m %| n).
Proof.
move=> k_gt0; apply/idP/idP=> [dv_mn_k|]; last exact: dvdn_exp2r.
case: (posnP n) => [-> | n_gt0]; first by rewrite dvdn0.
have [n' def_n] := dvdnP (dvdn_gcdr m n); set d := gcdn m n in def_n.
have [m' def_m] := dvdnP (dvdn_gcdl m n); rewrite -/d in def_m.
have d_gt0: d > 0 by rewrite gcdn_gt0 n_gt0 orbT.
rewrite def_m def_n !expnMn dvdn_pmul2r ?expn_gt0 ?d_gt0 // in dv_mn_k.
have: coprime (m' ^ k) (n' ^ k).
rewrite coprime_pexpl // coprime_pexpr // /coprime -(eqn_pmul2r d_gt0) mul1n.
by rewrite muln_gcdl -def_m -def_n.
rewrite /coprime -gcdn_modr (eqnP dv_mn_k) gcdn0 -(exp1n k).
by rewrite (inj_eq (expIn k_gt0)) def_m; move/eqP->; rewrite mul1n dvdn_gcdr.
Qed.
Section Chinese.
Variables m1 m2 : nat.
Hypothesis co_m12 : coprime m1 m2.
Lemma chinese_remainder x y :
(x == y %[mod m1 * m2]) = (x == y %[mod m1]) && (x == y %[mod m2]).
Proof.
wlog le_yx : x y / y <= x; last by rewrite !eqn_mod_dvd // Gauss_dvd.
by case/orP: (leq_total y x); last rewrite !(eq_sym (x %% _)); auto.
Qed.
Definition chinese r1 r2 :=
r1 * m2 * (egcdn m2 m1).1 + r2 * m1 * (egcdn m1 m2).1.
Lemma chinese_modl r1 r2 : chinese r1 r2 = r1 %[mod m1].
Proof.
rewrite /chinese; case: (posnP m2) co_m12 => [-> /eqnP | m2_gt0 _].
by rewrite gcdn0 => ->; rewrite !modn1.
case: egcdnP => // k2 k1 def_m1 _.
rewrite mulnAC -mulnA def_m1 gcdnC (eqnP co_m12) mulnDr mulnA muln1.
by rewrite addnAC (mulnAC _ m1) -mulnDl modnMDl.
Qed.
Lemma chinese_modr r1 r2 : chinese r1 r2 = r2 %[mod m2].
Proof.
rewrite /chinese; case: (posnP m1) co_m12 => [-> /eqnP | m1_gt0 _].
by rewrite gcd0n => ->; rewrite !modn1.
case: (egcdnP m2) => // k1 k2 def_m2 _.
rewrite addnC mulnAC -mulnA def_m2 (eqnP co_m12) mulnDr mulnA muln1.
by rewrite addnAC (mulnAC _ m2) -mulnDl modnMDl.
Qed.
Lemma chinese_mod x : x = chinese (x %% m1) (x %% m2) %[mod m1 * m2].
Proof.
apply/eqP; rewrite chinese_remainder //.
by rewrite chinese_modl chinese_modr !modn_mod !eqxx.
Qed.
End Chinese.