Library Coq.MSets.MSetPositive


Efficient implementation of MSetInterface.S for positive keys, inspired from the FMapPositive module.
This module was adapted by Alexandre Ren, Damien Pous, and Thomas Braibant (2010, LIG, CNRS, UMR 5217), from the FMapPositive module of Pierre Letouzey and Jean-Christophe Filliâtre, which in turn comes from the FMap framework of a work by Xavier Leroy and Sandrine Blazy (used for building certified compilers).

Require Import Bool BinPos Orders OrdersEx MSetInterface.

Set Implicit Arguments.
Local Open Scope lazy_bool_scope.
Local Open Scope positive_scope.
Local Unset Elimination Schemes.

Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.

  Module E:=PositiveOrderedTypeBits.

  Definition elt := positive : Type.

  Inductive tree :=
    | Leaf : tree
    | Node : tree -> bool -> tree -> tree.

  Scheme tree_ind := Induction for tree Sort Prop.

  Definition t := tree : Type.

  Definition empty : t := Leaf.

  Fixpoint is_empty (m : t) : bool :=
   match m with
    | Leaf => true
    | Node l b r => negb b &&& is_empty l &&& is_empty r
   end.

  Fixpoint mem (i : positive) (m : t) {struct m} : bool :=
    match m with
    | Leaf => false
    | Node l o r =>
        match i with
        | 1 => o
        | i~0 => mem i l
        | i~1 => mem i r
        end
    end.

  Fixpoint add (i : positive) (m : t) : t :=
    match m with
    | Leaf =>
        match i with
        | 1 => Node Leaf true Leaf
        | i~0 => Node (add i Leaf) false Leaf
        | i~1 => Node Leaf false (add i Leaf)
        end
    | Node l o r =>
        match i with
        | 1 => Node l true r
        | i~0 => Node (add i l) o r
        | i~1 => Node l o (add i r)
        end
    end.

  Definition singleton i := add i empty.

helper function to avoid creating empty trees that are not leaves

  Definition node (l : t) (b: bool) (r : t) : t :=
    if b then Node l b r else
     match l,r with
       | Leaf,Leaf => Leaf
       | _,_ => Node l false r end.

  Fixpoint remove (i : positive) (m : t) {struct m} : t :=
    match m with
      | Leaf => Leaf
      | Node l o r =>
        match i with
          | 1 => node l false r
          | i~0 => node (remove i l) o r
          | i~1 => node l o (remove i r)
        end
    end.

  Fixpoint union (m m': t) : t :=
    match m with
      | Leaf => m'
      | Node l o r =>
        match m' with
          | Leaf => m
          | Node l' o' r' => Node (union l l') (o||o') (union r r')
        end
    end.

  Fixpoint inter (m m': t) : t :=
    match m with
      | Leaf => Leaf
      | Node l o r =>
        match m' with
          | Leaf => Leaf
          | Node l' o' r' => node (inter l l') (o&&o') (inter r r')
        end
    end.

  Fixpoint diff (m m': t) : t :=
    match m with
      | Leaf => Leaf
      | Node l o r =>
        match m' with
          | Leaf => m
          | Node l' o' r' => node (diff l l') (o&&negb o') (diff r r')
        end
    end.

  Fixpoint equal (m m': t): bool :=
    match m with
      | Leaf => is_empty m'
      | Node l o r =>
        match m' with
          | Leaf => is_empty m
          | Node l' o' r' => eqb o o' &&& equal l l' &&& equal r r'
        end
    end.

  Fixpoint subset (m m': t): bool :=
    match m with
      | Leaf => true
      | Node l o r =>
        match m' with
          | Leaf => is_empty m
          | Node l' o' r' => (negb o ||| o') &&& subset l l' &&& subset r r'
        end
    end.

reverses y and concatenate it with x

  Fixpoint rev_append (y x : elt) : elt :=
    match y with
      | 1 => x
      | y~1 => rev_append y x~1
      | y~0 => rev_append y x~0
    end.
  Infix "@" := rev_append (at level 60).
  Definition rev x := x@1.

  Section Fold.

    Variables B : Type.
    Variable f : positive -> B -> B.

the additional argument, i, records the current path, in reverse order (this should be more efficient: we reverse this argument only at present nodes only, rather than at each node of the tree). we also use this convention in all functions below

    Fixpoint xfold (m : t) (v : B) (i : positive) :=
      match m with
        | Leaf => v
        | Node l true r =>
          xfold r (f (rev i) (xfold l v i~0)) i~1
        | Node l false r =>
          xfold r (xfold l v i~0) i~1
      end.
    Definition fold m i := xfold m i 1.

  End Fold.

  Section Quantifiers.

    Variable f : positive -> bool.

    Fixpoint xforall (m : t) (i : positive) :=
      match m with
        | Leaf => true
        | Node l o r =>
          (negb o ||| f (rev i)) &&& xforall r i~1 &&& xforall l i~0
      end.
    Definition for_all m := xforall m 1.

    Fixpoint xexists (m : t) (i : positive) :=
      match m with
        | Leaf => false
        | Node l o r => (o &&& f (rev i)) ||| xexists r i~1 ||| xexists l i~0
      end.
    Definition exists_ m := xexists m 1.

    Fixpoint xfilter (m : t) (i : positive) : t :=
      match m with
        | Leaf => Leaf
        | Node l o r => node (xfilter l i~0) (o &&& f (rev i)) (xfilter r i~1)
      end.
    Definition filter m := xfilter m 1.

    Fixpoint xpartition (m : t) (i : positive) : t * t :=
      match m with
        | Leaf => (Leaf,Leaf)
        | Node l o r =>
          let (lt,lf) := xpartition l i~0 in
          let (rt,rf) := xpartition r i~1 in
             if o then
               let fi := f (rev i) in
                 (node lt fi rt, node lf (negb fi) rf)
             else
                 (node lt false rt, node lf false rf)
      end.
    Definition partition m := xpartition m 1.

  End Quantifiers.

uses a to accumulate values rather than doing a lot of concatenations

  Fixpoint xelements (m : t) (i : positive) (a: list positive) :=
    match m with
      | Leaf => a
      | Node l false r => xelements l i~0 (xelements r i~1 a)
      | Node l true r => xelements l i~0 (rev i :: xelements r i~1 a)
    end.

  Definition elements (m : t) := xelements m 1 nil.

  Fixpoint cardinal (m : t) : nat :=
    match m with
      | Leaf => O
      | Node l false r => (cardinal l + cardinal r)%nat
      | Node l true r => S (cardinal l + cardinal r)
    end.

would it be more efficient to use a path like in the above functions ?

  Fixpoint choose (m: t) : option elt :=
    match m with
      | Leaf => None
      | Node l o r => if o then Some 1 else
        match choose l with
          | None => option_map xI (choose r)
          | Some i => Some i~0
        end
    end.

  Fixpoint min_elt (m: t) : option elt :=
    match m with
      | Leaf => None
      | Node l o r =>
        match min_elt l with
          | None => if o then Some 1 else option_map xI (min_elt r)
          | Some i => Some i~0
        end
    end.

  Fixpoint max_elt (m: t) : option elt :=
    match m with
      | Leaf => None
      | Node l o r =>
        match max_elt r with
          | None => if o then Some 1 else option_map xO (max_elt l)
          | Some i => Some i~1
        end
    end.

lexicographic product, defined using a notation to keep things lazy

  Notation lex u v := match u with Eq => v | Lt => Lt | Gt => Gt end.

  Definition compare_bool a b :=
    match a,b with
      | false, true => Lt
      | true, false => Gt
      | _,_ => Eq
    end.

  Fixpoint compare (m m': t): comparison :=
    match m,m' with
      | Leaf,_ => if is_empty m' then Eq else Lt
      | _,Leaf => if is_empty m then Eq else Gt
      | Node l o r,Node l' o' r' =>
        lex (compare_bool o o') (lex (compare l l') (compare r r'))
    end.

  Definition In i t := mem i t = true.
  Definition Equal s s' := forall a : elt, In a s <-> In a s'.
  Definition Subset s s' := forall a : elt, In a s -> In a s'.
  Definition Empty s := forall a : elt, ~ In a s.
  Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x.
  Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x.

  Notation "s [=] t" := (Equal s t) (at level 70, no associativity).
  Notation "s [<=] t" := (Subset s t) (at level 70, no associativity).

  Definition eq := Equal.
  Definition lt m m' := compare m m' = Lt.

Specification of In

  Instance In_compat : Proper (E.eq==>Logic.eq==>iff) In.
  Proof.
   intros s s' Hs x x' Hx. rewrite Hs, Hx; intuition.
  Qed.

Specification of eq

  Local Instance eq_equiv : Equivalence eq.
  Proof. firstorder. Qed.

Specification of mem

  Lemma mem_spec: forall s x, mem x s = true <-> In x s.
  Proof. unfold In. intuition. Qed.

Additional lemmas for mem

  Lemma mem_Leaf: forall x, mem x Leaf = false.
  Proof. destruct x; trivial. Qed.

Specification of empty

  Lemma empty_spec : Empty empty.
  Proof. unfold Empty, In. intro. rewrite mem_Leaf. discriminate. Qed.

Specification of node

  Lemma mem_node: forall x l o r, mem x (node l o r) = mem x (Node l o r).
  Proof.
    intros x l o r.
    case o; trivial.
    destruct l; trivial.
    destruct r; trivial.
    destruct x; reflexivity.
  Qed.
  Local Opaque node.

Specification of is_empty

  Lemma is_empty_spec: forall s, is_empty s = true <-> Empty s.
  Proof.
    unfold Empty, In.
    induction s as [|l IHl o r IHr]; simpl.
      firstorder.
      rewrite <- 2andb_lazy_alt, 2andb_true_iff, IHl, IHr. clear IHl IHr.
      destruct o; simpl; split.
        intuition discriminate.
        intro H. elim (H 1). reflexivity.
        intros H [a|a|]; apply H || intro; discriminate.
        intro H. split. split. reflexivity.
          intro a. apply (H a~0).
          intro a. apply (H a~1).
  Qed.

Specification of subset

  Lemma subset_Leaf_s: forall s, Leaf [<=] s.
  Proof. intros s i Hi. apply empty_spec in Hi. elim Hi. Qed.

  Lemma subset_spec: forall s s', subset s s' = true <-> s [<=] s'.
  Proof.
    induction s as [|l IHl o r IHr]; intros [|l' o' r']; simpl.
      split; intros. apply subset_Leaf_s. reflexivity.

      split; intros. apply subset_Leaf_s. reflexivity.

      rewrite <- 2andb_lazy_alt, 2andb_true_iff, 2is_empty_spec.
      destruct o; simpl.
        split.
          intuition discriminate.
          intro H. elim (@empty_spec 1). apply H. reflexivity.
        split; intro H.
          destruct H as [[_ Hl] Hr].
          intros [i|i|] Hi.
            elim (Hr i Hi).
            elim (Hl i Hi).
            discriminate.
          split. split. reflexivity.
          unfold Empty. intros a H1. apply (@empty_spec (a~0)), H. assumption.
          unfold Empty. intros a H1. apply (@empty_spec (a~1)), H. assumption.

      rewrite <- 2andb_lazy_alt, 2andb_true_iff, IHl, IHr. clear.
      destruct o; simpl.
       split; intro H.
         destruct H as [[Ho' Hl] Hr]. rewrite Ho'.
          intros i Hi. destruct i.
            apply (Hr i). assumption.
            apply (Hl i). assumption.
            assumption.
         split. split.
          destruct o'; trivial.
          specialize (H 1). unfold In in H. simpl in H. apply H. reflexivity.
          intros i Hi. apply (H i~0). apply Hi.
          intros i Hi. apply (H i~1). apply Hi.
       split; intros.
         intros i Hi. destruct i; destruct H as [[H Hl] Hr].
           apply (Hr i). assumption.
           apply (Hl i). assumption.
            discriminate Hi.
         split. split. reflexivity.
           intros i Hi. apply (H i~0). apply Hi.
           intros i Hi. apply (H i~1). apply Hi.
  Qed.

Specification of equal (via subset)

  Lemma equal_subset: forall s s', equal s s' = subset s s' && subset s' s.
  Proof.
    induction s as [|l IHl o r IHr]; intros [|l' o' r']; simpl; trivial.
      destruct o. reflexivity. rewrite andb_comm. reflexivity.
      rewrite <- 6andb_lazy_alt. rewrite eq_iff_eq_true.
       rewrite 7andb_true_iff, eqb_true_iff.
      rewrite IHl, IHr, 2andb_true_iff. clear IHl IHr. intuition subst.
       destruct o'; reflexivity.
       destruct o'; reflexivity.
       destruct o; auto. destruct o'; trivial.
  Qed.

  Lemma equal_spec: forall s s', equal s s' = true <-> Equal s s'.
  Proof.
    intros. rewrite equal_subset. rewrite andb_true_iff.
    rewrite 2subset_spec. unfold Equal, Subset. firstorder.
  Qed.

  Lemma eq_dec : forall s s', { eq s s' } + { ~ eq s s' }.
  Proof.
    unfold eq.
    intros. case_eq (equal s s'); intro H.
     left. apply equal_spec, H.
     right. rewrite <- equal_spec. congruence.
  Defined.

(Specified) definition of compare

  Lemma lex_Opp: forall u v u' v', u = CompOpp u' -> v = CompOpp v' ->
    lex u v = CompOpp (lex u' v').
  Proof. intros ? ? u' ? -> ->. case u'; reflexivity. Qed.

  Lemma compare_bool_inv: forall b b',
    compare_bool b b' = CompOpp (compare_bool b' b).
  Proof. intros [|] [|]; reflexivity. Qed.

  Lemma compare_inv: forall s s', compare s s' = CompOpp (compare s' s).
  Proof.
    induction s as [|l IHl o r IHr]; destruct s' as [|l' o' r']; trivial.
    unfold compare. case is_empty; reflexivity.
    unfold compare. case is_empty; reflexivity.
    simpl. rewrite compare_bool_inv.
     case compare_bool; simpl; trivial; apply lex_Opp; auto.
  Qed.

  Lemma lex_Eq: forall u v, lex u v = Eq <-> u=Eq /\ v=Eq.
  Proof. intros u v; destruct u; intuition discriminate. Qed.

  Lemma compare_bool_Eq: forall b1 b2,
    compare_bool b1 b2 = Eq <-> eqb b1 b2 = true.
  Proof. intros [|] [|]; intuition discriminate. Qed.

  Lemma compare_equal: forall s s', compare s s' = Eq <-> equal s s' = true.
  Proof.
    induction s as [|l IHl o r IHr]; destruct s' as [|l' o' r'].
     simpl. tauto.
     unfold compare, equal. case is_empty; intuition discriminate.
     unfold compare, equal. case is_empty; intuition discriminate.
     simpl. rewrite <- 2andb_lazy_alt, 2andb_true_iff.
     rewrite <- IHl, <- IHr, <- compare_bool_Eq. clear IHl IHr.
     rewrite and_assoc. rewrite <- 2lex_Eq. reflexivity.
  Qed.

  Lemma compare_gt: forall s s', compare s s' = Gt -> lt s' s.
  Proof.
    unfold lt. intros s s'. rewrite compare_inv.
     case compare; trivial; intros; discriminate.
  Qed.

  Lemma compare_eq: forall s s', compare s s' = Eq -> eq s s'.
  Proof.
    unfold eq. intros s s'. rewrite compare_equal, equal_spec. trivial.
  Qed.

  Lemma compare_spec : forall s s' : t, CompSpec eq lt s s' (compare s s').
  Proof.
    intros. case_eq (compare s s'); intro H; constructor.
    apply compare_eq, H.
    assumption.
    apply compare_gt, H.
  Qed.

  Section lt_spec.

  Inductive ct: comparison -> comparison -> comparison -> Prop :=
  | ct_xxx: forall x, ct x x x
  | ct_xex: forall x, ct x Eq x
  | ct_exx: forall x, ct Eq x x
  | ct_glx: forall x, ct Gt Lt x
  | ct_lgx: forall x, ct Lt Gt x.

  Lemma ct_cxe: forall x, ct (CompOpp x) x Eq.
  Proof. destruct x; constructor. Qed.

  Lemma ct_xce: forall x, ct x (CompOpp x) Eq.
  Proof. destruct x; constructor. Qed.

  Lemma ct_lxl: forall x, ct Lt x Lt.
  Proof. destruct x; constructor. Qed.

  Lemma ct_gxg: forall x, ct Gt x Gt.
  Proof. destruct x; constructor. Qed.

  Lemma ct_xll: forall x, ct x Lt Lt.
  Proof. destruct x; constructor. Qed.

  Lemma ct_xgg: forall x, ct x Gt Gt.
  Proof. destruct x; constructor. Qed.

  Local Hint Constructors ct: ct.
  Local Hint Resolve ct_cxe ct_xce ct_lxl ct_xll ct_gxg ct_xgg: ct.
  Ltac ct := trivial with ct.

  Lemma ct_lex: forall u v w u' v' w',
    ct u v w -> ct u' v' w' -> ct (lex u u') (lex v v') (lex w w').
  Proof.
    intros u v w u' v' w' H H'.
    inversion_clear H; inversion_clear H'; ct; destruct w; ct; destruct w'; ct.
  Qed.

  Lemma ct_compare_bool:
    forall a b c, ct (compare_bool a b) (compare_bool b c) (compare_bool a c).
  Proof.
    intros [|] [|] [|]; constructor.
  Qed.

  Lemma compare_x_Leaf: forall s,
    compare s Leaf = if is_empty s then Eq else Gt.
  Proof.
    intros. rewrite compare_inv. simpl. case (is_empty s); reflexivity.
  Qed.

  Lemma compare_empty_x: forall a, is_empty a = true ->
    forall b, compare a b = if is_empty b then Eq else Lt.
  Proof.
    induction a as [|l IHl o r IHr]; trivial.
    destruct o. intro; discriminate.
    simpl is_empty. rewrite <- andb_lazy_alt, andb_true_iff.
    intros [Hl Hr].
    destruct b as [|l' [|] r']; simpl compare; trivial.
     rewrite Hl, Hr. trivial.
     rewrite (IHl Hl), (IHr Hr). simpl.
     case (is_empty l'); case (is_empty r'); trivial.
  Qed.

  Lemma compare_x_empty: forall a, is_empty a = true ->
    forall b, compare b a = if is_empty b then Eq else Gt.
  Proof.
    setoid_rewrite <- compare_x_Leaf.
    intros. rewrite 2(compare_inv b), (compare_empty_x _ H). reflexivity.
  Qed.

  Lemma ct_compare:
    forall a b c, ct (compare a b) (compare b c) (compare a c).
  Proof.
    induction a as [|l IHl o r IHr]; intros s' s''.
     destruct s' as [|l' o' r']; destruct s'' as [|l'' o'' r'']; ct.
      rewrite compare_inv. ct.
      unfold compare at 1. case_eq (is_empty (Node l' o' r')); intro H'.
       rewrite (compare_empty_x _ H'). ct.
       unfold compare at 2. case_eq (is_empty (Node l'' o'' r'')); intro H''.
        rewrite (compare_x_empty _ H''), H'. ct.
        ct.

     destruct s' as [|l' o' r']; destruct s'' as [|l'' o'' r''].
      ct.
      unfold compare at 2. rewrite compare_x_Leaf.
      case_eq (is_empty (Node l o r)); intro H.
       rewrite (compare_empty_x _ H). ct.
       case_eq (is_empty (Node l'' o'' r'')); intro H''.
        rewrite (compare_x_empty _ H''), H. ct.
        ct.

      rewrite 2 compare_x_Leaf.
      case_eq (is_empty (Node l o r)); intro H.
       rewrite compare_inv, (compare_x_empty _ H). ct.
       case_eq (is_empty (Node l' o' r')); intro H'.
        rewrite (compare_x_empty _ H'), H. ct.
        ct.

      simpl compare. apply ct_lex. apply ct_compare_bool.
       apply ct_lex; trivial.
  Qed.

  End lt_spec.

  Instance lt_strorder : StrictOrder lt.
  Proof.
   unfold lt. split.
   intros x H.
   assert (compare x x = Eq).
    apply compare_equal, equal_spec. reflexivity.
   congruence.
   intros a b c. assert (H := ct_compare a b c).
    inversion_clear H; trivial; intros; discriminate.
  Qed.

  Local Instance compare_compat_1 : Proper (eq==>Logic.eq==>Logic.eq) compare.
  Proof.
   intros x x' Hx y y' Hy. subst y'.
   unfold eq in *. rewrite <- equal_spec, <- compare_equal in *.
   assert (C:=ct_compare x x' y). rewrite Hx in C. inversion C; auto.
  Qed.

  Instance compare_compat : Proper (eq==>eq==>Logic.eq) compare.
  Proof.
   intros x x' Hx y y' Hy. rewrite Hx.
   rewrite compare_inv, Hy, <- compare_inv. reflexivity.
  Qed.

  Local Instance lt_compat : Proper (eq==>eq==>iff) lt.
  Proof.
   intros x x' Hx y y' Hy. unfold lt. rewrite Hx, Hy. intuition.
  Qed.

Specification of add

  Lemma add_spec: forall s x y, In y (add x s) <-> y=x \/ In y s.
  Proof.
    unfold In. intros s x y; revert x y s.
    induction x; intros [y|y|] [|l o r]; simpl mem;
    try (rewrite IHx; clear IHx); rewrite ?mem_Leaf; intuition congruence.
  Qed.

Specification of remove

  Lemma remove_spec: forall s x y, In y (remove x s) <-> In y s /\ y<>x.
  Proof.
    unfold In. intros s x y; revert x y s.
    induction x; intros [y|y|] [|l o r]; simpl remove; rewrite ?mem_node;
     simpl mem; try (rewrite IHx; clear IHx); rewrite ?mem_Leaf;
     intuition congruence.
  Qed.

Specification of singleton

  Lemma singleton_spec : forall x y, In y (singleton x) <-> y=x.
  Proof.
    unfold singleton. intros x y. rewrite add_spec. intuition.
    unfold In in *. rewrite mem_Leaf in *. discriminate.
  Qed.

Specification of union

  Lemma union_spec: forall s s' x, In x (union s s') <-> In x s \/ In x s'.
  Proof.
    unfold In. intros s s' x; revert x s s'.
    induction x; destruct s; destruct s'; simpl union; simpl mem;
      try (rewrite IHx; clear IHx); try intuition congruence.
      apply orb_true_iff.
  Qed.

Specification of inter

  Lemma inter_spec: forall s s' x, In x (inter s s') <-> In x s /\ In x s'.
  Proof.
    unfold In. intros s s' x; revert x s s'.
    induction x; destruct s; destruct s'; simpl inter; rewrite ?mem_node;
     simpl mem; try (rewrite IHx; clear IHx); try intuition congruence.
     apply andb_true_iff.
  Qed.

Specification of diff

  Lemma diff_spec: forall s s' x, In x (diff s s') <-> In x s /\ ~ In x s'.
  Proof.
    unfold In. intros s s' x; revert x s s'.
    induction x; destruct s; destruct s' as [|l' o' r']; simpl diff;
     rewrite ?mem_node; simpl mem;
      try (rewrite IHx; clear IHx); try intuition congruence.
      rewrite andb_true_iff. destruct o'; intuition discriminate.
  Qed.

Specification of fold

  Lemma fold_spec: forall s (A : Type) (i : A) (f : elt -> A -> A),
      fold f s i = fold_left (fun a e => f e a) (elements s) i.
  Proof.
    unfold fold, elements. intros s A i f. revert s i.
    set (f' := fun a e => f e a).
    assert (H: forall s i j acc,
      fold_left f' acc (xfold f s i j) =
      fold_left f' (xelements s j acc) i).

    induction s as [|l IHl o r IHr]; intros; trivial.
      destruct o; simpl xelements; simpl xfold.
        rewrite IHr, <- IHl. reflexivity.
        rewrite IHr. apply IHl.

    intros. exact (H s i 1 nil).
  Qed.

Specification of cardinal

  Lemma cardinal_spec: forall s, cardinal s = length (elements s).
  Proof.
    unfold elements.
    assert (H: forall s j acc,
                (cardinal s + length acc)%nat = length (xelements s j acc)).

    induction s as [|l IHl b r IHr]; intros j acc; simpl; trivial. destruct b.
      rewrite <- IHl. simpl. rewrite <- IHr.
       rewrite <- plus_n_Sm, Plus.plus_assoc. reflexivity.
      rewrite <- IHl, <- IHr. rewrite Plus.plus_assoc. reflexivity.

    intros. rewrite <- H. simpl. rewrite Plus.plus_comm. reflexivity.
  Qed.

Specification of filter

  Lemma xfilter_spec: forall f s x i,
    In x (xfilter f s i) <-> In x s /\ f (i@x) = true.
  Proof.
    intro f. unfold In.
    induction s as [|l IHl o r IHr]; intros x i; simpl xfilter.
     rewrite mem_Leaf. intuition discriminate.
     rewrite mem_node. destruct x; simpl.
       rewrite IHr. reflexivity.
       rewrite IHl. reflexivity.
       rewrite <- andb_lazy_alt. apply andb_true_iff.
  Qed.

  Lemma filter_spec: forall s x f, @compat_bool elt E.eq f ->
    (In x (filter f s) <-> In x s /\ f x = true).
  Proof. intros. apply xfilter_spec. Qed.

Specification of for_all

  Lemma xforall_spec: forall f s i,
    xforall f s i = true <-> For_all (fun x => f (i@x) = true) s.
  Proof.
    unfold For_all, In. intro f.
    induction s as [|l IHl o r IHr]; intros i; simpl.
    intuition discriminate.
     rewrite <- 2andb_lazy_alt, <- orb_lazy_alt, 2 andb_true_iff.
     rewrite IHl, IHr. clear IHl IHr.
      split.
       intros [[Hi Hr] Hl] x. destruct x; simpl; intro H.
        apply Hr, H.
        apply Hl, H.
        rewrite H in Hi. assumption.
       intro H; intuition.
        specialize (H 1). destruct o. apply H. reflexivity. reflexivity.
        apply H. assumption.
        apply H. assumption.
  Qed.

  Lemma for_all_spec: forall s f, @compat_bool elt E.eq f ->
    (for_all f s = true <-> For_all (fun x => f x = true) s).
  Proof. intros. apply xforall_spec. Qed.

Specification of exists

  Lemma xexists_spec: forall f s i,
    xexists f s i = true <-> Exists (fun x => f (i@x) = true) s.
  Proof.
    unfold Exists, In. intro f.
    induction s as [|l IHl o r IHr]; intros i; simpl.
     firstorder.
     rewrite <- 2orb_lazy_alt, 2orb_true_iff, <- andb_lazy_alt, andb_true_iff.
     rewrite IHl, IHr. clear IHl IHr.
      split.
       intros [[Hi|[x Hr]]|[x Hl]].
        exists 1. exact Hi.
        exists x~1. exact Hr.
        exists x~0. exact Hl.
       intros [[x|x|] H]; eauto.
  Qed.

  Lemma exists_spec : forall s f, @compat_bool elt E.eq f ->
    (exists_ f s = true <-> Exists (fun x => f x = true) s).
  Proof. intros. apply xexists_spec. Qed.

Specification of partition

  Lemma partition_filter : forall s f,
    partition f s = (filter f s, filter (fun x => negb (f x)) s).
  Proof.
    unfold partition, filter. intros s f. generalize 1 as j.
    induction s as [|l IHl o r IHr]; intro j.
      reflexivity.
      destruct o; simpl; rewrite IHl, IHr; reflexivity.
  Qed.

  Lemma partition_spec1 : forall s f, @compat_bool elt E.eq f ->
      Equal (fst (partition f s)) (filter f s).
  Proof. intros. rewrite partition_filter. reflexivity. Qed.

  Lemma partition_spec2 : forall s f, @compat_bool elt E.eq f ->
      Equal (snd (partition f s)) (filter (fun x => negb (f x)) s).
  Proof. intros. rewrite partition_filter. reflexivity. Qed.

Specification of elements

  Notation InL := (InA E.eq).

  Lemma xelements_spec: forall s j acc y,
    InL y (xelements s j acc)
    <->
    InL y acc \/ exists x, y=(j@x) /\ mem x s = true.
  Proof.
    induction s as [|l IHl o r IHr]; simpl.
      intros. split; intro H.
        left. assumption.
        destruct H as [H|[x [Hx Hx']]]. assumption. discriminate.

      intros j acc y. case o.
        rewrite IHl. rewrite InA_cons. rewrite IHr. clear IHl IHr. split.
          intros [[H|[H|[x [-> H]]]]|[x [-> H]]]; eauto.
            right. exists x~1. auto.
            right. exists x~0. auto.
          intros [H|[x [-> H]]].
            eauto.
            destruct x.
              left. right. right. exists x; auto.
              right. exists x; auto.
              left. left. reflexivity.

        rewrite IHl, IHr. clear IHl IHr. split.
          intros [[H|[x [-> H]]]|[x [-> H]]].
            eauto.
            right. exists x~1. auto.
            right. exists x~0. auto.
          intros [H|[x [-> H]]].
            eauto.
            destruct x.
              left. right. exists x; auto.
              right. exists x; auto.
              discriminate.
  Qed.

  Lemma elements_spec1: forall s x, InL x (elements s) <-> In x s.
  Proof.
   unfold elements. intros. rewrite xelements_spec.
   split; [ intros [A|(y & B & C)] | intros IN ].
   inversion A. simpl in *. congruence.
   right. exists x. auto.
  Qed.

  Lemma lt_rev_append: forall j x y, E.lt x y -> E.lt (j@x) (j@y).
  Proof. induction j; intros; simpl; auto. Qed.

  Lemma elements_spec2: forall s, sort E.lt (elements s).
  Proof.
    unfold elements.
    assert (H: forall s j acc,
      sort E.lt acc ->
      (forall x y, In x s -> InL y acc -> E.lt (j@x) y) ->
      sort E.lt (xelements s j acc)).

    induction s as [|l IHl o r IHr]; simpl; trivial.
    intros j acc Hacc Hsacc. destruct o.
      apply IHl. constructor.
       apply IHr. apply Hacc.
       intros x y Hx Hy. apply Hsacc; assumption.
       case_eq (xelements r j~1 acc). constructor.
       intros z q H. constructor.
       assert (H': InL z (xelements r j~1 acc)).
        rewrite H. constructor. reflexivity.
       clear H q. rewrite xelements_spec in H'. destruct H' as [Hy|[x [-> Hx]]].
         apply (Hsacc 1 z); trivial. reflexivity.
         simpl. apply lt_rev_append. exact I.
       intros x y Hx Hy. inversion_clear Hy.
         rewrite H. simpl. apply lt_rev_append. exact I.
         rewrite xelements_spec in H. destruct H as [Hy|[z [-> Hy]]].
           apply Hsacc; assumption.
           simpl. apply lt_rev_append. exact I.

      apply IHl. apply IHr. apply Hacc.
       intros x y Hx Hy. apply Hsacc; assumption.
       intros x y Hx Hy. rewrite xelements_spec in Hy.
        destruct Hy as [Hy|[z [-> Hy]]].
         apply Hsacc; assumption.
         simpl. apply lt_rev_append. exact I.

    intros. apply H. constructor.
      intros x y _ H'. inversion H'.
  Qed.

  Lemma elements_spec2w: forall s, NoDupA E.eq (elements s).
  Proof.
    intro. apply SortA_NoDupA with E.lt; auto with *.
    apply elements_spec2.
  Qed.

Specification of choose

  Lemma choose_spec1: forall s x, choose s = Some x -> In x s.
  Proof.
    induction s as [| l IHl o r IHr]; simpl.
      intros. discriminate.
      destruct o.
        intros x H. injection H; intros; subst. reflexivity.
        revert IHl. case choose.
          intros p Hp x H. injection H as <-. apply Hp.
           reflexivity.
          intros _ x. revert IHr. case choose.
            intros p Hp H. injection H as <-. apply Hp.
            reflexivity.
            intros. discriminate.
  Qed.

  Lemma choose_spec2: forall s, choose s = None -> Empty s.
  Proof.
    unfold Empty, In. intros s H.
    induction s as [|l IHl o r IHr].
      intro. apply empty_spec.
      destruct o.
        discriminate.
        simpl in H. destruct (choose l).
          discriminate.
          destruct (choose r).
            discriminate.
            intros [a|a|].
              apply IHr. reflexivity.
              apply IHl. reflexivity.
              discriminate.
  Qed.

  Lemma choose_empty: forall s, is_empty s = true -> choose s = None.
  Proof.
    intros s Hs. case_eq (choose s); trivial.
    intros p Hp. apply choose_spec1 in Hp. apply is_empty_spec in Hs.
     elim (Hs _ Hp).
  Qed.

  Lemma choose_spec3': forall s s', Equal s s' -> choose s = choose s'.
  Proof.
    setoid_rewrite <- equal_spec.
    induction s as [|l IHl o r IHr].
      intros. symmetry. apply choose_empty. assumption.

      destruct s' as [|l' o' r'].
        generalize (Node l o r) as s. simpl. intros. apply choose_empty.
        rewrite equal_spec in H. symmetry in H. rewrite <- equal_spec in H.
        assumption.

        simpl. rewrite <- 2andb_lazy_alt, 2andb_true_iff, eqb_true_iff.
        intros [[<- Hl] Hr]. rewrite (IHl _ Hl), (IHr _ Hr). reflexivity.
  Qed.

  Lemma choose_spec3: forall s s' x y,
    choose s = Some x -> choose s' = Some y -> Equal s s' -> E.eq x y.
  Proof. intros s s' x y Hx Hy H. apply choose_spec3' in H. congruence. Qed.

Specification of min_elt

  Lemma min_elt_spec1: forall s x, min_elt s = Some x -> In x s.
  Proof.
   unfold In.
   induction s as [| l IHl o r IHr]; simpl.
     intros. discriminate.
     intros x. destruct (min_elt l); intros.
       injection H as <-. apply IHl. reflexivity.
       destruct o; simpl.
         injection H as <-. reflexivity.
         destruct (min_elt r); simpl in *.
           injection H as <-. apply IHr. reflexivity.
           discriminate.
  Qed.

  Lemma min_elt_spec3: forall s, min_elt s = None -> Empty s.
  Proof.
    unfold Empty, In. intros s H.
    induction s as [|l IHl o r IHr].
      intro. apply empty_spec.
      intros [a|a|].
        apply IHr. revert H. clear. simpl. destruct (min_elt r); trivial.
          case min_elt; intros; try discriminate. destruct o; discriminate.
        apply IHl. revert H. clear. simpl. destruct (min_elt l); trivial.
         intro; discriminate.
        revert H. clear. simpl. case min_elt; intros; try discriminate.
         destruct o; discriminate.
  Qed.

  Lemma min_elt_spec2: forall s x y, min_elt s = Some x -> In y s -> ~ E.lt y x.
  Proof.
    unfold In.
    induction s as [|l IHl o r IHr]; intros x y H H'.
      discriminate.
      simpl in H. case_eq (min_elt l).
        intros p Hp. rewrite Hp in H. injection H as <-.
        destruct y as [z|z|]; simpl; intro; trivial. apply (IHl p z); trivial.
        intro Hp; rewrite Hp in H. apply min_elt_spec3 in Hp.
        destruct o.
          injection H as <-. intros Hl.
          destruct y as [z|z|]; simpl; trivial. elim (Hp _ H').

          destruct (min_elt r).
            injection H as <-.
            destruct y as [z|z|].
              apply (IHr e z); trivial.
              elim (Hp _ H').
              discriminate.
            discriminate.
  Qed.

Specification of max_elt

  Lemma max_elt_spec1: forall s x, max_elt s = Some x -> In x s.
  Proof.
   unfold In.
   induction s as [| l IHl o r IHr]; simpl.
     intros. discriminate.
     intros x. destruct (max_elt r); intros.
       injection H as <-. apply IHr. reflexivity.
       destruct o; simpl.
         injection H as <-. reflexivity.
         destruct (max_elt l); simpl in *.
           injection H as <-. apply IHl. reflexivity.
           discriminate.
  Qed.

  Lemma max_elt_spec3: forall s, max_elt s = None -> Empty s.
  Proof.
    unfold Empty, In. intros s H.
    induction s as [|l IHl o r IHr].
      intro. apply empty_spec.
      intros [a|a|].
        apply IHr. revert H. clear. simpl. destruct (max_elt r); trivial.
         intro; discriminate.
        apply IHl. revert H. clear. simpl. destruct (max_elt l); trivial.
          case max_elt; intros; try discriminate. destruct o; discriminate.
        revert H. clear. simpl. case max_elt; intros; try discriminate.
         destruct o; discriminate.
  Qed.

  Lemma max_elt_spec2: forall s x y, max_elt s = Some x -> In y s -> ~ E.lt x y.
  Proof.
    unfold In.
    induction s as [|l IHl o r IHr]; intros x y H H'.
      discriminate.
      simpl in H. case_eq (max_elt r).
        intros p Hp. rewrite Hp in H. injection H as <-.
        destruct y as [z|z|]; simpl; intro; trivial. apply (IHr p z); trivial.
        intro Hp; rewrite Hp in H. apply max_elt_spec3 in Hp.
        destruct o.
          injection H as <-. intros Hl.
          destruct y as [z|z|]; simpl; trivial. elim (Hp _ H').

          destruct (max_elt l).
            injection H as <-.
            destruct y as [z|z|].
              elim (Hp _ H').
              apply (IHl e z); trivial.
              discriminate.
            discriminate.
  Qed.

End PositiveSet.