Library Coq.Structures.OrdersEx
Module Nat_as_OT := PeanoNat.Nat.
Module Positive_as_OT := BinPos.Pos.
Module N_as_OT := BinNat.N.
Module Z_as_OT := BinInt.Z.
An OrderedType can now directly be seen as a DecidableType
(Usual) Decidable Type for nat, positive, N, Z
Module Nat_as_DT <: UsualDecidableType := Nat_as_OT.
Module Positive_as_DT <: UsualDecidableType := Positive_as_OT.
Module N_as_DT <: UsualDecidableType := N_as_OT.
Module Z_as_DT <: UsualDecidableType := Z_as_OT.
From two ordered types, we can build a new OrderedType
over their cartesian product, using the lexicographic order.
Module PairOrderedType(O1 O2:OrderedType) <: OrderedType.
Include PairDecidableType O1 O2.
Definition lt :=
(relation_disjunction (O1.lt @@1) (O1.eq * O2.lt))%signature.
Instance lt_strorder : StrictOrder lt.
Proof.
split.
intros (x1,x2); compute. destruct 1.
apply (StrictOrder_Irreflexive x1); auto.
apply (StrictOrder_Irreflexive x2); intuition.
intros (x1,x2) (y1,y2) (z1,z2). compute. intuition.
left; etransitivity; eauto.
left. setoid_replace z1 with y1; auto with relations.
left; setoid_replace x1 with y1; auto with relations.
right; split; etransitivity; eauto.
Qed.
Instance lt_compat : Proper (eq==>eq==>iff) lt.
Proof.
compute.
intros (x1,x2) (x1',x2') (X1,X2) (y1,y2) (y1',y2') (Y1,Y2).
rewrite X1,X2,Y1,Y2; intuition.
Qed.
Definition compare x y :=
match O1.compare (fst x) (fst y) with
| Eq => O2.compare (snd x) (snd y)
| Lt => Lt
| Gt => Gt
end.
Lemma compare_spec : forall x y, CompSpec eq lt x y (compare x y).
Proof.
intros (x1,x2) (y1,y2); unfold compare; simpl.
destruct (O1.compare_spec x1 y1); try (constructor; compute; auto).
destruct (O2.compare_spec x2 y2); constructor; compute; auto with relations.
Qed.
End PairOrderedType.
Even if positive can be seen as an ordered type with respect to the
usual order (see above), we can also use a lexicographic order over bits
(lower bits are considered first). This is more natural when using
positive as indexes for sets or maps (see MSetPositive).
Local Open Scope positive.
Module PositiveOrderedTypeBits <: UsualOrderedType.
Definition t:=positive.
Include HasUsualEq <+ UsualIsEq.
Definition eqb := Pos.eqb.
Definition eqb_eq := Pos.eqb_eq.
Include HasEqBool2Dec.
Fixpoint bits_lt (p q:positive) : Prop :=
match p, q with
| xH, xI _ => True
| xH, _ => False
| xO p, xO q => bits_lt p q
| xO _, _ => True
| xI p, xI q => bits_lt p q
| xI _, _ => False
end.
Definition lt:=bits_lt.
Lemma bits_lt_antirefl : forall x : positive, ~ bits_lt x x.
Proof.
induction x; simpl; auto.
Qed.
Lemma bits_lt_trans :
forall x y z : positive, bits_lt x y -> bits_lt y z -> bits_lt x z.
Proof.
induction x; destruct y,z; simpl; eauto; intuition.
Qed.
Instance lt_compat : Proper (eq==>eq==>iff) lt.
Proof.
intros x x' Hx y y' Hy. rewrite Hx, Hy; intuition.
Qed.
Instance lt_strorder : StrictOrder lt.
Proof.
split; [ exact bits_lt_antirefl | exact bits_lt_trans ].
Qed.
Fixpoint compare x y :=
match x, y with
| x~1, y~1 => compare x y
| x~1, _ => Gt
| x~0, y~0 => compare x y
| x~0, _ => Lt
| 1, y~1 => Lt
| 1, 1 => Eq
| 1, y~0 => Gt
end.
Lemma compare_spec : forall x y, CompSpec eq lt x y (compare x y).
Proof.
unfold eq, lt.
induction x; destruct y; try constructor; simpl; auto.
destruct (IHx y); subst; auto.
destruct (IHx y); subst; auto.
Qed.
End PositiveOrderedTypeBits.