Library Coq.NArith.Ndec


Require Import Bool.
Require Import Sumbool.
Require Import Arith.
Require Import BinPos.
Require Import BinNat.
Require Import Pnat.
Require Import Nnat.
Require Import Ndigits.

Local Open Scope N_scope.

Obsolete results about boolean comparisons over N, kept for compatibility with IntMap and SMC.

Notation Peqb := Pos.eqb (compat "8.7").
Notation Neqb := N.eqb (compat "8.7").
Notation Peqb_correct := Pos.eqb_refl (only parsing).
Notation Neqb_correct := N.eqb_refl (only parsing).
Notation Neqb_comm := N.eqb_sym (only parsing).

Lemma Peqb_complete p p' : Pos.eqb p p' = true -> p = p'.
Proof. now apply Pos.eqb_eq. Qed.

Lemma Peqb_Pcompare p p' : Pos.eqb p p' = true -> Pos.compare p p' = Eq.
Proof. now rewrite Pos.compare_eq_iff, <- Pos.eqb_eq. Qed.

Lemma Pcompare_Peqb p p' : Pos.compare p p' = Eq -> Pos.eqb p p' = true.
Proof. now rewrite Pos.eqb_eq, <- Pos.compare_eq_iff. Qed.

Lemma Neqb_Ncompare n n' : N.eqb n n' = true -> N.compare n n' = Eq.
Proof. now rewrite N.compare_eq_iff, <- N.eqb_eq. Qed.

Lemma Ncompare_Neqb n n' : N.compare n n' = Eq -> N.eqb n n' = true.
Proof. now rewrite N.eqb_eq, <- N.compare_eq_iff. Qed.

Lemma Neqb_complete n n' : N.eqb n n' = true -> n = n'.
Proof. now apply N.eqb_eq. Qed.

Lemma Nxor_eq_true n n' : N.lxor n n' = 0 -> N.eqb n n' = true.
Proof.
  intro H. apply N.lxor_eq in H. subst. apply N.eqb_refl.
Qed.

Ltac eqb2eq := rewrite <- ?not_true_iff_false in *; rewrite ?N.eqb_eq in *.

Lemma Nxor_eq_false n n' p :
  N.lxor n n' = N.pos p -> N.eqb n n' = false.
Proof.
  intros. eqb2eq. intro. subst. now rewrite N.lxor_nilpotent in *.
Qed.

Lemma Nodd_not_double a :
  Nodd a -> forall a0, N.eqb (N.double a0) a = false.
Proof.
  intros. eqb2eq. intros <-.
  unfold Nodd in *. now rewrite Ndouble_bit0 in *.
Qed.

Lemma Nnot_div2_not_double a a0 :
  N.eqb (N.div2 a) a0 = false -> N.eqb a (N.double a0) = false.
Proof.
  intros H. eqb2eq. contradict H. subst. apply N.div2_double.
Qed.

Lemma Neven_not_double_plus_one a :
  Neven a -> forall a0, N.eqb (N.succ_double a0) a = false.
Proof.
  intros. eqb2eq. intros <-.
  unfold Neven in *. now rewrite Ndouble_plus_one_bit0 in *.
Qed.

Lemma Nnot_div2_not_double_plus_one a a0 :
  N.eqb (N.div2 a) a0 = false -> N.eqb (N.succ_double a0) a = false.
Proof.
  intros H. eqb2eq. contradict H. subst. apply N.div2_succ_double.
Qed.

Lemma Nbit0_neq a a' :
  N.odd a = false -> N.odd a' = true -> N.eqb a a' = false.
Proof.
  intros. eqb2eq. now intros <-.
Qed.

Lemma Ndiv2_eq a a' :
  N.eqb a a' = true -> N.eqb (N.div2 a) (N.div2 a') = true.
Proof.
  intros. eqb2eq. now subst.
Qed.

Lemma Ndiv2_neq a a' :
  N.eqb (N.div2 a) (N.div2 a') = false -> N.eqb a a' = false.
Proof.
  intros H. eqb2eq. contradict H. now subst.
Qed.

Lemma Ndiv2_bit_eq a a' :
  N.odd a = N.odd a' -> N.div2 a = N.div2 a' -> a = a'.
Proof.
  intros H H'; now rewrite (N.div2_odd a), (N.div2_odd a'), H, H'.
Qed.

Lemma Ndiv2_bit_neq a a' :
  N.eqb a a' = false ->
   N.odd a = N.odd a' -> N.eqb (N.div2 a) (N.div2 a') = false.
Proof.
  intros H H'. eqb2eq. contradict H. now apply Ndiv2_bit_eq.
Qed.

Lemma Nneq_elim a a' :
   N.eqb a a' = false ->
   N.odd a = negb (N.odd a') \/
   N.eqb (N.div2 a) (N.div2 a') = false.
Proof.
  intros.
  enough (N.odd a = N.odd a' \/ N.odd a = negb (N.odd a')) as [].
  - right. apply Ndiv2_bit_neq; assumption.
  - left. assumption.
  - case (N.odd a), (N.odd a'); auto.
Qed.

Lemma Ndouble_or_double_plus_un a :
   {a0 : N | a = N.double a0} + {a1 : N | a = N.succ_double a1}.
Proof.
  elim (sumbool_of_bool (N.odd a)); intros H; [right|left];
    exists (N.div2 a); symmetry;
    apply Ndiv2_double_plus_one || apply Ndiv2_double; auto.
Qed.

An inefficient boolean order on N. Please use N.leb instead now.

Definition Nleb (a b:N) := leb (N.to_nat a) (N.to_nat b).

Lemma Nleb_alt a b : Nleb a b = N.leb a b.
Proof.
 unfold Nleb.
 now rewrite eq_iff_eq_true, N.leb_le, leb_compare, <- N2Nat.inj_compare.
Qed.

Lemma Nleb_Nle a b : Nleb a b = true <-> a <= b.
Proof. now rewrite Nleb_alt, N.leb_le. Qed.

Lemma Nleb_refl a : Nleb a a = true.
Proof. rewrite Nleb_Nle; apply N.le_refl. Qed.

Lemma Nleb_antisym a b : Nleb a b = true -> Nleb b a = true -> a = b.
Proof. rewrite !Nleb_Nle. apply N.le_antisymm. Qed.

Lemma Nleb_trans a b c : Nleb a b = true -> Nleb b c = true -> Nleb a c = true.
Proof. rewrite !Nleb_Nle. apply N.le_trans. Qed.

Lemma Nleb_ltb_trans a b c :
  Nleb a b = true -> Nleb c b = false -> Nleb c a = false.
Proof.
  unfold Nleb. intros. apply leb_correct_conv.
  apply le_lt_trans with (m := N.to_nat b).
  apply leb_complete. assumption.
  apply leb_complete_conv. assumption.
Qed.

Lemma Nltb_leb_trans a b c :
  Nleb b a = false -> Nleb b c = true -> Nleb c a = false.
Proof.
  unfold Nleb. intros. apply leb_correct_conv.
  apply lt_le_trans with (m := N.to_nat b).
  apply leb_complete_conv. assumption.
  apply leb_complete. assumption.
Qed.

Lemma Nltb_trans a b c :
  Nleb b a = false -> Nleb c b = false -> Nleb c a = false.
Proof.
  unfold Nleb. intros. apply leb_correct_conv.
  apply lt_trans with (m := N.to_nat b).
  apply leb_complete_conv. assumption.
  apply leb_complete_conv. assumption.
Qed.

Lemma Nltb_leb_weak a b : Nleb b a = false -> Nleb a b = true.
Proof.
  unfold Nleb. intros. apply leb_correct. apply lt_le_weak.
  apply leb_complete_conv. assumption.
Qed.

Lemma Nleb_double_mono a b :
  Nleb a b = true -> Nleb (N.double a) (N.double b) = true.
Proof.
  unfold Nleb. intros. rewrite !N2Nat.inj_double. apply leb_correct.
  apply mult_le_compat_l. now apply leb_complete.
Qed.

Lemma Nleb_double_plus_one_mono a b :
  Nleb a b = true ->
   Nleb (N.succ_double a) (N.succ_double b) = true.
Proof.
  unfold Nleb. intros. rewrite !N2Nat.inj_succ_double. apply leb_correct.
  apply le_n_S, mult_le_compat_l. now apply leb_complete.
Qed.

Lemma Nleb_double_mono_conv a b :
  Nleb (N.double a) (N.double b) = true -> Nleb a b = true.
Proof.
  unfold Nleb. rewrite !N2Nat.inj_double. intro. apply leb_correct.
  apply (mult_S_le_reg_l 1). now apply leb_complete.
Qed.

Lemma Nleb_double_plus_one_mono_conv a b :
  Nleb (N.succ_double a) (N.succ_double b) = true ->
   Nleb a b = true.
Proof.
  unfold Nleb. rewrite !N2Nat.inj_succ_double. intro. apply leb_correct.
  apply (mult_S_le_reg_l 1). apply le_S_n. now apply leb_complete.
Qed.

Lemma Nltb_double_mono a b :
   Nleb a b = false -> Nleb (N.double a) (N.double b) = false.
Proof.
  intros. elim (sumbool_of_bool (Nleb (N.double a) (N.double b))). intro H0.
  rewrite (Nleb_double_mono_conv _ _ H0) in H. discriminate H.
  trivial.
Qed.

Lemma Nltb_double_plus_one_mono a b :
  Nleb a b = false ->
   Nleb (N.succ_double a) (N.succ_double b) = false.
Proof.
  intros. elim (sumbool_of_bool (Nleb (N.succ_double a) (N.succ_double b))).
  intro H0.
  rewrite (Nleb_double_plus_one_mono_conv _ _ H0) in H. discriminate H.
  trivial.
Qed.

Lemma Nltb_double_mono_conv a b :
  Nleb (N.double a) (N.double b) = false -> Nleb a b = false.
Proof.
  intros. elim (sumbool_of_bool (Nleb a b)). intro H0.
  rewrite (Nleb_double_mono _ _ H0) in H. discriminate H.
  trivial.
Qed.

Lemma Nltb_double_plus_one_mono_conv a b :
  Nleb (N.succ_double a) (N.succ_double b) = false ->
   Nleb a b = false.
Proof.
  intros. elim (sumbool_of_bool (Nleb a b)). intro H0.
  rewrite (Nleb_double_plus_one_mono _ _ H0) in H. discriminate H.
  trivial.
Qed.



Lemma Nltb_Ncompare a b : Nleb a b = false <-> N.compare a b = Gt.
Proof.
  now rewrite N.compare_nle_iff, <- Nleb_Nle, not_true_iff_false.
Qed.

Lemma Ncompare_Gt_Nltb a b : N.compare a b = Gt -> Nleb a b = false.
Proof. apply <- Nltb_Ncompare; auto. Qed.

Lemma Ncompare_Lt_Nltb a b : N.compare a b = Lt -> Nleb b a = false.
Proof.
 intros H. rewrite Nltb_Ncompare, N.compare_antisym, H; auto.
Qed.


Notation Nmin_choice := N.min_dec (only parsing).

Lemma Nmin_le_1 a b : Nleb (N.min a b) a = true.
Proof. rewrite Nleb_Nle. apply N.le_min_l. Qed.

Lemma Nmin_le_2 a b : Nleb (N.min a b) b = true.
Proof. rewrite Nleb_Nle. apply N.le_min_r. Qed.

Lemma Nmin_le_3 a b c : Nleb a (N.min b c) = true -> Nleb a b = true.
Proof. rewrite !Nleb_Nle. apply N.min_glb_l. Qed.

Lemma Nmin_le_4 a b c : Nleb a (N.min b c) = true -> Nleb a c = true.
Proof. rewrite !Nleb_Nle. apply N.min_glb_r. Qed.

Lemma Nmin_le_5 a b c :
   Nleb a b = true -> Nleb a c = true -> Nleb a (N.min b c) = true.
Proof. rewrite !Nleb_Nle. apply N.min_glb. Qed.

Lemma Nmin_lt_3 a b c : Nleb (N.min b c) a = false -> Nleb b a = false.
Proof.
  rewrite <- !not_true_iff_false, !Nleb_Nle.
  rewrite N.min_le_iff; auto.
Qed.

Lemma Nmin_lt_4 a b c : Nleb (N.min b c) a = false -> Nleb c a = false.
Proof.
  rewrite <- !not_true_iff_false, !Nleb_Nle.
  rewrite N.min_le_iff; auto.
Qed.