Library Coq.QArith.Qfield
Definition Qsrt : ring_theory 0 1 Qplus Qmult Qminus Qopp Qeq.
Proof.
constructor.
exact Qplus_0_l.
exact Qplus_comm.
exact Qplus_assoc.
exact Qmult_1_l.
exact Qmult_comm.
exact Qmult_assoc.
exact Qmult_plus_distr_l.
reflexivity.
exact Qplus_opp_r.
Qed.
Definition Qsft : field_theory 0 1 Qplus Qmult Qminus Qopp Qdiv Qinv Qeq.
Proof.
constructor.
exact Qsrt.
discriminate.
reflexivity.
intros p Hp.
rewrite Qmult_comm.
apply Qmult_inv_r.
exact Hp.
Qed.
Lemma Qpower_theory : power_theory 1 Qmult Qeq Z.of_N Qpower.
Proof.
constructor.
intros r [|n];
reflexivity.
Qed.
Ltac isQcst t :=
match t with
| inject_Z ?z => isZcst z
| Qmake ?n ?d =>
match isZcst n with
true => isPcst d
| _ => false
end
| _ => false
end.
Ltac Qcst t :=
match isQcst t with
true => t
| _ => NotConstant
end.
Ltac Qpow_tac t :=
match t with
| Z0 => N0
| Zpos ?n => Ncst (Npos n)
| Z.of_N ?n => Ncst n
| NtoZ ?n => Ncst n
| _ => NotConstant
end.
Add Field Qfield : Qsft
(decidable Qeq_bool_eq,
completeness Qeq_eq_bool,
constants [Qcst],
power_tac Qpower_theory [Qpow_tac]).
Exemple of use:
Section Examples.
Let ex1 : forall x y z : Q, (x+y)*z == (x*z)+(y*z).
intros.
ring.
Qed.
Let ex2 : forall x y : Q, x+y == y+x.
intros.
ring.
Qed.
Let ex3 : forall x y z : Q, (x+y)+z == x+(y+z).
intros.
ring.
Qed.
Let ex4 : (inject_Z 1)+(inject_Z 1)==(inject_Z 2).
ring.
Qed.
Let ex5 : 1+1 == 2#1.
ring.
Qed.
Let ex6 : (1#1)+(1#1) == 2#1.
ring.
Qed.
Let ex7 : forall x : Q, x-x== 0.
intro.
ring.
Qed.
Let ex8 : forall x : Q, x^1 == x.
intro.
ring.
Qed.
Let ex9 : forall x : Q, x^0 == 1.
intro.
ring.
Qed.
Let ex10 : forall x y : Q, ~(y==0) -> (x/y)*y == x.
intros.
field.
auto.
Qed.
End Examples.
Lemma Qopp_plus : forall a b, -(a+b) == -a + -b.
Proof.
intros; ring.
Qed.
Lemma Qopp_opp : forall q, - -q==q.
Proof.
intros; ring.
Qed.