Library Coq.QArith.Qminmax

Maximum and Minimum of two rational numbers


Local Open Scope Q_scope.

Qmin and Qmax are obtained the usual way from Qcompare.

Definition Qmax := gmax Qcompare.
Definition Qmin := gmin Qcompare.

Module QHasMinMax <: HasMinMax Q_as_OT.
 Module QMM := GenericMinMax Q_as_OT.
 Definition max := Qmax.
 Definition min := Qmin.
 Definition max_l := QMM.max_l.
 Definition max_r := QMM.max_r.
 Definition min_l := QMM.min_l.
 Definition min_r := QMM.min_r.
End QHasMinMax.

Module Q.

We obtain hence all the generic properties of max and min.

Properties specific to the Q domain

Compatibilities (consequences of monotonicity)

Lemma plus_max_distr_l : forall n m p, Qmax (p + n) (p + m) == p + Qmax n m.
Proof.
 intros. apply max_monotone.
 intros x x' Hx; rewrite Hx; auto with qarith.
 intros x x' Hx. apply Qplus_le_compat; q_order.
Qed.

Lemma plus_max_distr_r : forall n m p, Qmax (n + p) (m + p) == Qmax n m + p.
Proof.
 intros. rewrite (Qplus_comm n p), (Qplus_comm m p), (Qplus_comm _ p).
 apply plus_max_distr_l.
Qed.

Lemma plus_min_distr_l : forall n m p, Qmin (p + n) (p + m) == p + Qmin n m.
Proof.
 intros. apply min_monotone.
 intros x x' Hx; rewrite Hx; auto with qarith.
 intros x x' Hx. apply Qplus_le_compat; q_order.
Qed.

Lemma plus_min_distr_r : forall n m p, Qmin (n + p) (m + p) == Qmin n m + p.
Proof.
 intros. rewrite (Qplus_comm n p), (Qplus_comm m p), (Qplus_comm _ p).
 apply plus_min_distr_l.
Qed.

End Q.