Library GeoCoq.Elements.OriginalProofs.proposition_19
Require Export GeoCoq.Elements.OriginalProofs.lemma_angletrichotomy.
Require Export GeoCoq.Elements.OriginalProofs.proposition_18.
Require Export GeoCoq.Elements.OriginalProofs.lemma_trichotomy1.
Section Euclid.
Context `{Ax:euclidean_neutral_ruler_compass}.
Lemma proposition_19 :
forall A B C,
Triangle A B C -> LtA B C A A B C ->
Lt A B A C.
Proof.
intros.
assert (nCol A B C) by (conclude_def Triangle ).
assert (~ Col B C A).
{
intro.
assert (Col A B C) by (forward_using lemma_collinearorder).
contradict.
}
assert (~ Col A C B).
{
intro.
assert (Col A B C) by (forward_using lemma_collinearorder).
contradict.
}
assert (~ Col C B A).
{
intro.
assert (Col A B C) by (forward_using lemma_collinearorder).
contradict.
}
assert (~ Cong A C A B).
{
intro.
assert (Cong A B A C) by (conclude lemma_congruencesymmetric).
assert (isosceles A B C) by (conclude_def isosceles ).
assert (CongA A B C A C B) by (conclude proposition_05).
assert (CongA A C B A B C) by (conclude lemma_equalanglessymmetric).
assert (CongA B C A A C B) by (conclude lemma_ABCequalsCBA).
assert (CongA B C A A B C) by (conclude lemma_equalanglestransitive).
assert (LtA B C A B C A) by (conclude lemma_angleorderrespectscongruence).
assert (~ LtA B C A B C A) by (conclude lemma_angletrichotomy).
contradict.
}
assert (~ Lt A C A B).
{
intro.
assert (Triangle A C B) by (conclude_def Triangle ).
assert (Triangle C B A) by (conclude_def Triangle ).
assert (LtA C B A A C B) by (conclude proposition_18).
assert (CongA A B C C B A) by (conclude lemma_ABCequalsCBA).
assert (LtA A B C A C B) by (conclude lemma_angleorderrespectscongruence2).
assert (CongA B C A A C B) by (conclude lemma_ABCequalsCBA).
assert (LtA A B C B C A) by (conclude lemma_angleorderrespectscongruence).
assert (~ LtA A B C B C A) by (conclude lemma_angletrichotomy).
contradict.
}
assert (CongA A B C A B C) by (conclude lemma_equalanglesreflexive).
assert (neq A B) by (forward_using lemma_angledistinct).
assert (neq A C) by (forward_using lemma_angledistinct).
assert (~ ~ Lt A B A C).
{
intro.
assert (Cong A B A C) by (conclude lemma_trichotomy1).
assert (Cong A C A B) by (conclude lemma_congruencesymmetric).
contradict.
}
close.
Qed.
End Euclid.
Require Export GeoCoq.Elements.OriginalProofs.proposition_18.
Require Export GeoCoq.Elements.OriginalProofs.lemma_trichotomy1.
Section Euclid.
Context `{Ax:euclidean_neutral_ruler_compass}.
Lemma proposition_19 :
forall A B C,
Triangle A B C -> LtA B C A A B C ->
Lt A B A C.
Proof.
intros.
assert (nCol A B C) by (conclude_def Triangle ).
assert (~ Col B C A).
{
intro.
assert (Col A B C) by (forward_using lemma_collinearorder).
contradict.
}
assert (~ Col A C B).
{
intro.
assert (Col A B C) by (forward_using lemma_collinearorder).
contradict.
}
assert (~ Col C B A).
{
intro.
assert (Col A B C) by (forward_using lemma_collinearorder).
contradict.
}
assert (~ Cong A C A B).
{
intro.
assert (Cong A B A C) by (conclude lemma_congruencesymmetric).
assert (isosceles A B C) by (conclude_def isosceles ).
assert (CongA A B C A C B) by (conclude proposition_05).
assert (CongA A C B A B C) by (conclude lemma_equalanglessymmetric).
assert (CongA B C A A C B) by (conclude lemma_ABCequalsCBA).
assert (CongA B C A A B C) by (conclude lemma_equalanglestransitive).
assert (LtA B C A B C A) by (conclude lemma_angleorderrespectscongruence).
assert (~ LtA B C A B C A) by (conclude lemma_angletrichotomy).
contradict.
}
assert (~ Lt A C A B).
{
intro.
assert (Triangle A C B) by (conclude_def Triangle ).
assert (Triangle C B A) by (conclude_def Triangle ).
assert (LtA C B A A C B) by (conclude proposition_18).
assert (CongA A B C C B A) by (conclude lemma_ABCequalsCBA).
assert (LtA A B C A C B) by (conclude lemma_angleorderrespectscongruence2).
assert (CongA B C A A C B) by (conclude lemma_ABCequalsCBA).
assert (LtA A B C B C A) by (conclude lemma_angleorderrespectscongruence).
assert (~ LtA A B C B C A) by (conclude lemma_angletrichotomy).
contradict.
}
assert (CongA A B C A B C) by (conclude lemma_equalanglesreflexive).
assert (neq A B) by (forward_using lemma_angledistinct).
assert (neq A C) by (forward_using lemma_angledistinct).
assert (~ ~ Lt A B A C).
{
intro.
assert (Cong A B A C) by (conclude lemma_trichotomy1).
assert (Cong A C A B) by (conclude lemma_congruencesymmetric).
contradict.
}
close.
Qed.
End Euclid.