Library GeoCoq.Meta_theory.Parallel_postulates.tarski_s_euclid_remove_degenerated_cases
Require Import GeoCoq.Axioms.parallel_postulates.
Require Import GeoCoq.Tarski_dev.Ch05_bet_le.
Section tarski_s_euclid_remove_degenerated_cases.
Context `{T2D:Tarski_2D}.
Lemma tarski_s_euclid_remove_degenerated_cases :
(forall A B C D T,
A <> B ->
A <> C ->
A <> D ->
A <> T ->
B <> C ->
B <> D ->
B <> T ->
C <> D ->
C <> T ->
D <> T ->
~ Col A B C ->
Bet A D T ->
Bet B D C ->
exists x y : Tpoint, Bet A B x /\ Bet A C y /\ Bet x T y) ->
forall A B C D T,
Bet A D T ->
Bet B D C ->
A <> D -> exists x y : Tpoint, Bet A B x /\ Bet A C y /\ Bet x T y.
Proof.
intro HGC; intros A B C D T HADT HBDC HAD.
elim (eq_dec_points A B); intro HAB.
subst; exists T; exists C; Between.
elim (eq_dec_points A C); intro HAC.
subst; exists B; exists T; Between.
elim (eq_dec_points A T); intro HAT.
exfalso; apply HAD; treat_equalities; reflexivity.
elim (eq_dec_points B C); intro HBC.
subst; exists T; exists T; Between.
elim (eq_dec_points B D); intro HBD.
subst; exists T; exists C; Between.
elim (eq_dec_points B T); intro HBT.
subst; exists T; exists C; Between.
elim (eq_dec_points C D); intro HCD.
subst; exists B; exists T; Between.
elim (eq_dec_points C T); intro HCT.
subst; exists B; exists T; Between.
elim (eq_dec_points D T); intro HDT.
subst; exists B; exists C; Between.
elim (Col_dec A B C); intro HABC.
{
elim HABC; clear HABC; intro HABC.
{
assert (H : Bet A B D) by eBetween; assert (Bet A B T) by eBetween.
exists T; exists C; Between.
}
{
elim HABC; clear HABC; intro HABC.
{
assert (H : Bet A C D) by eBetween; assert (Bet A C T) by eBetween.
exists B; exists T; Between.
}
{
assert (H : Bet B A D \/ Bet B D A) by (apply l5_3 with C; Between).
elim H; clear H; intro H.
{
assert (H' : Bet A C T \/ Bet A T C) by (apply l5_2 with B; eBetween).
elim H'; clear H'; intro H'.
{
exists B; exists T; Between.
}
{
exists B; exists C; split ; try Between.
split; try Between.
eBetween.
}
}
{
assert (H' : Bet A B T \/ Bet A T B) by (apply l5_1 with D; Between).
elim H'; clear H'; intro H'.
{
exists T; exists C; Between.
}
{
exists B; exists C; split ; try Between.
split; try Between.
eBetween.
}
}
}
}
}
{
apply HGC with D; assumption.
}
Qed.
End tarski_s_euclid_remove_degenerated_cases.
Require Import GeoCoq.Tarski_dev.Ch05_bet_le.
Section tarski_s_euclid_remove_degenerated_cases.
Context `{T2D:Tarski_2D}.
Lemma tarski_s_euclid_remove_degenerated_cases :
(forall A B C D T,
A <> B ->
A <> C ->
A <> D ->
A <> T ->
B <> C ->
B <> D ->
B <> T ->
C <> D ->
C <> T ->
D <> T ->
~ Col A B C ->
Bet A D T ->
Bet B D C ->
exists x y : Tpoint, Bet A B x /\ Bet A C y /\ Bet x T y) ->
forall A B C D T,
Bet A D T ->
Bet B D C ->
A <> D -> exists x y : Tpoint, Bet A B x /\ Bet A C y /\ Bet x T y.
Proof.
intro HGC; intros A B C D T HADT HBDC HAD.
elim (eq_dec_points A B); intro HAB.
subst; exists T; exists C; Between.
elim (eq_dec_points A C); intro HAC.
subst; exists B; exists T; Between.
elim (eq_dec_points A T); intro HAT.
exfalso; apply HAD; treat_equalities; reflexivity.
elim (eq_dec_points B C); intro HBC.
subst; exists T; exists T; Between.
elim (eq_dec_points B D); intro HBD.
subst; exists T; exists C; Between.
elim (eq_dec_points B T); intro HBT.
subst; exists T; exists C; Between.
elim (eq_dec_points C D); intro HCD.
subst; exists B; exists T; Between.
elim (eq_dec_points C T); intro HCT.
subst; exists B; exists T; Between.
elim (eq_dec_points D T); intro HDT.
subst; exists B; exists C; Between.
elim (Col_dec A B C); intro HABC.
{
elim HABC; clear HABC; intro HABC.
{
assert (H : Bet A B D) by eBetween; assert (Bet A B T) by eBetween.
exists T; exists C; Between.
}
{
elim HABC; clear HABC; intro HABC.
{
assert (H : Bet A C D) by eBetween; assert (Bet A C T) by eBetween.
exists B; exists T; Between.
}
{
assert (H : Bet B A D \/ Bet B D A) by (apply l5_3 with C; Between).
elim H; clear H; intro H.
{
assert (H' : Bet A C T \/ Bet A T C) by (apply l5_2 with B; eBetween).
elim H'; clear H'; intro H'.
{
exists B; exists T; Between.
}
{
exists B; exists C; split ; try Between.
split; try Between.
eBetween.
}
}
{
assert (H' : Bet A B T \/ Bet A T B) by (apply l5_1 with D; Between).
elim H'; clear H'; intro H'.
{
exists T; exists C; Between.
}
{
exists B; exists C; split ; try Between.
split; try Between.
eBetween.
}
}
}
}
}
{
apply HGC with D; assumption.
}
Qed.
End tarski_s_euclid_remove_degenerated_cases.