Library Interval.Interval_generic_proof

This file is part of the Coq.Interval library for proving bounds of real-valued expressions in Coq: http://coq-interval.gforge.inria.fr/
Copyright (C) 2007-2016, Inria
This library is governed by the CeCILL-C license under French law and abiding by the rules of distribution of free software. You can use, modify and/or redistribute the library under the terms of the CeCILL-C license as circulated by CEA, CNRS and Inria at the following URL: http://www.cecill.info/
As a counterpart to the access to the source code and rights to copy, modify and redistribute granted by the license, users are provided only with a limited warranty and the library's author, the holder of the economic rights, and the successive licensors have only limited liability. See the COPYING file for more details.

Require Import Reals.
Require Import Bool.
Require Import ZArith.
From Flocq Require Import Core Digits Bracket Round Operations.
Require Import Interval_missing.
Require Import Interval_xreal.
Require Import Interval_definitions.
Require Import Interval_generic.
Require Import Psatz.
Import ssrbool.

Lemma FtoR_Rpos :
  forall beta m e,
  (0 < FtoR beta false m e)%R.
Proof.
intros beta m e.
rewrite FtoR_split.
now apply F2R_gt_0.
Qed.

Lemma FtoR_neg :
  forall beta s m e,
  (- FtoR beta s m e = FtoR beta (negb s) m e)%R.
Proof.
intros beta s m e.
rewrite 2!FtoR_split.
rewrite <- F2R_opp.
now case s.
Qed.

Lemma FtoR_Rneg :
  forall beta m e,
  (FtoR beta true m e < 0)%R.
Proof.
intros beta m e.
rewrite FtoR_split.
now apply F2R_lt_0.
Qed.

Lemma FtoR_abs :
  forall beta s m e,
  (Rabs (FtoR beta s m e) = FtoR beta false m e)%R.
Proof.
intros beta s m e.
rewrite 2!FtoR_split, <- F2R_abs.
now case s.
Qed.

Lemma FtoR_add :
  forall beta s m1 m2 e,
  (FtoR beta s m1 e + FtoR beta s m2 e)%R = FtoR beta s (m1 + m2) e.
Proof.
intros beta s m1 m2 e.
rewrite 3!FtoR_split.
unfold F2R. simpl.
rewrite <- Rmult_plus_distr_r.
rewrite <- plus_IZR.
now case s.
Qed.

Lemma FtoR_sub :
  forall beta s m1 m2 e,
  (Zpos m2 < Zpos m1)%Z ->
  (FtoR beta s m1 e + FtoR beta (negb s) m2 e)%R = FtoR beta s (m1 - m2) e.
Proof.
intros beta s m1 m2 e Hm.
rewrite 3!FtoR_split.
unfold F2R. simpl.
rewrite <- Rmult_plus_distr_r.
rewrite <- plus_IZR.
case s ; simpl.
rewrite (Z.pos_sub_spec m2 m1).
unfold Zlt in Hm ; simpl in Hm.
now rewrite Hm.
generalize (Zlt_gt _ _ Hm).
unfold Zgt. simpl.
intros H.
now rewrite (Z.pos_sub_spec m1 m2), H.
Qed.

Lemma FtoR_mul :
  forall beta s1 s2 m1 m2 e1 e2,
  (FtoR beta s1 m1 e1 * FtoR beta s2 m2 e2)%R =
  FtoR beta (xorb s1 s2) (m1 * m2) (e1 + e2).
Proof.
intros beta s1 s2 m1 m2 e1 e2.
rewrite 3!FtoR_split.
unfold F2R. simpl.
rewrite bpow_plus.
case s1 ; case s2 ; simpl ;
  rewrite <- Rmult_assoc, (Rmult_comm (IZR _)), (Rmult_assoc _ _ (IZR _)), <- mult_IZR ;
  simpl ; ring.
Qed.

Lemma shift_correct :
  forall beta m e,
  Zpos (shift beta m e) = (Zpos m * Zpower_pos beta e)%Z.
Proof.
intros beta m e.
rewrite Z.pow_pos_fold.
unfold shift.
set (r := match radix_val beta with Zpos r => r | _ => xH end).
rewrite iter_pos_nat.
rewrite Zpower_Zpower_nat by easy.
simpl Zabs_nat.
induction (nat_of_P e).
simpl.
now rewrite Pmult_comm.
rewrite iter_nat_S, Zpower_nat_S.
rewrite Zpos_mult_morphism.
rewrite IHn.
replace (Zpos r) with (radix_val beta).
ring.
unfold r.
generalize (radix_val beta) (radix_prop beta).
clear.
now intros [|p|p].
Qed.

Lemma FtoR_shift :
  forall beta s m e p,
  FtoR beta s m (e + Zpos p) = FtoR beta s (shift beta m p) e.
Proof.
intros beta s m e p.
rewrite 2!FtoR_split.
rewrite shift_correct.
rewrite F2R_change_exp with (e' := e).
ring_simplify (e + Zpos p - e)%Z.
case s ; unfold cond_Zopp.
now rewrite Zopp_mult_distr_l_reverse.
apply refl_equal.
pattern e at 1 ; rewrite <- Zplus_0_r.
now apply Zplus_le_compat_l.
Qed.

Lemma digits_conversion :
  forall beta p,
  Zdigits beta (Zpos p) = Zpos (count_digits beta p).
Proof.
intros beta p.
unfold Zdigits, count_digits.
generalize xH, (radix_val beta), p at 1 3.
induction p ; simpl ; intros.
case (Zlt_bool (Zpos p1) z).
apply refl_equal.
rewrite <- IHp.
now rewrite Pplus_one_succ_r.
case (Zlt_bool (Zpos p1) z).
apply refl_equal.
rewrite <- IHp.
now rewrite Pplus_one_succ_r.
now case (Zlt_bool (Zpos p0) z).
Qed.


Theorem Fneg_correct :
  forall beta (f : float beta),
  FtoX (Fneg f) = Xneg (FtoX f).
Proof.
intros.
case f ; intros.
apply refl_equal.
simpl.
rewrite Ropp_0.
apply refl_equal.
simpl.
rewrite FtoR_neg.
apply refl_equal.
Qed.


Theorem Fabs_correct :
  forall beta (f : float beta),
  FtoX (Fabs f) = Xabs (FtoX f).
Proof.
intros.
case f ; intros.
apply refl_equal.
simpl.
rewrite Rabs_R0.
apply refl_equal.
simpl.
rewrite FtoR_abs.
apply refl_equal.
Qed.


Theorem Fscale_correct :
  forall beta (f : float beta) d,
  FtoX (Fscale f d) = Xmul (FtoX f) (Xreal (bpow beta d)).
Proof.
intros beta [| |s m e] d ; simpl.
apply refl_equal.
now rewrite Rmult_0_l.
rewrite 2!FtoR_split.
unfold F2R. simpl.
rewrite Rmult_assoc.
now rewrite bpow_plus.
Qed.


Lemma cond_Zopp_mult :
  forall s u v,
  cond_Zopp s (u * v) = (cond_Zopp s u * v)%Z.
Proof.
intros s u v.
case s.
apply sym_eq.
apply Zopp_mult_distr_l_reverse.
apply refl_equal.
Qed.

Theorem Fscale2_correct :
  forall beta (f : float beta) d,
  match radix_val beta with Zpos (xO _) => true | _ => false end = true ->
  FtoX (Fscale2 f d) = Xmul (FtoX f) (Xreal (bpow radix2 d)).
Proof.
intros beta [| |s m e] d Hb ; simpl.
apply refl_equal.
now rewrite Rmult_0_l.
revert Hb.
destruct beta as (beta, Hb). simpl.
destruct beta as [|[p|p|]|p] ; try easy.
intros _.
set (beta := Build_radix (Zpos p~0) Hb).
cut (FtoX
  match d return (float beta) with
  | 0%Z => Float s m e
  | Zpos nb =>
      Float s (iter_pos (fun x : positive => xO x) nb m) e
  | Zneg nb =>
      Float s (iter_pos (fun x : positive => Pmult p x) nb m) (e + d)
  end = Xreal (FtoR beta s m e * bpow radix2 d)).
intro H.
destruct p as [p|p|] ; try exact H.
unfold FtoX.
rewrite 2!FtoR_split.
unfold F2R. simpl.
now rewrite bpow_plus, Rmult_assoc.
destruct d as [|nb|nb].
now rewrite Rmult_1_r.
unfold FtoX.
apply f_equal.
rewrite 2!FtoR_split.
simpl.
replace (IZR (Zpower_pos 2 nb)) with (F2R (Defs.Float beta (Zpower_pos 2 nb) 0)).
2: apply Rmult_1_r.
rewrite <- F2R_mult.
simpl.
rewrite Zplus_0_r.
rewrite <- cond_Zopp_mult.
apply (f_equal (fun v => F2R (Defs.Float beta (cond_Zopp s v) e))).
apply (shift_correct radix2).
unfold FtoX.
apply f_equal.
rewrite 2!FtoR_split.
apply Rmult_eq_reg_r with (bpow radix2 (Zpos nb)).
2: apply Rgt_not_eq ; apply bpow_gt_0.
rewrite Rmult_assoc, <- bpow_plus.
change (Zneg nb) with (Zopp (Zpos nb)).
rewrite Zplus_opp_l, Rmult_1_r.
fold (e - Zpos nb)%Z.
simpl.
replace (IZR (Zpower_pos 2 nb)) with (F2R (Defs.Float beta (Zpower_pos 2 nb) 0)).
2: apply Rmult_1_r.
rewrite <- F2R_mult.
simpl.
rewrite Zplus_0_r.
rewrite (F2R_change_exp beta (e - Zpos nb) _ e).
2: generalize (Zgt_pos_0 nb) ; omega.
ring_simplify (e - (e - Zpos nb))%Z.
rewrite <- 2!cond_Zopp_mult.
apply (f_equal (fun v => F2R (Defs.Float beta (cond_Zopp s v) _))).
rewrite Z.pow_pos_fold.
rewrite iter_pos_nat.
rewrite 2!Zpower_Zpower_nat by easy.
simpl Zabs_nat.
unfold beta.
simpl radix_val.
clear.
revert m.
induction (nat_of_P nb).
easy.
intros m.
rewrite iter_nat_S, 2!Zpower_nat_S.
rewrite Zpos_mult_morphism.
replace (Zpos m * (Zpos (xO p) * Zpower_nat (Zpos (xO p)) n))%Z with (Zpos m * Zpower_nat (Zpos (xO p)) n * Zpos (xO p))%Z by ring.
rewrite <- IHn.
change (Zpos (xO p)) with (2 * Zpos p)%Z.
ring.
Qed.


Lemma Fcmp_aux2_correct :
  forall beta m1 m2 e1 e2,
  Fcmp_aux2 beta m1 e1 m2 e2 =
  Xcmp (Xreal (FtoR beta false m1 e1)) (Xreal (FtoR beta false m2 e2)).
Proof.
intros beta m1 m2 e1 e2.
rewrite 2!FtoR_split.
simpl cond_Zopp.
unfold Fcmp_aux2, Xcmp.
rewrite <- 2!digits_conversion.
rewrite (Zplus_comm e1), (Zplus_comm e2).
rewrite <- 2!mag_F2R_Zdigits ; [|easy..].
destruct (mag beta (F2R (Defs.Float beta (Zpos m1) e1))) as (b1, B1).
destruct (mag beta (F2R (Defs.Float beta (Zpos m2) e2))) as (b2, B2).
simpl.
assert (Z: forall m e, (0 < F2R (Defs.Float beta (Zpos m) e))%R).
intros m e.
now apply F2R_gt_0.
specialize (B1 (Rgt_not_eq _ _ (Z _ _))).
specialize (B2 (Rgt_not_eq _ _ (Z _ _))).
rewrite Rabs_pos_eq with (1 := Rlt_le _ _ (Z _ _)) in B1.
rewrite Rabs_pos_eq with (1 := Rlt_le _ _ (Z _ _)) in B2.
clear Z.
case Zcompare_spec ; intros Hed.
rewrite Rcompare_Lt.
apply refl_equal.
apply Rlt_le_trans with (1 := proj2 B1).
apply Rle_trans with (2 := proj1 B2).
apply bpow_le.
clear -Hed. omega.
clear.
unfold Fcmp_aux1.
case_eq (e1 - e2)%Z.
intros He.
rewrite Zminus_eq with (1 := He).
now rewrite Rcompare_F2R.
intros d He.
rewrite F2R_change_exp with (e' := e2).
rewrite shift_correct, He.
now rewrite Rcompare_F2R.
generalize (Zgt_pos_0 d).
omega.
intros d He.
rewrite F2R_change_exp with (e := e2) (e' := e1).
replace (e2 - e1)%Z with (Zpos d).
rewrite shift_correct.
now rewrite Rcompare_F2R.
apply Zopp_inj.
simpl. rewrite <- He.
ring.
generalize (Zlt_neg_0 d).
omega.
rewrite Rcompare_Gt.
apply refl_equal.
apply Rlt_le_trans with (1 := proj2 B2).
apply Rle_trans with (2 := proj1 B1).
apply bpow_le.
clear -Hed. omega.
Qed.

Theorem Fcmp_correct :
  forall beta (x y : float beta),
  Fcmp x y = Xcmp (FtoX x) (FtoX y).
Proof.
intros.
case x ; intros ; simpl ; try apply refl_equal ;
  case y ; intros ; simpl ; try apply refl_equal ; clear.
now rewrite Rcompare_Eq.
case b.
rewrite Rcompare_Gt.
apply refl_equal.
apply FtoR_Rneg.
rewrite Rcompare_Lt.
apply refl_equal.
apply FtoR_Rpos.
case b ; apply refl_equal.
case b.
rewrite Rcompare_Lt.
apply refl_equal.
apply FtoR_Rneg.
rewrite Rcompare_Gt.
apply refl_equal.
apply FtoR_Rpos.
case b ; case b0.
rewrite Fcmp_aux2_correct.
simpl.
change true with (negb false).
repeat rewrite <- FtoR_neg.
generalize (FtoR beta false p0 z0).
generalize (FtoR beta false p z).
intros.
destruct (Rcompare_spec r0 r).
rewrite Rcompare_Lt.
apply refl_equal.
now apply Ropp_lt_contravar.
rewrite H.
now rewrite Rcompare_Eq.
rewrite Rcompare_Gt.
apply refl_equal.
apply Ropp_lt_contravar.
exact H.
rewrite Rcompare_Lt.
apply refl_equal.
apply Rlt_trans with R0.
apply FtoR_Rneg.
apply FtoR_Rpos.
rewrite Rcompare_Gt.
apply refl_equal.
apply Rlt_trans with R0.
apply FtoR_Rneg.
apply FtoR_Rpos.
rewrite Fcmp_aux2_correct.
apply refl_equal.
Qed.


Theorem Fmin_correct :
  forall beta (x y : float beta),
  FtoX (Fmin x y) = Xmin (FtoX x) (FtoX y).
Proof.
intros.
unfold Fmin, Rmin.
rewrite (Fcmp_correct beta x y).
case_eq (FtoX x) ; [ split | intros xr Hx ].
case_eq (FtoX y) ; [ split | intros yr Hy ].
simpl.
destruct (Rle_dec xr yr) as [[H|H]|H].
rewrite Rcompare_Lt.
exact Hx.
exact H.
now rewrite Rcompare_Eq.
rewrite Rcompare_Gt.
exact Hy.
apply Rnot_le_lt with (1 := H).
Qed.


Theorem Fmax_correct :
  forall beta (x y : float beta),
  FtoX (Fmax x y) = Xmax (FtoX x) (FtoX y).
Proof.
intros.
unfold Fmax, Rmax.
rewrite (Fcmp_correct beta x y).
case_eq (FtoX x) ; [ split | intros xr Hx ].
case_eq (FtoX y) ; [ split | intros yr Hy ].
simpl.
destruct (Rle_dec xr yr) as [[H|H]|H].
rewrite Rcompare_Lt.
exact Hy.
exact H.
now rewrite Rcompare_Eq.
rewrite Rcompare_Gt.
exact Hx.
apply Rnot_le_lt with (1 := H).
Qed.

Ltac refl_exists :=
  repeat match goal with
  | |- ex ?P => eapply ex_intro
  end ;
  repeat split.

Definition normalize beta prec m e :=
  match (Zpos (count_digits beta m) - Zpos prec)%Z with
  | Zneg nb => ((shift beta m nb), (e + Zneg nb)%Z)
  | _ => (m, e)
  end.

Lemma normalize_identity :
  forall beta prec m e,
  (Zpos prec <= Zpos (count_digits beta m))%Z ->
  normalize beta prec m e = (m, e).
Proof.
intros beta prec m e.
unfold Zle, normalize.
rewrite <- (Zcompare_plus_compat _ _ (- Zpos prec)).
rewrite Zplus_opp_l, Zplus_comm.
unfold Zminus.
case Zplus ; [easy|easy|].
intros p H.
now elim H.
Qed.

Definition convert_location_inv l :=
  match l with
  | pos_Eq => loc_Exact
  | pos_Lo => loc_Inexact Lt
  | pos_Mi => loc_Inexact Eq
  | pos_Up => loc_Inexact Gt
  end.

Lemma convert_location_bij :
  forall l, convert_location_inv (convert_location l) = l.
Proof.
now destruct l as [|[| |]].
Qed.

Definition mode_choice mode s m l :=
  match mode with
  | rnd_UP => cond_incr (round_sign_UP s l) m
  | rnd_DN => cond_incr (round_sign_DN s l) m
  | rnd_ZR => m
  | rnd_NE => cond_incr (round_N (negb (Z.even m)) l) m
  end.

Lemma adjust_mantissa_correct :
  forall mode s m pos,
  Zpos (adjust_mantissa mode m pos s) = mode_choice mode s (Zpos m) (convert_location_inv pos).
Proof.
intros mode s m pos.
unfold adjust_mantissa, need_change, mode_choice.
case mode ; case s ; case pos ; simpl ; try apply Zpos_succ_morphism ; try apply refl_equal.
destruct m ; try apply Zpos_succ_morphism ; try apply refl_equal.
destruct m ; try apply Zpos_succ_morphism ; try apply refl_equal.
Qed.

Lemma adjust_pos_correct :
  forall q r pos,
  (1 < Zpos q)%Z ->
  (0 <= r < Zpos q)%Z ->
  convert_location_inv (adjust_pos r q pos) = new_location (Zpos q) r (convert_location_inv pos).
Proof.
unfold adjust_pos, new_location, new_location_even, new_location_odd.
intros [q|q|] r pos Hq (Hr1, Hr2).
destruct r as [|r|r] ; simpl.
now case pos.
change (r~1 ?= q~1)%positive with (r ?= q)%positive.
now case ((r ?= q)%positive) ; case pos ; simpl.
unfold Zeven.
now elim Hr1.
destruct r as [|r|r] ; simpl.
now case pos.
change (r~0 ?= q~0)%positive with (r ?= q)%positive.
now case ((r ?= q)%positive) ; case pos.
now elim Hr1.
discriminate Hq.
Qed.

Lemma even_radix_correct :
  forall beta,
  match radix_val beta with Zpos (xO _) => true | _ => false end = Z.even beta.
Proof.
intros (beta, Hb).
revert Hb.
case beta ; try easy.
Qed.

Lemma odd_radix_correct :
  forall beta,
  match radix_val beta with Zpos (xO _) => false | _ => true end = negb (Z.even beta).
Proof.
intros (beta, Hb).
revert Hb.
case beta ; try easy.
now intros [p|p|].
Qed.

Lemma Fround_at_prec_correct :
  forall beta mode prec s m1 e1 pos x,
  (0 < x)%R ->
  ( let (m2, e2) := normalize beta prec m1 e1 in
    inbetween_float beta (Zpos m2) e2 x (convert_location_inv pos) ) ->
  FtoX (Fround_at_prec mode prec (@Ufloat beta s m1 e1 pos)) =
    Xreal (round beta mode prec (if s then Ropp x else x)).
Proof with auto with typeclass_instances.
intros beta mode prec s m1 e1 pos x Hx.
case_eq (normalize beta prec m1 e1).
intros m2 e2 Hn Hl.
unfold round.
rewrite round_trunc_sign_any_correct with (choice := mode_choice mode) (m := Zpos m2) (e := e2) (l := convert_location_inv pos)...
unfold Round.truncate, Round.truncate_aux, FLX_exp.
replace (Zdigits beta (Zpos m2) + e2 - Zpos prec - e2)%Z with (Zdigits beta (Zpos m2) - Zpos prec)%Z by ring.
replace (Rlt_bool (if s then (-x)%R else x) 0) with s.
revert Hn.
unfold Fround_at_prec, normalize.
case_eq (Zpos (count_digits beta m1) - Zpos prec)%Z.
intros Hd Heq.
injection Heq.
intros He Hm. clear Heq.
apply (f_equal Xreal).
rewrite FtoR_split.
rewrite adjust_mantissa_correct.
rewrite <- Hm, digits_conversion, Hd.
simpl.
now rewrite He.
intros d Hd Heq.
injection Heq.
intros He Hm. clear Heq.
rewrite <- Hm, digits_conversion, Hd.
rewrite shift_correct, Zmult_1_l.
fold (Zpower beta (Zpos d)).
unfold Zdiv, Zmod.
assert (Zpower beta (Zpos d) > 0)%Z.
apply Zlt_gt.
now apply Zpower_gt_0.
generalize (Z_div_mod (Zpos m1) (Zpower beta (Zpos d)) H).
clear H.
case Zdiv_eucl. intros q r (Hq, Hr).
rewrite He.
cut (0 < q)%Z.
clear -Hr.
case q ; try easy.
clear q. intros q _.
apply (f_equal Xreal).
rewrite FtoR_split.
rewrite adjust_mantissa_correct.
simpl.
apply (f_equal (fun v => F2R (Defs.Float beta (cond_Zopp s (mode_choice mode s (Zpos q) v)) (e2 + Zpos d)))).
rewrite <- (Zmult_1_l (Zpower_pos beta d)).
rewrite <- shift_correct.
apply adjust_pos_correct ; rewrite shift_correct, Zmult_1_l.
now apply (Zpower_gt_1 beta (Zpos d)).
exact Hr.
clear -Hd Hq Hr.
apply Zmult_lt_reg_r with (Zpower beta (Zpos d)).
now apply Zpower_gt_0.
apply Zplus_lt_reg_r with r.
simpl (0 * Zpower beta (Zpos d) + r)%Z.
rewrite Zmult_comm, <- Hq.
apply Zlt_le_trans with (1 := proj2 Hr).
fold (Zabs (Zpos m1)).
apply Zpower_le_Zdigits.
rewrite <- Hd.
rewrite <- digits_conversion.
now apply Zlt_minus_simpl_swap.
intros d Hd Heq.
injection Heq.
intros He Hm. clear Heq.
rewrite <- Hm.
rewrite shift_correct.
fold (Zpower beta (Zpos d)).
rewrite Zdigits_mult_Zpower ; try easy.
replace (Zdigits beta (Zpos m1) + Zpos d - Zpos prec)%Z with Z0.
simpl.
change (match Zpower_pos beta d with 0 => 0 | Zpos y1 => Zpos (m1 * y1) | Zneg y2 => Zneg (m1 * y2) end)%Z
  with (Zpos m1 * Zpower beta (Zpos d))%Z.
assert (forall A B : Type, forall f : A -> B, forall b : bool, forall v1 v2 : A, f (if b then v1 else v2) = if b then f v1 else f v2).
clear. now intros A B f [|].
rewrite (H (float beta) ExtendedR).
simpl FtoX.
rewrite 2!FtoR_split.
rewrite Zpos_succ_morphism, shift_correct.
rewrite (F2R_change_exp beta (e1 + Zneg d)%Z (cond_Zopp s (Zpos m1)) e1).
ring_simplify (e1 - (e1 + Zneg d))%Z.
replace (cond_Zopp s (Zpos m1) * beta ^ (- Zneg d))%Z with (cond_Zopp s (Zpos m1 * Zpower_pos beta d)).
rewrite <- (H Z ExtendedR (fun v => Xreal (F2R (Defs.Float beta (cond_Zopp s v) (e1 + Zneg d))))).
rewrite <- He.
apply (f_equal (fun v => Xreal (F2R (Defs.Float beta (cond_Zopp s v) (e1 + Zneg d))))).
clear.
unfold mode_choice, need_change_radix.
case mode ; case pos ; try easy.
rewrite Z.even_mul, Z.even_pow by easy.
unfold need_change_radix2.
rewrite even_radix_correct.
now case m1.
unfold cond_Zopp.
rewrite <- Zopp_mult_distr_l_reverse.
now case s.
pattern e1 at 2 ; rewrite <- Zplus_0_r.
now apply Zplus_le_compat_l.
change (Zpos d) with (Zopp (Zneg d)).
rewrite <- Hd.
rewrite digits_conversion.
ring.
clear -Hx.
apply sym_eq.
case s.
apply Rlt_bool_true.
rewrite <- Ropp_0.
now apply Ropp_lt_contravar.
apply Rlt_bool_false.
now apply Rlt_le.
clear.
intros x m l Hx.
case mode ; simpl.
now apply inbetween_int_UP_sign.
now apply inbetween_int_DN_sign.
now apply inbetween_int_ZR_sign with (l := l).
now apply inbetween_int_NE_sign with (x := x).
case s.
rewrite Rabs_Ropp, Rabs_pos_eq.
exact Hl.
now apply Rlt_le.
rewrite Rabs_pos_eq.
exact Hl.
now apply Rlt_le.
left.
unfold FLX_exp.
cut (0 <= Zdigits beta (Zpos m2) - Zpos prec)%Z. clear. omega.
change m2 with (fst (m2, e2)).
rewrite <- (f_equal (@fst _ _) Hn).
clear.
unfold normalize.
rewrite <- digits_conversion.
case_eq (Zdigits beta (Zpos m1) - Zpos prec)%Z ; unfold fst.
intros H.
now rewrite H.
intros p H.
now rewrite H.
intros p H.
rewrite shift_correct.
fold (Zpower beta (Zpos p)).
rewrite Zdigits_mult_Zpower ; try easy.
fold (Zopp (Zneg p)).
rewrite <- H.
now ring_simplify.
Qed.

Lemma normalize_correct :
  forall beta prec m e,
  F2R (Defs.Float beta (Zpos m) e) =
    let (m', e') := normalize beta prec m e in F2R (Defs.Float beta (Zpos m') e').
Proof.
intros beta prec m e.
unfold normalize.
case (Zpos (count_digits beta m) - Zpos prec)%Z ; intros ; try apply refl_equal.
rewrite shift_correct.
unfold F2R, Fnum, Fexp.
rewrite mult_IZR, Rmult_assoc.
apply f_equal.
rewrite IZR_Zpower_pos, <- bpow_powerRZ.
rewrite <- bpow_plus.
apply f_equal.
change (Zneg p) with (Zopp (Zpos p)).
ring.
Qed.

Definition ufloat_pos_Eq beta (x : ufloat beta) :=
  match x with Ufloat _ _ _ pos_Eq => True | Ufloat _ _ _ _ => False | _ => True end.

Lemma UtoX_pos_Eq :
  forall beta (x : ufloat beta),
  (UtoX x = Xnan -> x = Unan) ->
  ufloat_pos_Eq beta x.
Proof.
now intros beta [| |s m e [| | |]] H ; try exact I ; specialize (H (refl_equal _)).
Qed.

Lemma Fround_at_prec_pos_Eq :
  forall beta mode prec (x : ufloat beta),
  ufloat_pos_Eq beta x ->
  FtoX (Fround_at_prec mode prec x) = Xround beta mode prec (UtoX x).
Proof with auto with typeclass_instances.
intros beta mode prec [| |s m e [| | |]] H ; try elim H ; clear H.
apply refl_equal.
simpl. unfold round.
rewrite round_0...
unfold Xround, UtoX.
rewrite FtoR_split.
replace (F2R (Defs.Float beta (cond_Zopp s (Zpos m)) e)) with
  (if s then Ropp (F2R (Defs.Float beta (Zpos m) e)) else F2R (Defs.Float beta (Zpos m) e)).
apply Fround_at_prec_correct.
now apply F2R_gt_0.
unfold inbetween_float.
rewrite (normalize_correct beta prec m e).
destruct (normalize beta prec m e) as (m', e').
now constructor.
rewrite <- F2R_opp.
now case s.
Qed.


Lemma Rdiv_lt_mult_pos a b c :
 (0 < b -> a * b < c -> a < c / b)%R.
Proof.
intros Hb Hab.
apply (Rmult_lt_reg_r b _ _ Hb).
now unfold Rdiv; rewrite Rmult_assoc, Rinv_l, Rmult_1_r; lra.
Qed.

Lemma Rdiv_le_mult_pos a b c :
 (0 < b -> a * b <= c -> a <= c / b)%R.
Proof.
intros Hb Hab.
apply (Rmult_le_reg_r b _ _ Hb).
now unfold Rdiv; rewrite Rmult_assoc, Rinv_l, Rmult_1_r; lra.
Qed.

Lemma Rdiv_gt_mult_pos a b c :
 (0 < b -> a < b * c -> a / b < c)%R.
Proof.
intros Hb Hab.
apply (Rmult_lt_reg_r b _ _ Hb).
now unfold Rdiv; rewrite Rmult_assoc, Rinv_l, Rmult_1_r; lra.
Qed.

Lemma Rdiv_ge_mult_pos a b c :
 (0 < b -> a <= b * c -> a / b <= c)%R.
Proof.
intros Hb Hab.
apply (Rmult_le_reg_r b _ _ Hb).
now unfold Rdiv; rewrite Rmult_assoc, Rinv_l, Rmult_1_r; lra.
Qed.

Lemma Znearest_IZR c z : Znearest c (IZR z) = z.
Proof.
unfold Znearest; rewrite Zceil_IZR, Zfloor_IZR.
now destruct Rcompare; try easy; destruct c.
Qed.

Lemma Rnearbyint_IZR mode z : Rnearbyint mode (IZR z) = IZR z.
Proof.
now destruct mode; simpl; rewrite ?Zceil_IZR, ?Zfloor_IZR, ?Ztrunc_IZR, ?Znearest_IZR.
Qed.

Lemma adjust_mantissa_Eq mode b p : adjust_mantissa mode p pos_Eq b = p.
Proof. now destruct mode. Qed.

Lemma need_change_radix2_Eq beta mode p b :
  need_change_radix2 beta mode p pos_Eq b = false.
Proof. now destruct mode; simpl. Qed.

Lemma radix_to_pos (r : radix) : Z.pos (Z.to_pos r) = r.
Proof. now destruct r as [[]]. Qed.

Lemma shift1_correct r e :
  shift r 1 e = (Z.to_pos r ^ e)%positive.
Proof.
generalize (shift_correct r 1 e).
rewrite Zmult_1_l, <-(radix_to_pos r) at 1.
rewrite <-Pos2Z.inj_pow_pos.
now intro H; injection H.
Qed.

Lemma Rcompare_div_l x y z :
  (0 < y)%R -> Rcompare (x / y) z = Rcompare x (y * z).
Proof.
intro yP.
replace x with (y * (x / y))%R at 2.
  now rewrite Rcompare_mult_l.
field; lra.
Qed.

Lemma Rcompare_div_r x y z :
  (0 < z)%R -> Rcompare x (y / z) = Rcompare (z * x) y.
Proof.
intro yP.
rewrite Rcompare_sym, Rcompare_div_l, Rcompare_sym; try easy.
  now destruct Rcompare.
Qed.

Lemma Rlt_bool_float beta b m e : Rlt_bool (FtoR beta b m e) 0 = b.
Proof.
destruct e as [|p | p]; destruct b; simpl;
  apply Rlt_bool_true || apply Rlt_bool_false; try lra.
- now apply IZR_lt.
- now apply IZR_le.
- assert (H1 : (0 < Z.pow_pos beta p)%Z).
    apply Zpower_pos_gt_0; apply radix_gt_0.
  revert H1.
  destruct Z.pow_pos; simpl; try lia; intros _.
  now apply IZR_lt.
- assert (H1 : (0 < Z.pow_pos beta p)%Z).
    apply Zpower_pos_gt_0; apply radix_gt_0.
  revert H1.
  destruct Z.pow_pos; simpl; try lia; intros _.
  now apply IZR_le.
- apply Rdiv_gt_mult_pos.
  apply IZR_lt.
  apply Zpower_pos_gt_0; apply radix_gt_0.
  rewrite Rmult_0_r.
  now apply IZR_lt.
- apply Rdiv_le_mult_pos.
  apply IZR_lt.
  apply Zpower_pos_gt_0; apply radix_gt_0.
  rewrite Rmult_0_l.
  now apply IZR_le.
Qed.

Lemma Fnearbyint_exact_correct :
  forall beta mode (x : float beta),
  FtoX (Fnearbyint_exact mode x) = Xnearbyint mode (FtoX x).
Proof.
intros beta mode x.
assert (bP := Zle_bool_imp_le _ _ (radix_prop beta)).
unfold Fnearbyint_exact, Fround_at_exp.
destruct x as [| |b p z]; simpl float_to_ufloat; lazy iota beta; try easy.
  now generalize (Rnearbyint_IZR mode 0); simpl; intro H; rewrite H.
destruct z as [| p1 | n1]; simpl Zminus; lazy iota beta.
- now rewrite adjust_mantissa_Eq; simpl; rewrite Rnearbyint_IZR.
- now simpl; rewrite need_change_radix2_Eq, Rnearbyint_IZR.
rewrite <-digits_conversion, shift1_correct.
case Z.compare_spec; intro H.
set (x := Float b p _).
set (p1 := adjust_pos _ _ _).
pose (y := (FtoR beta b p (Z.neg n1))).
apply trans_equal with (y :=
 Xreal (IZR
 (cond_Zopp (Rlt_bool y 0)
      (mode_choice mode (Rlt_bool y 0)
                    0 (convert_location_inv p1))))).
  unfold y; rewrite Rlt_bool_float.
  now destruct b; destruct mode; simpl; destruct p1.
apply (f_equal Xreal).
apply sym_equal.
assert (V : (1 < beta ^ Z.pos n1)%Z) by now apply Zpower_gt_1.
assert (V0 : (1 < IZR (beta ^ Z.pos n1))%R) by now apply IZR_lt.
assert (V1 : (Z.pos p < beta ^ Z.pos n1)%Z).
  generalize (Zdigits_correct beta (Z.pos p)).
  now rewrite H; intros [_ V3].
assert (V2 : inbetween_int 0 (Rabs y) (convert_location_inv p1)).
  unfold p1, inbetween_int.
  rewrite adjust_pos_correct; try lia; last 2 first.
  - now rewrite Pos2Z.inj_pow, radix_to_pos.
  - now rewrite Pos2Z.inj_pow, radix_to_pos; lia.
  simpl; unfold y, p1; rewrite FtoR_abs.
  rewrite Pos2Z.inj_pow, radix_to_pos.
  replace 1%R
    with
    (0 +
      IZR (beta ^ Z.pos n1)* (1 / IZR (beta ^ Z.pos n1)))%R; last first.
    field; last now apply Rlt_neq_sym; lra.
  apply new_location_correct; try lia.
  - apply Rdiv_lt_0_compat; try lra.
  apply inbetween_Exact.
  simpl.
  rewrite Z.pow_pos_fold.
  now field; lra.
destruct mode; apply (f_equal IZR).
- now eapply inbetween_int_UP_sign.
- now eapply inbetween_int_DN_sign.
- now eapply inbetween_int_ZR_sign with (l := (convert_location_inv p1)).
- now eapply inbetween_int_NE_sign.
set (x := Float b p _).
set (p1 := pos_Lo).
pose (y := (FtoR beta b p (Z.neg n1))).
apply trans_equal with (y :=
 Xreal (IZR
 (cond_Zopp (Rlt_bool y 0)
      (mode_choice mode (Rlt_bool y 0)
                    0 (convert_location_inv p1))))).
  unfold y; rewrite Rlt_bool_float.
  now destruct b; destruct mode; simpl; destruct p1.
apply (f_equal Xreal).
apply sym_equal.
assert (0 < IZR (Zpos p))%R as V by now apply IZR_lt.
assert (V0 : (1 < beta ^ Z.pos n1)%Z) by now apply Zpower_gt_1.
assert (V1 : (1 < IZR (beta ^ Z.pos n1))%R) by now apply IZR_lt.
assert (V2 : (Z.pos p < beta ^ Z.pos n1)%Z).
  generalize (Zdigits_correct beta (Z.pos p)).
  intros [_ V2].
  apply Zlt_trans with (1 := V2).
  apply Zpower_lt; lia.
assert (V3 : inbetween_int 0 (Rabs y) (convert_location_inv p1)).
  unfold y, p1, inbetween_int.
  rewrite FtoR_abs.
  apply inbetween_Inexact; simpl; rewrite Z.pow_pos_fold.
  - split; try lra.
    - apply Rdiv_lt_0_compat; lra.
    - apply Rdiv_gt_mult_pos; try lra.
      rewrite Rmult_1_r; apply IZR_lt; lia.
  - rewrite Rcompare_div_l; try lra.
    replace (IZR (beta ^ Z.pos n1) * ((0 + 1) / 2))%R with
            (IZR (beta ^ Z.pos n1) / 2)%R; last first.
      now unfold Rdiv; ring.
    rewrite Rcompare_div_r; try lra.
    rewrite <- (mult_IZR 2).
    rewrite Rcompare_IZR.
    apply Zcompare_Lt; apply Zgt_lt.
    apply Zgt_le_trans with (m := (beta * Z.pos p)%Z); last first.
      now apply Zmult_le_compat_r; lia.
    apply Zle_gt_trans with (m := (beta ^ (1 + Zdigits beta (Z.pos p)))%Z).
      now apply Zpower_le; lia.
    rewrite Zpower_plus, Z.pow_1_r; try lia; last first.
      now apply Zdigits_ge_0.
    apply Zmult_gt_compat_l; try lia.
    generalize (Zdigits_correct beta (Z.pos p)); lia.
destruct mode; apply (f_equal IZR).
- now eapply inbetween_int_UP_sign.
- now eapply inbetween_int_DN_sign.
- now eapply inbetween_int_ZR_sign with (l := (convert_location_inv p1)).
- now eapply inbetween_int_NE_sign.
rewrite Zdiv_eucl_unique.
set (q := (_ / _)%Z).
set (r := (_ mod _)%Z).
assert (Pq : (0 < q)%Z).
  apply Z.div_str_pos; split; try lia.
  generalize (Zdigits_correct beta (Z.pos p)); intros [U1 U2].
  apply Zle_trans with (2 := U1).
  rewrite Pos2Z.inj_pow, radix_to_pos.
  now apply Zpower_le; lia.
assert (Pr : (0 <= r < Z.pos (Z.to_pos beta ^ n1))%Z).
  now apply Z_mod_lt.
revert Pq.
case_eq q; try lia; intros q1 Hq1; try lia; intros _.
unfold FtoX.
rewrite FtoR_split.
rewrite adjust_mantissa_correct, adjust_pos_correct; last 2 first.
- rewrite Pos2Z.inj_pow, radix_to_pos.
  now apply Zpower_gt_1.
- now apply Pr.
unfold F2R; simpl bpow; rewrite Rmult_1_r.
pose (ll := new_location (Z.pos (Z.to_pos beta ^ n1)) r loc_Exact).
assert (V : inbetween_int q (IZR (Zpos p) / IZR (Z.pow_pos beta n1)) ll).
  unfold q, inbetween_int, ll.
  replace (IZR (Z.pos p / Z.pos (Z.to_pos beta ^ n1) + 1))%R
    with
    (IZR (Z.pos p / Z.pos (Z.to_pos beta ^ n1)) +
      IZR (Z.pos (Z.to_pos beta ^ n1)) * (1 / IZR (Z.pos (Z.to_pos beta ^ n1))))%R; last first.
    rewrite plus_IZR; simpl.
    field.
    apply Rlt_neq_sym.
    now apply IZR_lt.
  apply new_location_correct; try lia.
  - apply Rdiv_lt_0_compat; try lra.
    now apply IZR_lt.
  - rewrite Pos2Z.inj_pow, radix_to_pos.
    now apply Zpower_gt_1.
  apply inbetween_Exact.
  unfold r.
  rewrite Pos2Z.inj_pow, radix_to_pos, Z.pow_pos_fold.
  assert (0 < beta ^ Z.pos n1)%Z.
    apply Zpower_gt_0; lia.
  rewrite (Z_div_mod_eq (Z.pos p) (beta ^ Z.pos n1)) at 1; try lia.
  rewrite plus_IZR, mult_IZR.
  field.
  apply Rlt_neq_sym; apply IZR_lt; lia.
unfold Fnum; apply sym_equal.
rewrite <-(Rlt_bool_float beta b p (Z.neg n1)) at 2 3.
destruct mode; unfold Xlift, Rnearbyint, F2R; do 2 eapply f_equal.
- apply inbetween_int_UP_sign.
  now rewrite FtoR_abs, <- Hq1.
- apply inbetween_int_DN_sign.
  now rewrite FtoR_abs, <- Hq1.
- apply inbetween_int_ZR_sign with (l := ll).
  now rewrite FtoR_abs, <- Hq1.
- apply inbetween_int_NE_sign with (l := ll).
  now rewrite FtoR_abs, <- Hq1.
Qed.


Lemma Fadd_slow_aux1_correct :
  forall beta sx sy mx my e,
  UtoX (Fadd_slow_aux1 beta sx sy mx my e) =
  Xadd (FtoX (@Float beta sx mx e)) (FtoX (@Float beta sy my e)).
Proof.
intros.
simpl Xbind2.
unfold Fadd_slow_aux1.
change (Zpos mx + Zneg my)%Z with (Zpos mx - Zpos my)%Z.
case_eq (eqb sx sy) ; intro H.
rewrite (eqb_prop _ _ H).
rewrite FtoR_add.
apply refl_equal.
replace sy with (negb sx).
clear H.
case_eq (Zpos mx - Zpos my)%Z.
intro H.
rewrite <- (FtoR_neg beta sx).
unfold FtoR.
change (Zneg mx) with (- Zpos mx)%Z.
rewrite (Zminus_eq _ _ H).
rewrite Rplus_opp_r.
apply refl_equal.
intro p.
unfold Zminus, Zplus.
simpl.
rewrite Z.pos_sub_spec.
case_eq (mx ?= my)%positive ; intros ; try discriminate H0.
rewrite (FtoR_sub beta sx).
now inversion H0.
apply Zgt_lt.
exact H.
intro p.
unfold Zminus, Zplus.
simpl.
rewrite Z.pos_sub_spec.
case_eq (mx ?= my)%positive ; intros ; try discriminate H0.
pattern sx at 2 ; rewrite <- (negb_involutive sx).
rewrite Rplus_comm.
rewrite (FtoR_sub beta (negb sx)).
now inversion H0.
exact H.
generalize H. clear.
now case sx ; case sy.
Qed.

Lemma Fadd_slow_aux2_correct :
  forall beta sx sy mx my ex ey,
  UtoX (Fadd_slow_aux2 beta sx sy mx my ex ey) =
  Xadd (FtoX (@Float beta sx mx ex)) (FtoX (@Float beta sy my ey)).
Proof.
intros.
unfold Xbind2, FtoX.
unfold Fadd_slow_aux2.
case_eq (ex - ey)%Z ; intros ; rewrite Fadd_slow_aux1_correct ;
  unfold FtoX, Xbind2.
replace ey with ex.
apply refl_equal.
rewrite <- (Zplus_0_l ey).
rewrite <- H.
ring.
rewrite <- FtoR_shift.
rewrite <- H.
replace (ey + (ex - ey))%Z with ex. 2: ring.
apply refl_equal.
rewrite <- FtoR_shift.
replace (ex + Zpos p)%Z with ey.
apply refl_equal.
change (Zpos p) with (- Zneg p)%Z.
rewrite <- H.
ring.
Qed.

Theorem Fadd_slow_aux_correct :
  forall beta (x y : float beta),
  UtoX (Fadd_slow_aux x y) = Xadd (FtoX x) (FtoX y).
Proof.
intros.
case x.
case y ; intros ; apply refl_equal.
simpl.
case y.
apply refl_equal.
unfold FtoX.
rewrite Rplus_0_l.
apply refl_equal.
intros sy my ey.
unfold FtoX.
rewrite Rplus_0_l.
apply refl_equal.
intros sx mx ex.
simpl.
case y.
apply refl_equal.
unfold FtoX.
rewrite Rplus_0_r.
apply refl_equal.
intros sy my ey.
rewrite Fadd_slow_aux2_correct.
apply refl_equal.
Qed.

Theorem Fadd_slow_correct :
  forall beta mode prec (x y : float beta),
  FtoX (Fadd_slow mode prec x y) = Xround beta mode prec (Xadd (FtoX x) (FtoX y)).
Proof.
intros beta mode prec x y.
unfold Fadd_slow.
rewrite Fround_at_prec_pos_Eq.
now rewrite Fadd_slow_aux_correct.
apply UtoX_pos_Eq.
rewrite Fadd_slow_aux_correct.
destruct x as [| |sx mx ex].
easy.
now case y.
now case y.
Qed.

Definition Fadd_correct := Fadd_slow_correct.


Theorem Fadd_exact_correct :
  forall beta (x y : float beta),
  FtoX (Fadd_exact x y) = Xadd (FtoX x) (FtoX y).
Proof.
intros.
unfold Fadd_exact.
rewrite <- (Fadd_slow_aux_correct _ x y).
case (Fadd_slow_aux x y) ; simpl ; try apply refl_equal.
intros.
case p0 ; apply refl_equal.
Qed.


Lemma Fsub_split :
  forall beta mode prec (x y : float beta),
  FtoX (Fsub mode prec x y) = (FtoX (Fadd mode prec x (Fneg y))).
Proof.
intros.
unfold Fneg, Fadd, Fsub, Fadd_slow, Fsub_slow.
case y ; trivial.
Qed.

Theorem Fsub_correct :
  forall beta mode prec (x y : float beta),
  FtoX (Fsub mode prec x y) = Xround beta mode prec (Xsub (FtoX x) (FtoX y)).
Proof.
intros.
rewrite Fsub_split.
rewrite Xsub_split.
rewrite <- Fneg_correct.
apply Fadd_correct.
Qed.


Lemma Fsub_exact_split :
  forall beta (x y : float beta),
  FtoX (Fsub_exact x y) = FtoX (Fadd_exact x (Fneg y)).
Proof.
intros beta x y.
now case y.
Qed.

Theorem Fsub_exact_correct :
  forall beta (x y : float beta),
  FtoX (Fsub_exact x y) = Xsub (FtoX x) (FtoX y).
Proof.
intros beta x y.
rewrite Fsub_exact_split.
rewrite Fadd_exact_correct.
rewrite Fneg_correct.
apply sym_eq, Xsub_split.
Qed.


Theorem Fmul_aux_correct :
  forall beta (x y : float beta),
  UtoX (Fmul_aux x y) = Xmul (FtoX x) (FtoX y).
Proof.
intros beta [ | | sx mx ex ] [ | | sy my ey ] ; simpl ; try apply refl_equal.
rewrite Rmult_0_l.
apply refl_equal.
rewrite Rmult_0_l.
apply refl_equal.
rewrite Rmult_0_r.
apply refl_equal.
rewrite FtoR_mul.
apply refl_equal.
Qed.

Theorem Fmul_correct :
  forall beta mode prec (x y : float beta),
  FtoX (Fmul mode prec x y) = Xround beta mode prec (Xmul (FtoX x) (FtoX y)).
Proof.
intros beta mode prec x y.
unfold Fmul.
rewrite Fround_at_prec_pos_Eq.
now rewrite Fmul_aux_correct.
apply UtoX_pos_Eq.
rewrite Fmul_aux_correct.
destruct x as [| |sx mx ex].
easy.
now case y.
now case y.
Qed.


Theorem Fmul_exact_correct :
  forall beta (x y : float beta),
  FtoX (Fmul_exact x y) = Xmul (FtoX x) (FtoX y).
Proof.
intros beta x y.
unfold Fmul_exact.
rewrite <- (Fmul_aux_correct _ x y).
case (Fmul_aux x y) ; try easy.
intros s m e l.
now case l.
Qed.

Theorem Fdiv_correct :
  forall beta mode prec (x y : float beta),
  FtoX (Fdiv mode prec x y) = Xround beta mode prec (Xdiv (FtoX x) (FtoX y)).
Proof with auto with typeclass_instances.
intros beta mode prec [ | | sx mx ex] [ | | sy my ey] ;
  simpl ; unfold Xdiv' ;
  try rewrite is_zero_correct_zero ;
  try apply refl_equal ;
  rewrite is_zero_correct_float.
unfold Rdiv.
rewrite Rmult_0_l.
apply sym_eq.
apply (f_equal Xreal).
apply round_0...
unfold Xround, Fdiv, Fdiv_aux, Fdiv_aux2.
set (e := Zmin ((Zdigits beta (Zpos mx) + ex) - (Zdigits beta (Zpos my) + ey) - Zpos prec) (ex - ey)).
generalize (Div.Fdiv_core_correct beta (Zpos mx) ex (Zpos my) ey e eq_refl eq_refl).
unfold Div.Fdiv_core.
rewrite Zle_bool_true by apply Zle_min_r.
match goal with |- context [let (m,e') := ?v in let '(q,r) := Zfast_div_eucl _ _ in _] => set (me := v) end.
assert (me = (Zpos mx * Zpower beta (ex - ey - e), e))%Z as ->.
{ unfold me, e ; clear.
  destruct (_ + Zpos prec - _)%Z as [|p|p] eqn:He.
  - rewrite Zmin_r by omega.
    now rewrite Z.sub_diag, Zmult_1_r.
  - rewrite Zmin_l by (zify ; omega).
    change (Zneg p) with (Zopp (Zpos p)).
    fold (Zpower beta (Zpos p)).
    rewrite <- He.
    apply (f_equal2 (fun v1 v2 => (_ * Zpower beta v1, v2)%Z)) ; ring.
  - rewrite Zmin_r by (zify ; omega).
    now rewrite Z.sub_diag, Zmult_1_r. }
rewrite Zfast_div_eucl_correct.
destruct Zdiv_eucl as [m r].
set (l := new_location _ _ _).
intros H1.
assert (Zpos prec <= Zdigits beta m)%Z as H2.
{ generalize (Div.mag_div_F2R beta (Zpos mx) ex (Zpos my) ey eq_refl eq_refl).
  cbv zeta.
  intros H2.
  refine (_ (cexp_inbetween_float _ (FLX_exp (Zpos prec)) _ _ _ _ _ H1 (or_introl _))).
  unfold cexp, FLX_exp, e.
  intros H3.
  zify ; omega.
  apply Rmult_lt_0_compat.
  now apply F2R_gt_0.
  apply Rinv_0_lt_compat.
  now apply F2R_gt_0.
  unfold cexp, FLX_exp, e.
  zify ; omega. }
destruct m as [|p|p].
- now elim H2.
- replace (FtoR beta sx mx ex / FtoR beta sy my ey)%R with
  (if xorb sx sy then - (FtoR beta false mx ex / FtoR beta false my ey) else (FtoR beta false mx ex / FtoR beta false my ey))%R.
apply (Fround_at_prec_correct beta mode prec _ p e).
apply Rmult_lt_0_compat.
apply FtoR_Rpos.
apply Rinv_0_lt_compat.
apply FtoR_Rpos.
rewrite normalize_identity.
rewrite convert_location_bij.
now rewrite 2!FtoR_split.
now rewrite <- digits_conversion.
rewrite 4!FtoR_split.
assert (F2R (Defs.Float beta (Zpos my) ey) <> 0%R).
apply Rgt_not_eq.
now apply F2R_gt_0.
unfold cond_Zopp.
now case sx ; case sy ; repeat rewrite F2R_Zopp ; simpl ; field.
destruct (Bracket.inbetween_float_bounds _ _ _ _ _ H1) as (_, H5).
elim (Rlt_not_le _ _ H5).
apply Rle_trans with 0%R.
apply F2R_le_0.
unfold Fnum.
now apply (Zlt_le_succ (Zneg p)).
- apply Rlt_le.
apply Rmult_lt_0_compat.
now apply F2R_gt_0.
apply Rinv_0_lt_compat.
now apply F2R_gt_0.
Qed.

Lemma Fsqrt_correct :
  forall beta mode prec (x : float beta),
  FtoX (Fsqrt mode prec x) = Xround beta mode prec (Xsqrt (FtoX x)).
Proof with auto with typeclass_instances.
intros beta mode prec [ | | sx mx ex] ; simpl ; unfold Xsqrt' ; try easy.
case is_negative_spec.
intros H.
elim (Rlt_irrefl _ H).
intros _.
apply sym_eq.
apply (f_equal Xreal).
rewrite sqrt_0.
apply round_0...
unfold Fsqrt, Fsqrt_aux, Fsqrt_aux2.
case is_negative_spec.
case sx ; simpl.
easy.
intros H.
elim (Rlt_not_le _ _ H).
apply Rlt_le.
apply FtoR_Rpos.
case sx.
intros H.
elim (Rle_not_lt _ _ H).
apply FtoR_Rneg.
intros _.
unfold Xround.
set (e1 := Zmax _ _).
destruct (if Z.even _ then _ else _) as [s' e''] eqn:Hse.
set (e' := Zdiv2 e'').
assert (e' = Zdiv2 (ex - e1) /\ s' = ex - 2 * e')%Z as [He1 He2].
{ generalize (Zdiv2_odd_eqn (ex - e1)).
  rewrite <- Z.negb_even.
  destruct Z.even eqn:H ; injection Hse ; intros <- <-.
  rewrite Zplus_0_r.
  intros H0.
  apply (conj eq_refl).
  fold e' in H0.
  rewrite <- H0.
  ring.
  change (if negb false then _ else _) with 1%Z.
  intros H'.
  unfold e'.
  rewrite H' at 1 3.
  rewrite Z.add_simpl_r.
  rewrite Zdiv2_div, (Zmult_comm 2), Z.div_mul by easy.
  apply (conj eq_refl).
  clear -H' ; omega. }
assert (e' = Zmin (Zdiv2 (Zdigits beta (Zpos mx) + ex) - Zpos prec) (Z.div2 ex)) as He1'.
{ rewrite He1.
  unfold e1.
  rewrite <- Z.sub_min_distr_l, Zminus_0_r.
  rewrite <- Z.min_mono.
  replace (ex - _)%Z with (Zdigits beta (Zpos mx) + ex + (-Zpos prec) * 2)%Z by ring.
  now rewrite Zdiv2_div, Z.div_add, <- Zdiv2_div.
  intros x y ; apply f_equal.
  intros x y.
  rewrite 2!Zdiv2_div.
  now apply Z.div_le_mono. }
assert (2 * e' <= ex)%Z as He.
{ rewrite He1'.
  set (foo := (Zdiv2 _ - _)%Z).
  clear.
  assert (Zmin foo (Zdiv2 ex) <= Zdiv2 ex)%Z as H by apply Zle_min_r.
  generalize (Zdiv2_odd_eqn ex).
  destruct Z.odd ; intros ; omega. }
generalize (Sqrt.Fsqrt_core_correct beta (Zpos mx) ex e' eq_refl He).
unfold Sqrt.Fsqrt_core.
set (m' := match s' with Z0 => _ | _ => _ end).
assert (m' = Zpos mx * Zpower beta (ex - 2 * e'))%Z as ->.
{ rewrite <- He2.
  destruct s' as [|p|p].
  now rewrite Zmult_1_r.
  easy.
  clear -He He2 ; zify ; omega. }
destruct Z.sqrtrem as [m' r].
set (lz := if Zeq_bool _ _ then _ else _).
intros H1.
assert (Zpos prec <= Zdigits beta m')%Z as H2.
{ assert (e' <= Zdiv2 (Zdigits beta (Zpos mx) + ex + 1) - Zpos prec)%Z as He'.
  { rewrite He1'.
    apply Zle_trans with (1 := Zle_min_l _ _).
    apply Zplus_le_compat_r.
    rewrite 2!Zdiv2_div.
    apply Z.div_le_mono.
    easy.
    apply Z.le_succ_diag_r. }
  refine (_ (cexp_inbetween_float _ (FLX_exp (Zpos prec)) _ _ _ _ _ H1 (or_introl _))).
  unfold cexp, FLX_exp.
  rewrite (Sqrt.mag_sqrt_F2R beta (Zpos mx) ex eq_refl).
  clear -He He' ; intros ; omega.
  apply sqrt_lt_R0.
  now apply F2R_gt_0.
  unfold cexp, FLX_exp.
  now rewrite (Sqrt.mag_sqrt_F2R beta (Zpos mx) ex eq_refl). }
destruct m' as [|p|p].
now elim H1.
apply (Fround_at_prec_correct beta mode prec false p e').
apply sqrt_lt_R0.
apply FtoR_Rpos.
rewrite normalize_identity.
rewrite convert_location_bij.
now rewrite FtoR_split.
now rewrite <- digits_conversion.
destruct (Bracket.inbetween_float_bounds _ _ _ _ _ H1) as (_, H5).
elim (Rlt_not_le _ _ H5).
apply Rle_trans with R0.
apply F2R_le_0.
unfold Fnum.
now apply (Zlt_le_succ (Zneg p)).
apply sqrt_ge_0.
Qed.