Library Interval.coqapprox.poly_datatypes

This file is part of the CoqApprox formalization of rigorous polynomial approximation in Coq: http://tamadi.gforge.inria.fr/CoqApprox/
Copyright (C) 2010-2012, ENS de Lyon. Copyright (C) 2010-2016, Inria. Copyright (C) 2014-2016, IRIT.
This library is governed by the CeCILL-C license under French law and abiding by the rules of distribution of free software. You can use, modify and/or redistribute the library under the terms of the CeCILL-C license as circulated by CEA, CNRS and Inria at the following URL: http://www.cecill.info/
As a counterpart to the access to the source code and rights to copy, modify and redistribute granted by the license, users are provided only with a limited warranty and the library's author, the holder of the economic rights, and the successive licensors have only limited liability. See the COPYING file for more details.

Require Import ZArith Reals.
Require Import Coquelicot.Coquelicot.
From mathcomp.ssreflect Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq fintype bigop.
From Flocq Require Import Core.
Require Import Interval_missing.
Require Import Interval_interval.
Require Import Interval_xreal.
Require Import Rstruct interval_compl basic_rec seq_compl.

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Local Open Scope nat_scope.

Reserved Notation "--> e"
  (at level 10, e at level 8, no associativity, format "--> e").
Reserved Notation "i >: x"
  (at level 70, no associativity, format "i >: x").
Reserved Notation "i >:: x"
  (at level 70, no associativity, format "i >:: x").

Reserved Notation "p .[ x ]"
  (at level 2, left associativity, format "p .[ x ]").
Reserved Notation "a ^` ()" (at level 8, format "a ^` ()").

Module Type BaseOps.
Parameter Inline U : Type.
Parameter Inline T : Type.
Parameter Inline zero : T.
Parameter Inline one : T.
Parameter Inline opp : T -> T.
Parameter Inline add : U -> T -> T -> T.
Parameter Inline sub : U -> T -> T -> T.
Parameter Inline mul : U -> T -> T -> T.
End BaseOps.


Module Type PowDivOps.
Include BaseOps.
mask c x is the constant fonction c, except if T = I.type and x contains Xnan, implying that mask c x contains Xnan.
Parameter Inline mask : T -> T -> T.
Parameter Inline from_nat : nat -> T.
Parameter Inline fromZ : Z -> T.
Parameter Inline power_int : U -> T -> Z -> T.
Parameter Inline sqr : U -> T -> T.
Parameter Inline inv : U -> T -> T.
Parameter Inline div : U -> T -> T -> T.
End PowDivOps.

Module Type FullOps.
Include PowDivOps.
Parameter Inline sqrt : U -> T -> T.
Parameter Inline invsqrt : U -> T -> T.
Parameter Inline exp : U -> T -> T.
Parameter Inline sin : U -> T -> T.
Parameter Inline cos : U -> T -> T.
Parameter Inline ln : U -> T -> T.
Parameter Inline atan : U -> T -> T.
Parameter Inline tan : U -> T -> T.
End FullOps.

Module FullInt (I : IntervalOps) <: FullOps.
Definition U := I.precision.
Definition T := I.type.
Definition zero := I.zero.
Definition one := I.fromZ 1.
Definition opp := I.neg.
Definition add := I.add.
Definition sub := I.sub.
Definition mul := I.mul.
Definition div := I.div.
Definition power_int := I.power_int.
Definition exp := I.exp.
Definition ln := I.ln.
Definition from_nat := fun n => I.fromZ (Z_of_nat n).
Definition fromZ := I.fromZ.
Definition inv := I.inv.
Definition cos := I.cos.
Definition sin := I.sin.
Definition sqr := I.sqr.
Definition sqrt := I.sqrt.
Definition invsqrt := fun prec x => I.inv prec (I.sqrt prec x).
Definition mask : T -> T -> T := I.mask.
Definition tan := I.tan.
Definition atan := I.atan.
End FullInt.

Module Type PolyOps (C : PowDivOps) <: BaseOps.
Definition U := C.U.
Parameter T : Type.
Parameter zero : T.
Parameter one : T.
Parameter opp : T -> T.
Parameter add : U -> T -> T -> T.
Parameter sub : U -> T -> T -> T.
Parameter mul : U -> T -> T -> T.

Parameter toSeq : T -> seq C.T.
Parameter nth : T -> nat -> C.T.
Parameter size : T -> nat.
Parameter rec1 : (C.T -> nat -> C.T) -> C.T -> nat -> T.
Parameter rec2 : (C.T -> C.T -> nat -> C.T) -> C.T -> C.T -> nat -> T.
Parameter grec1 :
  forall A : Type,
  (A -> nat -> A) ->
  (A -> nat -> C.T) -> A -> seq C.T -> nat -> T.
Parameter map : forall f : C.T -> C.T, T -> T.
Parameter fold : forall V : Type, (C.T -> V -> V) -> V -> T -> V.
Parameter set_nth : T -> nat -> C.T -> T.
Parameter mul_trunc : U -> nat -> T -> T -> T.
Parameter mul_tail : U -> nat -> T -> T -> T.
tlift j pol represents pol * X^j if pol is in the monomial basis
Parameter lift : nat -> T -> T.
Parameter tail : nat -> T -> T.
Parameter polyC : C.T -> T.
Parameter polyX : T.
Parameter polyNil : T.
Parameter polyCons : C.T -> T -> T.
Parameter horner : U -> T -> C.T -> C.T.
Parameter deriv : U -> T -> T.
Parameter mul_mixed : U -> C.T -> T -> T.
Parameter div_mixed_r : U -> T -> C.T -> T.
Parameter dotmuldiv : U -> seq Z -> seq Z -> T -> T.
Parameter primitive : U -> C.T -> T -> T.

Parameter horner_seq : forall u p x, horner u p x =
  C.mask (foldr (fun a b => C.add u (C.mul u b x) a) C.zero (toSeq p)) x.
Parameter nth_toSeq : forall p n, nth p n = seq.nth (C.zero) (toSeq p) n.

Parameter polyCE : forall c, polyC c = polyCons c polyNil.
Parameter polyXE : polyX = lift 1 one.
Parameter oneE : one = polyC C.one.

Parameter poly_ind : forall (f : T -> Type),
  f polyNil ->
  (forall a p, f p -> f (polyCons a p)) ->
  forall p, f p.

Parameter size_primitive : forall u c p, size (primitive u c p) = (size p).+1.

Parameter size_lift : forall n p, size (lift n p) = n + size p.
Parameter size_mul_mixed : forall u a p, size (mul_mixed u a p) = size p.
Parameter size_div_mixed_r : forall u p b, size (div_mixed_r u p b) = size p.
Parameter size_rec1 : forall F x n, size (rec1 F x n) = n.+1.
Parameter size_rec2 : forall F x y n, size (rec2 F x y n) = n.+1.
Parameter size_mul_trunc : forall u n p q, size (mul_trunc u n p q) = n.+1.
Parameter size_mul_tail :
  forall u n p q, size (mul_tail u n p q) = ((size p) + (size q)).-1 - n.+1.
Parameter size_add :
  forall u p1 p2, size (add u p1 p2) = maxn (size p1) (size p2).
Parameter size_opp : forall p1, size (opp p1) = size p1.
Parameter size_map : forall f p, size (map f p) = size p.
Parameter size_sub :
  forall u p1 p2, size (sub u p1 p2) = maxn (size p1) (size p2).
Parameter size_polyNil : size polyNil = 0.
Parameter size_polyCons : forall a p, size (polyCons a p) = (size p).+1.
Parameter size_grec1 :
  forall (A : Type)
  (F : A -> nat -> A) (G : A -> nat -> C.T) (q : A) (s : seq C.T) (n : nat),
  size (grec1 F G q s n) = n.+1.
Parameter size_tail :
  forall p k, size (tail k p) = size p - k.

Parameter size_dotmuldiv :
  forall n u a b p, size p = n -> seq.size a = n -> seq.size b = n ->
  size (dotmuldiv u a b p) = n.
Parameter size_set_nth : forall p n val,
  size (set_nth p n val) = maxn n.+1 (size p).

Parameter nth_polyCons : forall a p k,
  nth (polyCons a p) k = if k is k'.+1 then nth p k' else a.
Parameter nth_polyNil : forall n, nth polyNil n = C.zero.

Parameter fold_polyNil : forall U f iv, @fold U f iv polyNil = iv.
Parameter fold_polyCons : forall U f iv c p,
  @fold U f iv (polyCons c p) = f c (@fold U f iv p).
Parameter nth_set_nth : forall p n val k,
  nth (set_nth p n val) k = if k == n then val else nth p k.

Parameter nth_default : forall p n, size p <= n -> nth p n = C.zero.

Parameter set_nth_nth : forall p n, n < size p -> set_nth p n (nth p n) = p.

End PolyOps.

Module FullR <: FullOps.
Definition U := unit.
Local Notation "--> e" := (fun _ : U => e).
Definition T := R.
Definition zero := 0%R.
Definition one := 1%R.
Definition opp := Ropp.
Definition add := --> Rplus.
Definition sub := --> Rminus.
Definition mul := --> Rmult.
Definition div := --> Rdiv.
Definition power_int := --> powerRZ.
Definition exp := --> exp.
Definition ln := --> ln.
Definition from_nat := INR.
Definition fromZ := IZR.
Definition inv := --> Rinv.
Definition cos := --> cos.
Definition sin := --> sin.
Definition sqr := --> fun x => Rmult x x.
Definition sqrt := --> sqrt.
Definition invsqrt := --> fun x => (Rinv (sqrt tt x)).
Definition mask : T -> T -> T := fun c _ => c.
Definition tan := --> tan.
Definition atan := --> atan.
End FullR.

Module SeqPoly (C : PowDivOps) <: PolyOps C.
Definition U := C.U.
Definition T := seq C.T.


Definition zero : T := [::].
Definition one : T := [:: C.one].

Definition opp := map C.opp.

Section PrecIsPropagated.
Variable u : U.

Definition add := map2 (C.add u) id.

Definition sub := map2 (C.sub u) C.opp.

Definition nth := nth C.zero.

Advantage of using foldl w.r.t foldr : foldl is tail-recursive
Definition mul_coeff (p q : T) (k : nat) : C.T :=
  foldl (fun x i => C.add u (C.mul u (nth p i) (nth q (k - i))) x) (C.zero)
        (rev (iota 0 k.+1)).

Lemma mul_coeffE p q k : mul_coeff p q k =
  \big[C.add u/C.zero]_(0 <= i < k.+1) C.mul u (nth p i) (nth q (k - i)).
Proof.
rewrite BigOp.bigopE /reducebig /mul_coeff foldl_rev.
by congr foldr; rewrite /index_iota subn0.
Qed.

Definition mul_trunc n p q := mkseq (mul_coeff p q) n.+1.

Definition mul_tail n p q :=
  mkseq (fun i => mul_coeff p q (n.+1+i)) ((size p + size q).-1 - n.+1).

Definition mul p q :=
  mkseq (mul_coeff p q) (size p + size q).-1.

Definition rec1 := @rec1up C.T.
Definition rec2 := @rec2up C.T.
Definition size := @size C.T.
Definition fold := @foldr C.T.
Definition horner p x :=
  C.mask
  (@fold C.T (fun a b => C.add u (C.mul u b x) a) C.zero p)
  x.
Definition set_nth := @set_nth C.T C.zero.
Definition map := @map C.T C.T.

Definition polyCons := @Cons C.T.

Definition polyNil := @Nil C.T.

Definition polyC (c : C.T) : T := polyCons c polyNil.

Definition polyX := [:: C.zero; C.one].

Lemma poly_ind : forall (f : T -> Type),
  f polyNil ->
  (forall a p, f p -> f (polyCons a p)) ->
  forall p, f p.
Proof.
by move=> f h1 hrec; elim =>//= a e; apply:hrec.
Qed.

Definition deriv_loop := foldri (fun a i s => C.mul u a (C.from_nat i) :: s) [::].

Definition deriv (p : T) := deriv_loop (behead p) 1%N.

Definition grec1 (A : Type) := @grec1up A C.T.

Lemma size_grec1 A F G (q : A) s n : size (grec1 F G q s n) = n.+1.
Proof. by apply size_grec1up. Qed.

Lemma size_rec1 F x n: size (rec1 F x n) = n.+1.
Proof. by apply size_rec1up. Qed.

Lemma size_rec2 F x y n: size (rec2 F x y n) = n.+1.
Proof. by apply size_rec2up. Qed.

Lemma size_mul_trunc n p q: size (mul_trunc n p q) = n.+1.
Proof. by rewrite /size size_mkseq. Qed.

Lemma size_mul_tail n p q:
  size (mul_tail n p q) = ((size p) + (size q)).-1 - n.+1.
Proof. by rewrite /size size_mkseq. Qed.

Lemma size_add p1 p2 : size (add p1 p2) = maxn (size p1) (size p2).
Proof. by rewrite /size /add size_map2. Qed.

Lemma size_opp p1 : size (opp p1) = size p1.
Proof. by rewrite /size /opp size_map. Qed.

Lemma size_sub p1 p2 : size (sub p1 p2) = maxn (size p1) (size p2).
Proof. by rewrite /sub /size size_map2. Qed.

Lemma size_deriv p : size (deriv p) = (size p).-1.
Proof.
rewrite /deriv /deriv_loop.
case: p => [|a p] //=.
elim: p 1 => [|b p IHp] n //=.
by rewrite IHp.
Qed.

End PrecIsPropagated.

Definition tail := @drop C.T.

Definition lift (n : nat) p := ncons n C.zero p.

Lemma size_lift n p : size (lift n p) = n + size p.
Proof (size_ncons n C.zero p).

FIXME: replace foldr by map
Definition mul_mixed (u : U) (a : C.T) (p : T) :=
  @foldr C.T T (fun x acc => (C.mul u a x) :: acc) [::] p.

Definition div_mixed_r (u : U) (p : T) (b : C.T) :=
  @foldr C.T T (fun x acc => (C.div u x b) :: acc) [::] p.

Lemma size_mul_mixed u a p : size (mul_mixed u a p) = size p.
Proof. by elim: p => [//|x p IHp]; rewrite /= IHp. Qed.

Lemma size_div_mixed_r u p b : size (div_mixed_r u p b) = size p.
Proof. by elim: p => [//|x p IHp]; rewrite /= IHp. Qed.

Lemma size_mul u p q : size (mul u p q) = (size p + size q).-1.
Proof. by rewrite /size /mul size_mkseq. Qed.

Fixpoint dotmuldiv (u : U) (a b : seq Z) (p : T) : T :=
match a, b, p with
| a0 :: a1, b0 :: b1, p0 :: p1 =>
  C.mul u (C.div u (C.fromZ a0) (C.fromZ b0)) p0 ::
  dotmuldiv u a1 b1 p1
| _, _, _ => [::]
end.

Lemma fold_polyNil U f iv : @fold U f iv polyNil = iv.
Proof. done. Qed.

Lemma fold_polyCons U f iv c p :
  @fold U f iv (polyCons c p) = f c (@fold U f iv p).
Proof. done. Qed.

Lemma size_set_nth p n val :
  size (set_nth p n val) = maxn n.+1 (size p).
Proof. by rewrite /size seq.size_set_nth. Qed.

Lemma nth_set_nth p n val k :
  nth (set_nth p n val) k = if k == n then val else nth p k.
Proof. by rewrite /nth nth_set_nth. Qed.

Lemma nth_default p n : size p <= n -> nth p n = C.zero.
Proof. by move=> *; rewrite /nth nth_default. Qed.

Lemma set_nth_nth p n : n < size p -> set_nth p n (nth p n) = p.
Proof.
move=> H.
apply: (eq_from_nth (x0 := C.zero)).
  by rewrite seq.size_set_nth; apply/maxn_idPr.
move=> i Hi.
rewrite seq.size_set_nth in Hi.
move/maxn_idPr: (H) (Hi) =>-> Hn.
rewrite seq.nth_set_nth /=.
by case E : (i == n); first by rewrite (eqP E).
Qed.

Lemma size_polyNil : size polyNil = 0.
Proof. done. Qed.

Lemma size_polyCons a p : size (polyCons a p) = (size p).+1.
Proof. by []. Qed.

Lemma nth_polyNil n : nth polyNil n = C.zero.
Proof. by rewrite nth_default. Qed.

Lemma nth_polyCons a p k :
  nth (polyCons a p) k = if k is k'.+1 then nth p k' else a.
Proof. by case: k. Qed.

Lemma size_dotmuldiv (n : nat) (u : U) a b p :
  size p = n -> seq.size a = n -> seq.size b = n ->
  size (dotmuldiv u a b p) = n.
Proof.
move: a b p n; elim=> [|a0 a1 IH] [|b0 b1] [|p0 p1] =>//.
move=> /= n Hp Ha Hb /=.
rewrite (IH _ _ n.-1) //.
by rewrite -Hp.
by rewrite -Hp.
by rewrite -Ha.
by rewrite -Hb.
Qed.

Lemma size_tail p k : size (tail k p) = size p - k.
Proof. by rewrite /size /tail size_drop. Qed.

Definition toSeq (p : T) := p.

Lemma horner_seq u p x :
  horner u p x = C.mask (foldr (fun a b => C.add u (C.mul u b x) a)
    C.zero (toSeq p)) x.
Proof. done. Qed.

Lemma nth_toSeq p n : nth p n = seq.nth (C.zero) (toSeq p) n.
Proof. by []. Qed.

Section precSection.
Variable u : U.
Definition int_coeff (p : T) (c : C.T) (n : nat) :=
match n with
| 0 => c
| S m => C.div u (nth p m) (C.from_nat n)
end.

Definition int_coeff_shift (p : T) (k : nat) := C.div u
(seq.nth C.zero p k)
(C.from_nat k.+1).

Definition primitive (c : C.T) (p : T) :=
 (c::(mkseq (int_coeff_shift p) (size p))) : T.

Lemma size_primitive (c : C.T) (p : T): size (primitive c p) = (size p).+1.
Proof. by rewrite /size /= size_mkseq. Qed.

End precSection.

Lemma size_map f p : size (map f p) = size p.
Proof (size_map f p).

Lemma polyCE c : polyC c = polyCons c polyNil.
Proof. done. Qed.

Lemma polyXE : polyX = lift 1 one.
Proof. done. Qed.

Lemma oneE : one = polyC C.one.
Proof. done. Qed.

Lemma nth_mul u p q k :
  nth (mul u p q) k =
  if (size p + size q).-1 <= k then C.zero
  else mul_coeff u p q k.
Proof. by rewrite /nth /mul_trunc [in LHS]nth_mkseq_dflt. Qed.

Lemma nth_mul_trunc u n p q k :
  nth (mul_trunc u n p q) k =
  if n < k then C.zero
  else mul_coeff u p q k.
Proof. by rewrite /nth /mul_trunc [in LHS]nth_mkseq_dflt. Qed.

Lemma nth_mul_tail u n p q k :
  nth (mul_tail u n p q) k =
  if (size p + size q).-1 - n.+1 <= k then C.zero
  else mul_coeff u p q (n.+1 + k).
Proof. by rewrite /nth /mul_tail [in LHS]nth_mkseq_dflt. Qed.

Lemma nth_dotmuldiv u a b p k :
  nth (dotmuldiv u a b p) k =
  if [|| size p <= k, seq.size a <= k | seq.size b <= k] then C.zero
  else C.mul u (C.div u (C.fromZ (seq.nth 0%Z a k)) (C.fromZ (seq.nth 0%Z b k))) (nth p k).
Proof.
elim: p a b k => [|c p IHp] a b k; case: a; case: b =>//=; rewrite /nth ?nth_nil //.
by rewrite orbT.
by rewrite orbT.
by move=> *; rewrite leq0n !orbT.
by move=> a0 a b0 b; case: k => [|k] //=; rewrite [LHS]IHp ltnS; case: ifP.
Qed.

End SeqPoly.

Module PolR <: PolyOps FullR.
Include SeqPoly FullR.

Module Import Notations.
Notation "p .[ x ]" := (PolR.horner tt p x) : R_scope.
Notation "p ^` ()" := (PolR.deriv tt p) : R_scope.
End Notations.

Lemma toSeq_horner0 (u : U) (p : T) : horner u p 0%R = head 0%R (toSeq p).
Proof.
elim: p=> [| a q HI] ; first by [].
by rewrite /= HI; case: u HI; rewrite Rmult_0_r Rplus_0_l.
Qed.

Lemma mul_coeff_eq0 p q k :
  (forall i, i <= k -> nth p i = 0%R \/ nth q (k - i) = 0%R) ->
  (\big[Rplus/R0]_(0 <= i < k.+1) (nth p i * nth q (k - i)) = 0)%R.
Proof.
move=> H.
rewrite big_mkord big1 // => [[i Hi]] _ /=.
rewrite ltnS in Hi.
by case: (H i Hi) =>->; rewrite ?(Rmult_0_l, Rmult_0_r).
Qed.

Restate nth_mul with no if-then-else
Lemma nth_mul' u p q k :
  nth (mul u p q) k =
  \big[Rplus/0%R]_(0 <= i < k.+1) Rmult (nth p i) (nth q (k - i)).
Proof.
rewrite nth_mul mul_coeffE; case: leqP => [H|//].
rewrite mul_coeff_eq0 //.
move/addn_pred_leqI in H.
by move=> i Hi; case: (H i Hi); move/nth_default=>->; intuition.
Qed.

Lemma hornerE p x :
  horner tt p x =
  \big[Rplus/0%R]_(0 <= i < size p) Rmult (nth p i) (x ^ i).
Proof.
elim: p; first by rewrite big_mkord big_ord0 /=.
move=> t p /= ->.
rewrite big_nat_recl // pow_O /=.
rewrite Rmult_1_r Rplus_comm.
case: (size p)=> [|n].
  by rewrite !big_mkord !big_ord0 /= Rmult_0_l.
rewrite Rmult_comm big_distrr /=; congr Rplus.
apply: eq_bigr => i _.
by rewrite ![Rmult x _]Rmult_comm Rmult_assoc.
Qed.

Lemma hornerE_wide n p x :
  size p <= n ->
  horner tt p x =
  \big[Rplus/R0]_(0 <= i < n) Rmult (nth p i) (x ^ i).
Proof.
move=> Hn; rewrite hornerE (big_nat_leq_idx _ Hn) //.
by move=> i /andP [Hi _]; rewrite nth_default // Rmult_0_l.
Qed.

Lemma coef_deriv p i :
  nth (deriv tt p) i = (nth p i.+1 * INR i.+1)%R.
Proof.
rewrite /deriv /deriv_loop -{2}[in RHS]addn1.
elim: p i 1 => [|a p IHp] i n; first by rewrite /nth !nth_nil Rmult_0_l.
case: p IHp => [|b p] IHp; first by rewrite /= /nth !nth_nil Rmult_0_l.
case: i => [|i] //=.
rewrite IHp; congr Rmult.
by rewrite addnS.
Qed.

Lemma horner_derivE_wide n p x :
  (size p).-1 <= n ->
  horner tt (deriv tt p) x =
  \big[Rplus/R0]_(0 <= i < n) ((nth p i.+1) * (INR i.+1) * (x ^ i))%R.
Proof.
move=> H.
rewrite (@hornerE_wide n); last by rewrite size_deriv.
apply: eq_bigr => i _.
congr Rmult.
exact: coef_deriv.
Qed.

Lemma horner_derivE p x :
  horner tt (deriv tt p) x =
  \big[Rplus/R0]_(0 <= i < (size p).-1)
    ((nth p i.+1) * (INR i.+1) * (x ^ i))%R.
Proof. by rewrite (@horner_derivE_wide (size p).-1). Qed.

Lemma is_derive_horner p x :
  is_derive (horner tt p) x (horner tt (deriv tt p) x).
Proof.
elim: p => [|a p IHp].
- rewrite /horner /=; exact: is_derive_const.
- apply: (@is_derive_ext _ _ (fun x => horner tt p x * x + a)%R); first done.
  rewrite -[horner _ _ _]Rplus_0_r.
  apply: is_derive_plus; last by auto_derive.
  suff->: horner tt (deriv tt (a :: p)) x =
    ((horner tt (deriv tt p) x) * x + (horner tt p x) * 1)%R.
    apply: is_derive_mult =>//.
    apply: is_derive_id.
    exact: Rmult_comm.
  rewrite (@horner_derivE_wide (size p)) //
          (@horner_derivE_wide (size p).-1) //
          (@hornerE_wide (size p)) //.
  rewrite Rmult_1_r.
  rewrite big_distrl.
  case E: (size p) => [|sp]; first by rewrite !(big_mkord, big_ord0) Rplus_0_l.
  rewrite [LHS]big_ltn // [in LHS]big_add1.
  rewrite [in X in _ = (_ + X)%R](big_ltn, big_add1) //.
  rewrite [in RHS]Rplus_comm [in RHS]Rplus_assoc; congr Rplus.
    by rewrite !Rmult_1_r.
  rewrite big_add1.
  rewrite -big_split.
  apply: eq_bigr => i _.
  have->: INR i.+2 = (INR i.+1 + 1)%R by [].
  have->: nth (a :: p) i.+2 = nth p i.+1 by [].
  rewrite -tech_pow_Rmult; simpl; ring.
Qed.

Corollary Derive_horner p x :
  Derive (horner tt p) x = horner tt (deriv tt p) x.
Proof. apply: is_derive_unique; exact: is_derive_horner. Qed.

Corollary ex_derive_horner p x : ex_derive (horner tt p) x.
Proof. exists (horner tt (deriv tt p) x); exact: is_derive_horner. Qed.

Lemma nth_add p1 p2 k :
  nth (add tt p1 p2) k = Rplus (nth p1 k) (nth p2 k).
Proof.
rewrite /nth /add nth_map2_dflt -!/(nth _ _).
by case: (leqP (size p1) k) => H1; case: (leqP (size p2) k) => H2;
  rewrite ?(nth_default H1) ?(nth_default H2); auto with real.
Qed.

Lemma nth_opp p1 k : nth (opp p1) k = Ropp (nth p1 k).
Proof.
rewrite /nth /add nth_map_dflt -!/(nth _ _).
by case: (leqP (size p1) k) => H1;
  rewrite ?(nth_default H1); auto with real.
Qed.

Lemma nth_sub p1 p2 k :
  nth (sub tt p1 p2) k = Rminus (nth p1 k) (nth p2 k).
Proof.
rewrite /nth /add nth_map2_dflt -!/(nth _ _).
by case: (leqP (size p1) k) => H1; case: (leqP (size p2) k) => H2;
  rewrite ?(nth_default H1) ?(nth_default H2); auto with real.
Qed.

Lemma nth_mul_mixed a p1 k :
  nth (mul_mixed tt a p1) k = Rmult a (nth p1 k).
Proof. elim: p1 k => [|x p IHp] k; first by rewrite nth_default // Rmult_0_r.
case: k IHp => [|k] IHp //; by rewrite /= IHp.
Qed.

Lemma nth_div_mixed_r p1 b k :
  nth (div_mixed_r tt p1 b) k = Rdiv (nth p1 k) b.
Proof.
elim: p1 k => [|x p IHp] k; first by rewrite nth_default // /Rdiv Rmult_0_l.
case: k IHp => [|k] IHp //; by rewrite /= IHp.
Qed.

Lemma nth_lift n p k :
  nth (lift n p) k = if k < n then 0%R else nth p (k - n).
Proof (nth_ncons 0%R n 0%R p k).

Lemma horner_polyC c x : horner tt (polyC c) x = c.
Proof.
rewrite !hornerE polyCE size_polyCons size_polyNil big_nat1 nth_polyCons.
by rewrite pow_O Rmult_1_r.
Qed.

Lemma horner_opp p x :
  horner tt (opp p) x = Ropp (horner tt p x).
Proof.
rewrite !hornerE size_opp.
rewrite big_endo ?Ropp_0 //; last exact: Ropp_plus_distr.
apply: eq_bigr => i _ /=.
by rewrite nth_opp Ropp_mult_distr_l_reverse.
Qed.

Lemma horner_add p q x :
  horner tt (add tt p q) x = (horner tt p x + horner tt q x)%R.
Proof.
rewrite !(@hornerE_wide (maxn (size p) (size q))).
rewrite -big_split; apply: eq_bigr => i _ /=.
by rewrite nth_add Rmult_plus_distr_r.
exact: leq_maxr.
exact: leq_maxl.
by rewrite size_add.
Qed.

Lemma horner_sub p q x :
  horner tt (sub tt p q) x = (horner tt p x - horner tt q x)%R.
Proof.
rewrite !(@hornerE_wide (maxn (size p) (size q))).
rewrite /Rminus.
rewrite (big_endo Ropp); first last.
  by rewrite Ropp_0.
  exact: Ropp_plus_distr.
rewrite -big_split; apply: eq_bigr => i _ /=.
by rewrite -/(Rminus _ _) nth_sub Rmult_minus_distr_r.
exact: leq_maxr.
exact: leq_maxl.
by rewrite size_sub.
Qed.

Lemma horner0 p x : (forall n, nth p n = 0%R) -> p.[x] = 0%R.
Proof. by move=> Hp; rewrite hornerE big1 // =>[i _]; rewrite Hp Rmult_0_l. Qed.

Lemma mul_coeff0l p q : size p = 0 -> forall n, mul_coeff tt p q n = 0%R.
Proof.
move=> Hp n; rewrite mul_coeffE.
rewrite big_mkord big1 // => [i Hi].
rewrite (@nth_default p); by [rewrite Rmult_0_l|rewrite Hp].
Qed.

Lemma nth_mulCl c p q i :
  nth (mul tt (c :: p) q) i.+1 =
  (c * nth q i.+1 + nth (mul tt p q) i)%R.
Proof. by rewrite !nth_mul' big_nat_recl. Qed.

Lemma horner_mulCl c p q x :
  ((mul tt (c :: p) q).[x] = (mul tt p q).[x] * x + c * q.[x])%R.
Proof.
rewrite (@hornerE_wide (size p + size q).+1);
  last by rewrite size_mul leq_pred.
have HF : forall i, predT i -> (nth (mul tt (c :: p) q) i.+1 * x ^ i.+1 =
  (c * nth q i.+1) * x ^ i.+1 + nth (mul tt p q) i * x ^ i.+1)%R.
  by move=> i; rewrite nth_mulCl Rmult_plus_distr_r.
rewrite big_nat_recl // (eq_bigr _ HF).
rewrite nth_mul' big_nat1 subn0 [nth _ 0]/= pow_O Rmult_1_r.
rewrite (@hornerE_wide (size p + size q));
  last by rewrite size_mul leq_pred.
set q0 := nth q 0.
rewrite (big_endo (fun y => y * x)%R);
  last 1 [by red=> *; rewrite Rmult_plus_distr_r|by rewrite Rmult_0_l].
rewrite (@hornerE_wide (size p + size q).+1);
  last by rewrite leqW // leq_addl.
rewrite big_nat_recl // pow_O Rmult_1_r; fold q0.
rewrite Rmult_plus_distr_l.
rewrite (big_endo (fun y => c * y)%R);
  last 1 [by red=> *; rewrite Rmult_plus_distr_l|by rewrite Rmult_0_r].
rewrite [RHS]Rplus_comm !Rplus_assoc; congr Rplus.
rewrite -big_split; apply: eq_bigr => i _.
simpl; ring.
Qed.

Lemma horner_mul p q x :
  horner tt (mul tt p q) x = (horner tt p x * horner tt q x)%R.
Proof.
elim: p => [|c p IHp].
- rewrite horner0 /= ?Rmult_0_l //.
  move=> n; rewrite nth_mul; case: ifP =>// H.
  by rewrite mul_coeff0l.
rewrite horner_mulCl IHp /= Rmult_plus_distr_r.
by rewrite !Rmult_assoc (Rmult_comm _ x) -!Rmult_assoc.
Qed.

Lemma horner_lift n p x :
  horner tt (lift n p) x = (horner tt p x * x ^ n)%R.
Proof.
rewrite !hornerE .
rewrite (big_endo (fun y => y * x ^ n)%R); first last.
  by rewrite Rmult_0_l.
  by red=> *; rewrite Rmult_plus_distr_r.
rewrite size_lift.
rewrite (@big_cat_nat _ _ _ n) ?leq_addr //=.
rewrite big1_seq; first last.
  move=> i /andP [_ Hi]; rewrite nth_lift ifT ?Rmult_0_l //.
  by move: Hi; rewrite mem_index_iota; case/andP.
rewrite Rplus_0_l -{1}(add0n n) big_addn addKn.
apply: eq_bigr => i _ /=.
rewrite nth_lift ifF ?(ltnNge, leq_addl) //.
rewrite addnK Rmult_assoc; congr Rmult.
by rewrite pow_add.
Qed.

Lemma horner_mul_mixed a p x :
  horner tt (mul_mixed tt a p) x = (a * horner tt p x)%R.
Proof.
rewrite !hornerE size_mul_mixed.
rewrite big_endo; first last.
  by rewrite Rmult_0_r.
  by move=> *; rewrite Rmult_plus_distr_l.
apply: eq_bigr => i _.
by rewrite nth_mul_mixed Rmult_assoc.
Qed.

Lemma horner_div_mixed_r p b x :
  horner tt (div_mixed_r tt p b) x = (horner tt p x / b)%R.
Proof.
rewrite !hornerE size_div_mixed_r /Rdiv Rmult_comm.
rewrite big_endo; first last.
  by rewrite Rmult_0_r.
  by move=> *; rewrite Rmult_plus_distr_l.
apply: eq_bigr => i _.
by rewrite nth_div_mixed_r -Rmult_assoc; congr Rmult; rewrite Rmult_comm.
Qed.

Lemma nth_primitive (p : T) (c : R) (k : nat) :
  nth (primitive tt c p) k = if size p < k then 0%R
                        else int_coeff tt p c k.
Proof.
case: ifP => Hk.
  by rewrite nth_default // size_primitive.
case : k Hk => [ _ | m Hm] //=.
have HSiota : m < seq.size (iota 0 (size p)).
  by rewrite size_iota; rewrite ltnNge in Hm; move/negbFE in Hm.
rewrite /nth /toSeq /primitive /= .
rewrite (nth_map 0) // nth_iota; first by rewrite add0n.
by rewrite ltnNge in Hm; move/negbFE in Hm.
Qed.

End PolR.

Module Type PolyIntOps (I : IntervalOps).
Module Int := FullInt I.
Module J := IntervalExt I.
Include PolyOps Int.

Definition contains_pointwise pi p : Prop :=
  forall k, contains (I.convert (nth pi k)) (Xreal (PolR.nth p k)).

Definition seq_contains_pointwise si s : Prop :=
  forall k, contains (I.convert (seq.nth Int.zero si k)) (Xreal (PolR.nth s k)).

Notation seq_eq_size si s := (seq.size si = seq.size s).

Module Import Notations.
Delimit Scope ipoly_scope with IP.
Notation "i >: x" := (contains (I.convert i) (Xreal x)) : ipoly_scope.
Notation "p >:: x" := (contains_pointwise p x) : ipoly_scope.
Notation eq_size pi p := (size pi = PolR.size p).
End Notations.
Local Open Scope ipoly_scope.

Parameter horner_correct :
  forall u pi ci p x, pi >:: p -> ci >: x -> horner u pi ci >: PolR.horner tt p x.

Parameter polyC_correct : forall ci c, ci >: c -> polyC ci >:: PolR.polyC c.
Parameter polyX_correct : polyX >:: PolR.polyX.

Parameter zero_correct : zero >:: PolR.zero.
Parameter one_correct : one >:: PolR.one.
Parameter opp_correct : forall pi p, pi >:: p -> opp pi >:: PolR.opp p.
Parameter map_correct :
  forall fi f pi p,
  (f 0%R = 0%R) ->
  (forall xi x, xi >: x -> fi xi >: f x) ->
  pi >:: p ->
  map fi pi >:: PolR.map f p.
Parameter dotmuldiv_correct :
  forall u a b pi p,
  seq.size a = seq.size b ->
  pi >:: p ->
  dotmuldiv u a b pi >:: PolR.dotmuldiv tt a b p.
Parameter add_correct :
  forall u pi qi p q, pi >:: p -> qi >:: q -> add u pi qi >:: PolR.add tt p q.
Parameter sub_correct :
  forall u pi qi p q, pi >:: p -> qi >:: q -> sub u pi qi >:: PolR.sub tt p q.
Parameter mul_correct :
  forall u pi qi p q, pi >:: p -> qi >:: q -> mul u pi qi >:: PolR.mul tt p q.
Parameter mul_trunc_correct :
  forall u n pi qi p q, pi >:: p -> qi >:: q ->
  mul_trunc u n pi qi >:: PolR.mul_trunc tt n p q.
Parameter mul_tail_correct :
  forall u n pi qi p q, pi >:: p -> qi >:: q ->
  mul_tail u n pi qi >:: PolR.mul_tail tt n p q.
Parameter mul_mixed_correct :
  forall u ai pi a p, ai >: a -> pi >:: p ->
  mul_mixed u ai pi >:: PolR.mul_mixed tt a p.
Parameter div_mixed_r_correct :
  forall u pi bi p b, pi >:: p -> bi >: b ->
  div_mixed_r u pi bi >:: PolR.div_mixed_r tt p b.
Parameter horner_propagate : forall u pi, J.propagate (horner u pi).
Parameter deriv_correct :
  forall u pi p, pi >:: p -> deriv u pi >:: (PolR.deriv tt p).
Parameter primitive_correct :
  forall u ci c pi p,
  ci >: c ->
  pi >:: p ->
  primitive u ci pi >:: PolR.primitive tt c p.
Parameter lift_correct : forall n pi p, pi >:: p -> lift n pi >:: PolR.lift n p.
Parameter tail_correct : forall n pi p, pi >:: p -> tail n pi >:: PolR.tail n p.
Parameter set_nth_correct :
  forall pi p n ai a, pi >:: p -> ai >: a -> set_nth pi n ai >:: PolR.set_nth p n a.
Parameter polyNil_correct : polyNil >:: PolR.polyNil. Parameter polyCons_correct :
  forall pi xi p x, pi >:: p -> xi >: x ->
  polyCons xi pi >:: PolR.polyCons x p.
Parameter rec1_correct :
  forall fi f fi0 f0 n,
    (forall ai a m, ai >: a -> fi ai m >: f a m) -> fi0 >: f0 ->
    rec1 fi fi0 n >:: PolR.rec1 f f0 n.
Parameter rec2_correct :
  forall fi f fi0 f0 fi1 f1 n,
    (forall ai bi a b m, ai >: a -> bi >: b -> fi ai bi m >: f a b m) ->
    fi0 >: f0 -> fi1 >: f1 ->
    rec2 fi fi0 fi1 n >:: PolR.rec2 f f0 f1 n.
Parameter grec1_correct :
  forall Fi (F : PolR.T -> nat -> PolR.T) Gi (G : PolR.T -> nat -> R) ai a si s n,
  (forall qi q m, qi >:: q -> Fi qi m >:: F q m) ->
  (forall qi q m, qi >:: q -> Gi qi m >: G q m) ->
  ai >:: a ->
  seq_contains_pointwise si s ->
  seq_eq_size si s ->
  grec1 Fi Gi ai si n >:: PolR.grec1 F G a s n.


Parameter nth_default_alt : forall pi p, pi >:: p ->
  forall n : nat, size pi <= n -> PolR.nth p n = 0%R.

Definition poly_eqNai s := forall k, k < size s -> I.convert (nth s k) = IInan.

Definition seq_eqNai s := forall k, k < seq.size s -> I.convert (seq.nth I.zero s k) = IInan.

Parameter grec1_propagate :
  forall A (Fi : A -> nat -> A) (Gi : A -> nat -> I.type) ai si,
  (forall qi m, I.convert (Gi qi m) = IInan) ->
  seq_eqNai si ->
  forall n, poly_eqNai (grec1 Fi Gi ai si n).

Parameter dotmuldiv_propagate :
  forall u a b p,
  seq.size a = size p ->
  seq.size b = size p ->
  poly_eqNai p ->
  poly_eqNai (dotmuldiv u a b p).

Parameter rec1_propagate :
  forall (Fi : I.type -> nat -> I.type) ai,
  (forall qi m, I.convert qi = IInan -> I.convert (Fi qi m) = IInan) ->
  I.convert ai = IInan ->
  forall n, poly_eqNai (rec1 Fi ai n).

Parameter polyCons_propagate :
  forall xi pi,
  I.convert xi = IInan ->
  poly_eqNai pi ->
  poly_eqNai (polyCons xi pi).
End PolyIntOps.

Note that the implementation(s) of the previous signature will depend on the choice of a particular polynomial basis, especially for the multiplication and polynomial evaluation.
Implementation of PolyOps with sequences and operations in monomial basis

Module SeqPolyInt (I : IntervalOps) <: PolyIntOps I.
Module Int := FullInt I.
Include SeqPoly Int.

Module Import Aux := IntervalAux I.
Module J := IntervalExt I.

Definition contains_pointwise pi p : Prop :=
  forall k, contains (I.convert (nth pi k)) (Xreal (PolR.nth p k)).

Definition seq_contains_pointwise si s : Prop :=
  forall k, contains (I.convert (seq.nth Int.zero si k)) (Xreal (PolR.nth s k)).

Notation seq_eq_size si s := (seq.size si = seq.size s).

Module Import Notations.
Delimit Scope ipoly_scope with IP.
Notation "i >: x" := (contains (I.convert i) (Xreal x)) : ipoly_scope.
Notation "p >:: x" := (contains_pointwise p x) : ipoly_scope.
Notation eq_size pi p := (size pi = PolR.size p).
End Notations.
Local Open Scope ipoly_scope.

Definition poly_eqNai s := forall k, k < size s -> I.convert (nth s k) = IInan.

Definition seq_eqNai s := forall k, k < seq.size s -> I.convert (seq.nth I.zero s k) = IInan.

Lemma horner_propagate u pi : J.propagate (horner u pi).
Proof. intros x. apply I.mask_propagate_r. Qed.

Lemma zero_correct : zero >:: PolR.zero.
Proof. by case=> [|k]; exact: J.zero_correct. Qed.

Lemma one_correct : one >:: PolR.one.
Proof. by case=> [|k] /=; [apply: I.fromZ_correct|exact: zero_correct]. Qed.

Lemma opp_correct pi p : pi >:: p -> opp pi >:: PolR.opp p.
Proof.
move=> Hp k; rewrite /opp /PolR.opp /nth /PolR.nth.
apply (@map_correct R I.type) =>//.
- exact: J.zero_correct.
- by move=> ? /only0 ->; rewrite Ropp_0; apply: J.zero_correct.
- by move=> *; rewrite -(Ropp_0); apply: J.neg_correct.
- move=> *; exact: J.neg_correct.
Qed.

Lemma map_correct fi f pi p :
  (f 0%R = 0%R) ->
  (forall xi x, xi >: x -> fi xi >: f x) ->
  pi >:: p ->
  map fi pi >:: PolR.map f p.
Proof.
move=> H0 Hf Hp k; rewrite /map /PolR.map /nth /PolR.nth.
apply (@map_correct R I.type) =>//.
- exact: J.zero_correct.
- by move=> ? /only0 ->; rewrite H0; apply: J.zero_correct.
- by move=> *; rewrite -(H0); apply: Hf.
- move=> *; exact: Hf.
Qed.

Lemma add_correct u pi qi p q :
  pi >:: p -> qi >:: q -> add u pi qi >:: PolR.add tt p q.
Proof.
move=> Hp Hq k; rewrite /PolR.add /add /nth /PolR.nth.
apply (@map2_correct R I.type) =>//.
- exact: J.zero_correct.
- exact: only0.
- by move=> ? ? ? H1 /only0 ->; rewrite Rplus_0_r.
- by move=> ? ? ? /only0 -> H2; rewrite Rplus_0_l.
- by move=> v1 ? ? ? ?; rewrite -(Rplus_0_r v1); apply: J.add_correct.
- by move=> v2 ? ? ? ?; rewrite -(Rplus_0_l v2); apply: J.add_correct.
- by move=> *; apply: J.add_correct.
Qed.

Lemma nth_default_alt pi p :
  pi >:: p ->
  forall n : nat, size pi <= n -> PolR.nth p n = 0%R.
Proof.
move=> Hpi n Hn.
case: (leqP (PolR.size p) (size pi)) => Hsz.
  rewrite PolR.nth_default //; exact: leq_trans Hsz Hn.
by move/(_ n): Hpi; rewrite nth_default //; move/only0=>->.
Qed.

Lemma dotmuldiv_correct u a b pi p :
  seq.size a = seq.size b ->
  pi >:: p ->
  dotmuldiv u a b pi >:: PolR.dotmuldiv tt a b p.
Proof.
move=> Hs Hp.
move=> k; rewrite nth_dotmuldiv PolR.nth_dotmuldiv.
do ![case: ifP] => /or3P A /or3P B.
- exact: J.zero_correct.
- case B.
  by move/nth_default_alt =>->; rewrite ?Rmult_0_r; try exact: J.zero_correct.
  by move/or3P in A; move=> K; rewrite K orbT in A.
  by move/or3P in A; move=> K; rewrite K !orbT in A.
- case A=> K.
  apply (@mul_0_contains_0_r u (Xreal (Rdiv (IZR (seq.nth 0%Z a k)) (IZR (seq.nth 0%Z b k))))).
  by apply: J.div_correct; apply: I.fromZ_correct.
  have->: 0%R = PolR.nth p k.
  by move/PolR.nth_default: K.
  exact: Hp.
  by move/or3P in B; rewrite K !orbT in B.
  by move/or3P in B; rewrite K !orbT in B.
- apply: J.mul_correct =>//.
  apply: J.div_correct =>//; exact: I.fromZ_correct.
Qed.

Lemma sub_correct u pi qi p q :
  pi >:: p -> qi >:: q -> sub u pi qi >:: PolR.sub tt p q.
Proof.
move=> Hp Hq k; rewrite /PolR.sub /sub /nth /PolR.nth.
apply (@map2_correct R I.type) =>//.
- exact: J.zero_correct.
- by move=> v /only0 ->; rewrite Ropp_0; apply: J.zero_correct.
- by move=> t ?; rewrite -Ropp_0; apply: J.neg_correct.
- move=> *; exact: J.neg_correct.
- exact: only0.
- by move=> ? ? ? H1 /only0 ->; rewrite Rminus_0_r.
- by move=> ? ? ? /only0 -> H2; rewrite Rminus_0_l; apply: J.neg_correct.
- by move=> v1 ? ? ? ?; rewrite -(Rminus_0_r v1); apply: J.sub_correct.
- by move=> v2 ? ? ? ?; rewrite -(Rminus_0_l v2); apply: J.sub_correct.
- by move=> *; apply: J.sub_correct.
Qed.

Lemma mul_coeff_correct u pi qi p q :
  pi >:: p -> qi >:: q ->
  forall k : nat, mul_coeff u pi qi k >: PolR.mul_coeff tt p q k.
Proof.
move=> Hpi Hqi k.
rewrite mul_coeffE PolR.mul_coeffE.
apply (@big_ind2 R I.type (fun r i => i >: r)).
- exact: J.zero_correct.
- move=> *; exact: J.add_correct.
- move=> *; exact: J.mul_correct.
Qed.

Lemma mul_correct u pi qi p q :
  pi >:: p -> qi >:: q -> mul u pi qi >:: PolR.mul tt p q.
Proof.
move=> Hp Hq; rewrite /mul /PolR.mul /nth /PolR.nth.
apply: (mkseq_correct (Rel := fun r i => i >: r)) =>//.
- exact: J.zero_correct.
- exact: mul_coeff_correct.
- move=> k /andP [Hk _]; rewrite PolR.mul_coeffE.
  rewrite PolR.mul_coeff_eq0 //.
  move/addn_pred_leqI in Hk.
  by move=> i Hi; case: (Hk i Hi); move/PolR.nth_default=>->; intuition.
- move=> k /andP [Hk _]; rewrite PolR.mul_coeffE /size.
  rewrite PolR.mul_coeff_eq0 //.
  move/addn_pred_leqI in Hk.
  by move=> i Hi; case: (Hk i Hi); move/nth_default_alt=>->; intuition.
Qed.

Lemma mul_trunc_correct u n pi qi p q :
  pi >:: p -> qi >:: q ->
  mul_trunc u n pi qi >:: PolR.mul_trunc tt n p q.
Proof.
move=> Hp Hq; rewrite /nth /PolR.nth.
apply: (mkseq_correct (Rel := fun r i => i >: r)) =>//.
- exact: J.zero_correct.
- exact: mul_coeff_correct.
- by move=> k; rewrite ltn_leqN.
- by move=> k; rewrite ltn_leqN.
Qed.

Lemma mul_tail_correct u n pi qi p q :
  pi >:: p -> qi >:: q ->
  mul_tail u n pi qi >:: PolR.mul_tail tt n p q.
Proof.
move=> Hp Hq; rewrite /mul_tail /PolR.mul_tail /nth /PolR.nth.
apply: (mkseq_correct (Rel := fun r i => i >: r)) =>//.
- exact: J.zero_correct.
- move=> k; exact: mul_coeff_correct.
- move=> k /andP [_k k_]; rewrite PolR.mul_coeffE.
  rewrite PolR.mul_coeff_eq0 //.
  move=> i Hi.
  rewrite leq_subLR in _k.
  move/addn_pred_leqI in _k.
  by case: (_k i Hi); move/PolR.nth_default=>->; intuition.
- move=> k /andP [Hk _]; rewrite PolR.mul_coeffE /size.
  rewrite PolR.mul_coeff_eq0 //.
  rewrite leq_subLR in Hk.
  move/addn_pred_leqI in Hk.
  by move=> i Hi; case: (Hk i Hi); move/nth_default_alt=>->; intuition.
Qed.

Lemma mul_mixed_correct u ai pi a p :
  ai >: a ->
  pi >:: p ->
  mul_mixed u ai pi >:: PolR.mul_mixed tt a p.
Proof.
move=> Ha Hp; rewrite /mul_mixed /PolR.mul_mixed.
apply: (seq_foldr_correct (Rel := fun v t => t >: v)) =>//.
- move=> x s /only0 -> Hs [|k] /=; first by rewrite Rmult_0_r; apply: J.zero_correct.
  by move: (Hs k); rewrite nth_nil.
- move=> x s Hx Hs [|k]; first by rewrite -(Rmult_0_r a); apply: J.mul_correct.
  by move: (Hs k); rewrite nth_nil.
- move=> x y s t Hx Hs [|k]; first by apply: J.mul_correct.
  by apply: Hs.
Qed.

Lemma div_mixed_r_correct u pi bi p b :
  pi >:: p ->
  bi >: b ->
  div_mixed_r u pi bi >:: PolR.div_mixed_r tt p b.
Proof.
move=> Ha Hp; rewrite /div_mixed_r /PolR.div_mixed_r.
apply: (seq_foldr_correct (Rel := fun v t => t >: v)) =>//.
- move=> x s /only0 -> Hs [|k] /=; first by rewrite /Rdiv Rmult_0_l; apply: J.zero_correct.
  by move: (Hs k); rewrite nth_nil.
- move=> x s Hx Hs [|k]; last by move: (Hs k); rewrite nth_nil.
  by rewrite -(Rmult_0_l (Rinv b)); apply: J.div_correct.
- move=> x y s t Hx Hs [|k]; first by apply: J.div_correct.
  by apply: Hs.
Qed.

Lemma horner_correct u pi ai p a :
  pi >:: p -> ai >: a -> horner u pi ai >: PolR.horner tt p a.
Proof.
move=> Hp Ha.
rewrite /horner /PolR.horner.
apply: I.mask_correct'.
apply: (foldr_correct (Rel := fun v t => t >: v)) =>//.
- exact: J.zero_correct.
- move=> x y /only0 -> /only0 ->; rewrite Rmult_0_l Rplus_0_r; exact: J.zero_correct.
- move=> x y Hx Hy; rewrite -(Rplus_0_r 0) -{1}(Rmult_0_l a).
  apply: J.add_correct =>//; exact: J.mul_correct.
- move=> x xi y yi Hx Hy; apply: J.add_correct=>//; exact: J.mul_correct.
Qed.

Lemma deriv_correct u pi p : pi >:: p -> deriv u pi >:: PolR.deriv tt p.
Proof.
move=> Hpi; rewrite /deriv /PolR.deriv /deriv_loop /PolR.deriv_loop.
apply: (seq_foldri_correct (Rel := fun v t => t >: v)) =>//.
- by move=> k; rewrite !nth_behead.
- move=> x s i Hx Hs [|k] /=.
  + by move/only0: Hx->; rewrite Rmult_0_l; apply: J.zero_correct.
  + by move: (Hs k); rewrite nth_nil.
- move=> x s i Hx Hs [|k] /=.
  rewrite -(Rmult_0_l (INR i)).
  apply: J.mul_correct =>//; rewrite INR_IZR_INZ; apply: I.fromZ_correct.
  by move: (Hs k); rewrite nth_nil.
- move=> x xi y yi i Hx Hy [|k] //=.
  by apply: J.mul_correct =>//; rewrite INR_IZR_INZ; apply: I.fromZ_correct.
Qed.

Lemma set_nth_correct pi p n ai a :
  pi >:: p -> ai >: a -> set_nth pi n ai >:: PolR.set_nth p n a.
Proof.
move=> Hp Ha k; rewrite /nth /PolR.nth.
exact: (seq_compl.set_nth_correct (Rel := fun v t => t >: v)).
Qed.

Lemma lift_correct n pi p : pi >:: p -> lift n pi >:: PolR.lift n p.
Proof.
move=> Hp k; rewrite /nth /PolR.nth.
by apply: (ncons_correct (Rel := fun v t => t >: v)); first exact: J.zero_correct.
Qed.

Lemma tail_correct n pi p : pi >:: p -> tail n pi >:: PolR.tail n p.
move=> Hp k; rewrite /nth /PolR.nth.
exact: (drop_correct (Rel := fun v t => t >: v)).
Qed.

Lemma polyNil_correct : polyNil >:: PolR.polyNil.
Proof. intro; rewrite /nth /PolR.nth ![seq.nth _ _ _]nth_nil; exact: J.zero_correct. Qed.

Lemma polyCons_correct pi xi p x :
  pi >:: p -> xi >: x -> polyCons xi pi >:: PolR.polyCons x p.
Proof. by move=> Hp Hx [|k] /=. Qed.

Lemma rec1_correct fi f fi0 f0 n :
  (forall ai a m, ai >: a -> fi ai m >: f a m) ->
  fi0 >: f0 ->
  rec1 fi fi0 n >:: PolR.rec1 f f0 n.
Proof.
move=> Hf Hf0.
by apply: (rec1up_correct (Rel := fun r i => i >: r)); first exact: J.zero_correct.
Qed.

Lemma rec2_correct fi f fi0 f0 fi1 f1 n :
  (forall ai bi a b m, ai >: a -> bi >: b -> fi ai bi m >: f a b m) ->
  fi0 >: f0 ->
  fi1 >: f1 ->
  rec2 fi fi0 fi1 n >:: PolR.rec2 f f0 f1 n.
Proof.
move=> Hf Hf0 Hf1.
by apply: (rec2up_correct (Rel := fun r i => i >: r)); first exact: J.zero_correct.
Qed.

Lemma grec1_correct
  Fi (F : PolR.T -> nat -> PolR.T) Gi (G : PolR.T -> nat -> R) ai a si s n :
  (forall qi q m, qi >:: q -> Fi qi m >:: F q m) ->
  (forall qi q m, qi >:: q -> Gi qi m >: G q m) ->
  ai >:: a ->
  seq_contains_pointwise si s ->
  eq_size si s ->
  grec1 Fi Gi ai si n >:: PolR.grec1 F G a s n.
Proof.
move=> HF HG Ha Hs Hsize.
by apply: (grec1up_correct (Rel := fun r i => i >: r)); first exact: J.zero_correct.
Qed.

Lemma polyC_correct ci c : ci >: c -> polyC ci >:: PolR.polyC c.
Proof.
move=> Hc [//|k].
rewrite /polyC /PolR.polyC.
rewrite nth_polyCons PolR.nth_polyCons.
rewrite nth_polyNil PolR.nth_polyNil.
exact: J.zero_correct.
Qed.

Lemma polyX_correct : polyX >:: PolR.polyX.
Proof.
case=> [|k] /=; first exact: J.zero_correct.
case: k => [|k] /=; first by change R1 with (INR 1); apply: I.fromZ_correct.
rewrite /nth /PolR.nth !nth_nil.
exact: J.zero_correct.
Qed.

Lemma primitive_correct u ci c pi p :
  ci >: c ->
  pi >:: p ->
  primitive u ci pi >:: PolR.primitive tt c p.
Proof.
move=> Hc Hp; rewrite /primitive /PolR.primitive /nth /PolR.nth.
apply: polyCons_correct =>//.
apply: (mkseq_correct (Rel := fun r i => i >: r)) =>//.
- exact: J.zero_correct.
- move=> k; rewrite /int_coeff_shift /PolR.int_coeff_shift.
  apply: J.div_correct =>//.
  exact: R_from_nat_correct.
- move=> k /andP [_k k_]; rewrite /PolR.int_coeff_shift.
  by rewrite [seq.nth _ _ _](PolR.nth_default _k) /Rdiv Rmult_0_l.
- move=> k /andP [_k k_]; rewrite /PolR.int_coeff_shift.
  by rewrite [seq.nth _ _ _](nth_default_alt Hp _k) /Rdiv Rmult_0_l.
Qed.

Lemma grec1_propagate A (Fi : A -> nat -> A) (Gi : A -> nat -> I.type) ai si :
  (forall qi m, I.convert (Gi qi m) = IInan) ->
  seq_eqNai si ->
  forall n, poly_eqNai (grec1 Fi Gi ai si n).
Proof.
move=> HG Hs n k Hk.
rewrite /grec1 /size size_grec1up ltnS in Hk.
rewrite /grec1 /nth nth_grec1up.
rewrite ltnNge Hk /=.
case: ltnP => H2.
- exact: Hs.
- exact: HG.
Qed.

Arguments nth_rec1up_indep [T F a0 d1 d2 m1 m2 n] _ _.
Lemma rec1_propagate
  (Fi : I.type -> nat -> I.type) ai :
  (forall qi m, I.convert qi = IInan -> I.convert (Fi qi m) = IInan) ->
  I.convert ai = IInan ->
  forall n, poly_eqNai (rec1 Fi ai n).
Proof.
move=> HF Ha n k Hk.
rewrite /size size_rec1up ltnS in Hk.
rewrite /nth /rec1.
rewrite (nth_rec1up_indep (d2 := I.zero) (m2 := k)) //.
rewrite nth_rec1up_last.
rewrite last_rec1up head_loop1 //.
elim: k Hk => [//|k IHk] Hk /=.
apply: HF.
apply: IHk.
exact: ltnW.
Qed.


Lemma dotmuldiv_propagate u a b p :
  seq.size a = size p ->
  seq.size b = size p ->
  poly_eqNai p ->
  poly_eqNai (dotmuldiv u a b p).
Proof.
move=> Ha Hb Hp; red => k Hk.
rewrite (@size_dotmuldiv (size p)) // in Hk.
rewrite nth_dotmuldiv Ha Hb !orbb ifF.
  rewrite I.mul_propagate_r //.
  exact: Hp.
by rewrite leqNgt Hk.
Qed.

Lemma polyCons_propagate xi pi :
  I.convert xi = IInan ->
  poly_eqNai pi ->
  poly_eqNai (polyCons xi pi).
Proof.
move=> Hxi Hpi [|k]; rewrite size_polyCons nth_polyCons // ltnS; exact: Hpi.
Qed.

End SeqPolyInt.