Library mathcomp.ssreflect.bigop

Require Import mathcomp.ssreflect.ssreflect.
From mathcomp
Require Import ssrbool ssrfun eqtype ssrnat seq path div fintype.
From mathcomp
Require Import tuple finfun.


Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Reserved Notation "\big [ op / idx ]_ i F"
  (at level 36, F at level 36, op, idx at level 10, i at level 0,
     right associativity,
           format "'[' \big [ op / idx ]_ i '/ ' F ']'").
Reserved Notation "\big [ op / idx ]_ ( i <- r | P ) F"
  (at level 36, F at level 36, op, idx at level 10, i, r at level 50,
           format "'[' \big [ op / idx ]_ ( i <- r | P ) '/ ' F ']'").
Reserved Notation "\big [ op / idx ]_ ( i <- r ) F"
  (at level 36, F at level 36, op, idx at level 10, i, r at level 50,
           format "'[' \big [ op / idx ]_ ( i <- r ) '/ ' F ']'").
Reserved Notation "\big [ op / idx ]_ ( m <= i < n | P ) F"
  (at level 36, F at level 36, op, idx at level 10, m, i, n at level 50,
           format "'[' \big [ op / idx ]_ ( m <= i < n | P ) F ']'").
Reserved Notation "\big [ op / idx ]_ ( m <= i < n ) F"
  (at level 36, F at level 36, op, idx at level 10, i, m, n at level 50,
           format "'[' \big [ op / idx ]_ ( m <= i < n ) '/ ' F ']'").
Reserved Notation "\big [ op / idx ]_ ( i | P ) F"
  (at level 36, F at level 36, op, idx at level 10, i at level 50,
           format "'[' \big [ op / idx ]_ ( i | P ) '/ ' F ']'").
Reserved Notation "\big [ op / idx ]_ ( i : t | P ) F"
  (at level 36, F at level 36, op, idx at level 10, i at level 50,
           format "'[' \big [ op / idx ]_ ( i : t | P ) '/ ' F ']'").
Reserved Notation "\big [ op / idx ]_ ( i : t ) F"
  (at level 36, F at level 36, op, idx at level 10, i at level 50,
           format "'[' \big [ op / idx ]_ ( i : t ) '/ ' F ']'").
Reserved Notation "\big [ op / idx ]_ ( i < n | P ) F"
  (at level 36, F at level 36, op, idx at level 10, i, n at level 50,
           format "'[' \big [ op / idx ]_ ( i < n | P ) '/ ' F ']'").
Reserved Notation "\big [ op / idx ]_ ( i < n ) F"
  (at level 36, F at level 36, op, idx at level 10, i, n at level 50,
           format "'[' \big [ op / idx ]_ ( i < n ) F ']'").
Reserved Notation "\big [ op / idx ]_ ( i 'in' A | P ) F"
  (at level 36, F at level 36, op, idx at level 10, i, A at level 50,
           format "'[' \big [ op / idx ]_ ( i 'in' A | P ) '/ ' F ']'").
Reserved Notation "\big [ op / idx ]_ ( i 'in' A ) F"
  (at level 36, F at level 36, op, idx at level 10, i, A at level 50,
           format "'[' \big [ op / idx ]_ ( i 'in' A ) '/ ' F ']'").

Reserved Notation "\sum_ i F"
  (at level 41, F at level 41, i at level 0,
           right associativity,
           format "'[' \sum_ i '/ ' F ']'").
Reserved Notation "\sum_ ( i <- r | P ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \sum_ ( i <- r | P ) '/ ' F ']'").
Reserved Notation "\sum_ ( i <- r ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \sum_ ( i <- r ) '/ ' F ']'").
Reserved Notation "\sum_ ( m <= i < n | P ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \sum_ ( m <= i < n | P ) '/ ' F ']'").
Reserved Notation "\sum_ ( m <= i < n ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \sum_ ( m <= i < n ) '/ ' F ']'").
Reserved Notation "\sum_ ( i | P ) F"
  (at level 41, F at level 41, i at level 50,
           format "'[' \sum_ ( i | P ) '/ ' F ']'").
Reserved Notation "\sum_ ( i : t | P ) F"
  (at level 41, F at level 41, i at level 50,
           only parsing).
Reserved Notation "\sum_ ( i : t ) F"
  (at level 41, F at level 41, i at level 50,
           only parsing).
Reserved Notation "\sum_ ( i < n | P ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \sum_ ( i < n | P ) '/ ' F ']'").
Reserved Notation "\sum_ ( i < n ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \sum_ ( i < n ) '/ ' F ']'").
Reserved Notation "\sum_ ( i 'in' A | P ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \sum_ ( i 'in' A | P ) '/ ' F ']'").
Reserved Notation "\sum_ ( i 'in' A ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \sum_ ( i 'in' A ) '/ ' F ']'").

Reserved Notation "\max_ i F"
  (at level 41, F at level 41, i at level 0,
           format "'[' \max_ i '/ ' F ']'").
Reserved Notation "\max_ ( i <- r | P ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \max_ ( i <- r | P ) '/ ' F ']'").
Reserved Notation "\max_ ( i <- r ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \max_ ( i <- r ) '/ ' F ']'").
Reserved Notation "\max_ ( m <= i < n | P ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \max_ ( m <= i < n | P ) '/ ' F ']'").
Reserved Notation "\max_ ( m <= i < n ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \max_ ( m <= i < n ) '/ ' F ']'").
Reserved Notation "\max_ ( i | P ) F"
  (at level 41, F at level 41, i at level 50,
           format "'[' \max_ ( i | P ) '/ ' F ']'").
Reserved Notation "\max_ ( i : t | P ) F"
  (at level 41, F at level 41, i at level 50,
           only parsing).
Reserved Notation "\max_ ( i : t ) F"
  (at level 41, F at level 41, i at level 50,
           only parsing).
Reserved Notation "\max_ ( i < n | P ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \max_ ( i < n | P ) '/ ' F ']'").
Reserved Notation "\max_ ( i < n ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \max_ ( i < n ) F ']'").
Reserved Notation "\max_ ( i 'in' A | P ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \max_ ( i 'in' A | P ) '/ ' F ']'").
Reserved Notation "\max_ ( i 'in' A ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \max_ ( i 'in' A ) '/ ' F ']'").

Reserved Notation "\prod_ i F"
  (at level 36, F at level 36, i at level 0,
           format "'[' \prod_ i '/ ' F ']'").
Reserved Notation "\prod_ ( i <- r | P ) F"
  (at level 36, F at level 36, i, r at level 50,
           format "'[' \prod_ ( i <- r | P ) '/ ' F ']'").
Reserved Notation "\prod_ ( i <- r ) F"
  (at level 36, F at level 36, i, r at level 50,
           format "'[' \prod_ ( i <- r ) '/ ' F ']'").
Reserved Notation "\prod_ ( m <= i < n | P ) F"
  (at level 36, F at level 36, i, m, n at level 50,
           format "'[' \prod_ ( m <= i < n | P ) '/ ' F ']'").
Reserved Notation "\prod_ ( m <= i < n ) F"
  (at level 36, F at level 36, i, m, n at level 50,
           format "'[' \prod_ ( m <= i < n ) '/ ' F ']'").
Reserved Notation "\prod_ ( i | P ) F"
  (at level 36, F at level 36, i at level 50,
           format "'[' \prod_ ( i | P ) '/ ' F ']'").
Reserved Notation "\prod_ ( i : t | P ) F"
  (at level 36, F at level 36, i at level 50,
           only parsing).
Reserved Notation "\prod_ ( i : t ) F"
  (at level 36, F at level 36, i at level 50,
           only parsing).
Reserved Notation "\prod_ ( i < n | P ) F"
  (at level 36, F at level 36, i, n at level 50,
           format "'[' \prod_ ( i < n | P ) '/ ' F ']'").
Reserved Notation "\prod_ ( i < n ) F"
  (at level 36, F at level 36, i, n at level 50,
           format "'[' \prod_ ( i < n ) '/ ' F ']'").
Reserved Notation "\prod_ ( i 'in' A | P ) F"
  (at level 36, F at level 36, i, A at level 50,
           format "'[' \prod_ ( i 'in' A | P ) F ']'").
Reserved Notation "\prod_ ( i 'in' A ) F"
  (at level 36, F at level 36, i, A at level 50,
           format "'[' \prod_ ( i 'in' A ) '/ ' F ']'").

Reserved Notation "\bigcup_ i F"
  (at level 41, F at level 41, i at level 0,
           format "'[' \bigcup_ i '/ ' F ']'").
Reserved Notation "\bigcup_ ( i <- r | P ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \bigcup_ ( i <- r | P ) '/ ' F ']'").
Reserved Notation "\bigcup_ ( i <- r ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \bigcup_ ( i <- r ) '/ ' F ']'").
Reserved Notation "\bigcup_ ( m <= i < n | P ) F"
  (at level 41, F at level 41, m, i, n at level 50,
           format "'[' \bigcup_ ( m <= i < n | P ) '/ ' F ']'").
Reserved Notation "\bigcup_ ( m <= i < n ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \bigcup_ ( m <= i < n ) '/ ' F ']'").
Reserved Notation "\bigcup_ ( i | P ) F"
  (at level 41, F at level 41, i at level 50,
           format "'[' \bigcup_ ( i | P ) '/ ' F ']'").
Reserved Notation "\bigcup_ ( i : t | P ) F"
  (at level 41, F at level 41, i at level 50,
           format "'[' \bigcup_ ( i : t | P ) '/ ' F ']'").
Reserved Notation "\bigcup_ ( i : t ) F"
  (at level 41, F at level 41, i at level 50,
           format "'[' \bigcup_ ( i : t ) '/ ' F ']'").
Reserved Notation "\bigcup_ ( i < n | P ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \bigcup_ ( i < n | P ) '/ ' F ']'").
Reserved Notation "\bigcup_ ( i < n ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \bigcup_ ( i < n ) '/ ' F ']'").
Reserved Notation "\bigcup_ ( i 'in' A | P ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \bigcup_ ( i 'in' A | P ) '/ ' F ']'").
Reserved Notation "\bigcup_ ( i 'in' A ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \bigcup_ ( i 'in' A ) '/ ' F ']'").

Reserved Notation "\bigcap_ i F"
  (at level 41, F at level 41, i at level 0,
           format "'[' \bigcap_ i '/ ' F ']'").
Reserved Notation "\bigcap_ ( i <- r | P ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \bigcap_ ( i <- r | P ) F ']'").
Reserved Notation "\bigcap_ ( i <- r ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \bigcap_ ( i <- r ) '/ ' F ']'").
Reserved Notation "\bigcap_ ( m <= i < n | P ) F"
  (at level 41, F at level 41, m, i, n at level 50,
           format "'[' \bigcap_ ( m <= i < n | P ) '/ ' F ']'").
Reserved Notation "\bigcap_ ( m <= i < n ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \bigcap_ ( m <= i < n ) '/ ' F ']'").
Reserved Notation "\bigcap_ ( i | P ) F"
  (at level 41, F at level 41, i at level 50,
           format "'[' \bigcap_ ( i | P ) '/ ' F ']'").
Reserved Notation "\bigcap_ ( i : t | P ) F"
  (at level 41, F at level 41, i at level 50,
           format "'[' \bigcap_ ( i : t | P ) '/ ' F ']'").
Reserved Notation "\bigcap_ ( i : t ) F"
  (at level 41, F at level 41, i at level 50,
           format "'[' \bigcap_ ( i : t ) '/ ' F ']'").
Reserved Notation "\bigcap_ ( i < n | P ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \bigcap_ ( i < n | P ) '/ ' F ']'").
Reserved Notation "\bigcap_ ( i < n ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \bigcap_ ( i < n ) '/ ' F ']'").
Reserved Notation "\bigcap_ ( i 'in' A | P ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \bigcap_ ( i 'in' A | P ) '/ ' F ']'").
Reserved Notation "\bigcap_ ( i 'in' A ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \bigcap_ ( i 'in' A ) '/ ' F ']'").

Module Monoid.

Section Definitions.
Variables (T : Type) (idm : T).

Structure law := Law {
  operator : T -> T -> T;
  _ : associative operator;
  _ : left_id idm operator;
  _ : right_id idm operator
}.
Local Coercion operator : law >-> Funclass.

Structure com_law := ComLaw {
   com_operator : law;
   _ : commutative com_operator
}.
Local Coercion com_operator : com_law >-> law.

Structure mul_law := MulLaw {
  mul_operator : T -> T -> T;
  _ : left_zero idm mul_operator;
  _ : right_zero idm mul_operator
}.
Local Coercion mul_operator : mul_law >-> Funclass.

Structure add_law (mul : T -> T -> T) := AddLaw {
  add_operator : com_law;
  _ : left_distributive mul add_operator;
  _ : right_distributive mul add_operator
}.
Local Coercion add_operator : add_law >-> com_law.

Let op_id (op1 op2 : T -> T -> T) := phant_id op1 op2.

Definition clone_law op :=
  fun (opL : law) & op_id opL op =>
  fun opmA op1m opm1 (opL' := @Law op opmA op1m opm1)
    & phant_id opL' opL => opL'.

Definition clone_com_law op :=
  fun (opL : law) (opC : com_law) & op_id opL op & op_id opC op =>
  fun opmC (opC' := @ComLaw opL opmC) & phant_id opC' opC => opC'.

Definition clone_mul_law op :=
  fun (opM : mul_law) & op_id opM op =>
  fun op0m opm0 (opM' := @MulLaw op op0m opm0) & phant_id opM' opM => opM'.

Definition clone_add_law mop aop :=
  fun (opC : com_law) (opA : add_law mop) & op_id opC aop & op_id opA aop =>
  fun mopDm mopmD (opA' := @AddLaw mop opC mopDm mopmD)
    & phant_id opA' opA => opA'.

End Definitions.

Module Import Exports.
Coercion operator : law >-> Funclass.
Coercion com_operator : com_law >-> law.
Coercion mul_operator : mul_law >-> Funclass.
Coercion add_operator : add_law >-> com_law.
Notation "[ 'law' 'of' f ]" := (@clone_law _ _ f _ id _ _ _ id)
  (at level 0, format"[ 'law' 'of' f ]") : form_scope.
Notation "[ 'com_law' 'of' f ]" := (@clone_com_law _ _ f _ _ id id _ id)
  (at level 0, format "[ 'com_law' 'of' f ]") : form_scope.
Notation "[ 'mul_law' 'of' f ]" := (@clone_mul_law _ _ f _ id _ _ id)
  (at level 0, format"[ 'mul_law' 'of' f ]") : form_scope.
Notation "[ 'add_law' m 'of' a ]" := (@clone_add_law _ _ m a _ _ id id _ _ id)
  (at level 0, format "[ 'add_law' m 'of' a ]") : form_scope.
End Exports.

Section CommutativeAxioms.

Variable (T : Type) (zero one : T) (mul add : T -> T -> T) (inv : T -> T).
Hypothesis mulC : commutative mul.

Lemma mulC_id : left_id one mul -> right_id one mul.
Proof. by move=> mul1x x; rewrite mulC. Qed.

Lemma mulC_zero : left_zero zero mul -> right_zero zero mul.
Proof. by move=> mul0x x; rewrite mulC. Qed.

Lemma mulC_dist : left_distributive mul add -> right_distributive mul add.
Proof. by move=> mul_addl x y z; rewrite !(mulC x). Qed.

End CommutativeAxioms.

Module Theory.

Section Theory.
Variables (T : Type) (idm : T).

Section Plain.
Variable mul : law idm.
Lemma mul1m : left_id idm mul. Proof. by case mul. Qed.
Lemma mulm1 : right_id idm mul. Proof. by case mul. Qed.
Lemma mulmA : associative mul. Proof. by case mul. Qed.
Lemma iteropE n x : iterop n mul x idm = iter n (mul x) idm.
Proof. by case: n => // n; rewrite iterSr mulm1 iteropS. Qed.
End Plain.

Section Commutative.
Variable mul : com_law idm.
Lemma mulmC : commutative mul. Proof. by case mul. Qed.
Lemma mulmCA : left_commutative mul.
Proof. by move=> x y z; rewrite !mulmA (mulmC x). Qed.
Lemma mulmAC : right_commutative mul.
Proof. by move=> x y z; rewrite -!mulmA (mulmC y). Qed.
Lemma mulmACA : interchange mul mul.
Proof. by move=> x y z t; rewrite -!mulmA (mulmCA y). Qed.
End Commutative.

Section Mul.
Variable mul : mul_law idm.
Lemma mul0m : left_zero idm mul. Proof. by case mul. Qed.
Lemma mulm0 : right_zero idm mul. Proof. by case mul. Qed.
End Mul.

Section Add.
Variables (mul : T -> T -> T) (add : add_law idm mul).
Lemma addmA : associative add. Proof. exact: mulmA. Qed.
Lemma addmC : commutative add. Proof. exact: mulmC. Qed.
Lemma addmCA : left_commutative add. Proof. exact: mulmCA. Qed.
Lemma addmAC : right_commutative add. Proof. exact: mulmAC. Qed.
Lemma add0m : left_id idm add. Proof. exact: mul1m. Qed.
Lemma addm0 : right_id idm add. Proof. exact: mulm1. Qed.
Lemma mulm_addl : left_distributive mul add. Proof. by case add. Qed.
Lemma mulm_addr : right_distributive mul add. Proof. by case add. Qed.
End Add.

Definition simpm := (mulm1, mulm0, mul1m, mul0m, mulmA).

End Theory.

End Theory.
Include Theory.

End Monoid.
Export Monoid.Exports.

Section PervasiveMonoids.

Import Monoid.

Canonical andb_monoid := Law andbA andTb andbT.
Canonical andb_comoid := ComLaw andbC.

Canonical andb_muloid := MulLaw andFb andbF.
Canonical orb_monoid := Law orbA orFb orbF.
Canonical orb_comoid := ComLaw orbC.
Canonical orb_muloid := MulLaw orTb orbT.
Canonical addb_monoid := Law addbA addFb addbF.
Canonical addb_comoid := ComLaw addbC.
Canonical orb_addoid := AddLaw andb_orl andb_orr.
Canonical andb_addoid := AddLaw orb_andl orb_andr.
Canonical addb_addoid := AddLaw andb_addl andb_addr.

Canonical addn_monoid := Law addnA add0n addn0.
Canonical addn_comoid := ComLaw addnC.
Canonical muln_monoid := Law mulnA mul1n muln1.
Canonical muln_comoid := ComLaw mulnC.
Canonical muln_muloid := MulLaw mul0n muln0.
Canonical addn_addoid := AddLaw mulnDl mulnDr.

Canonical maxn_monoid := Law maxnA max0n maxn0.
Canonical maxn_comoid := ComLaw maxnC.
Canonical maxn_addoid := AddLaw maxn_mull maxn_mulr.

Canonical gcdn_monoid := Law gcdnA gcd0n gcdn0.
Canonical gcdn_comoid := ComLaw gcdnC.
Canonical gcdnDoid := AddLaw muln_gcdl muln_gcdr.

Canonical lcmn_monoid := Law lcmnA lcm1n lcmn1.
Canonical lcmn_comoid := ComLaw lcmnC.
Canonical lcmn_addoid := AddLaw muln_lcml muln_lcmr.

Canonical cat_monoid T := Law (@catA T) (@cat0s T) (@cats0 T).

End PervasiveMonoids.


Delimit Scope big_scope with BIG.
Open Scope big_scope.

CoInductive bigbody R I := BigBody of I & (R -> R -> R) & bool & R.

Definition applybig {R I} (body : bigbody R I) x :=
  let: BigBody _ op b v := body in if b then op v x else x.

Definition reducebig R I idx r (body : I -> bigbody R I) :=
  foldr (applybig \o body) idx r.

Module Type BigOpSig.
Parameter bigop : forall R I, R -> seq I -> (I -> bigbody R I) -> R.
Axiom bigopE : bigop = reducebig.
End BigOpSig.

Module BigOp : BigOpSig.
Definition bigop := reducebig.
Lemma bigopE : bigop = reducebig. Proof. by []. Qed.
End BigOp.

Notation bigop := BigOp.bigop (only parsing).
Canonical bigop_unlock := Unlockable BigOp.bigopE.

Definition index_iota m n := iota m (n - m).

Definition index_enum (T : finType) := Finite.enum T.

Lemma mem_index_iota m n i : i \in index_iota m n = (m <= i < n).
Proof.
rewrite mem_iota; case le_m_i: (m <= i) => //=.
by rewrite -leq_subLR subSn // -subn_gt0 -subnDA subnKC // subn_gt0.
Qed.

Lemma mem_index_enum T i : i \in index_enum T.
Proof. by rewrite -[index_enum T]enumT mem_enum. Qed.
Hint Resolve mem_index_enum.

Lemma filter_index_enum T P : filter P (index_enum T) = enum P.
Proof. by []. Qed.

Notation "\big [ op / idx ]_ ( i <- r | P ) F" :=
  (bigop idx r (fun i => BigBody i op P%B F)) : big_scope.
Notation "\big [ op / idx ]_ ( i <- r ) F" :=
  (bigop idx r (fun i => BigBody i op true F)) : big_scope.
Notation "\big [ op / idx ]_ ( m <= i < n | P ) F" :=
  (bigop idx (index_iota m n) (fun i : nat => BigBody i op P%B F))
     : big_scope.
Notation "\big [ op / idx ]_ ( m <= i < n ) F" :=
  (bigop idx (index_iota m n) (fun i : nat => BigBody i op true F))
     : big_scope.
Notation "\big [ op / idx ]_ ( i | P ) F" :=
  (bigop idx (index_enum _) (fun i => BigBody i op P%B F)) : big_scope.
Notation "\big [ op / idx ]_ i F" :=
  (bigop idx (index_enum _) (fun i => BigBody i op true F)) : big_scope.
Notation "\big [ op / idx ]_ ( i : t | P ) F" :=
  (bigop idx (index_enum _) (fun i : t => BigBody i op P%B F))
     (only parsing) : big_scope.
Notation "\big [ op / idx ]_ ( i : t ) F" :=
  (bigop idx (index_enum _) (fun i : t => BigBody i op true F))
     (only parsing) : big_scope.
Notation "\big [ op / idx ]_ ( i < n | P ) F" :=
  (\big[op/idx]_(i : ordinal n | P%B) F) : big_scope.
Notation "\big [ op / idx ]_ ( i < n ) F" :=
  (\big[op/idx]_(i : ordinal n) F) : big_scope.
Notation "\big [ op / idx ]_ ( i 'in' A | P ) F" :=
  (\big[op/idx]_(i | (i \in A) && P) F) : big_scope.
Notation "\big [ op / idx ]_ ( i 'in' A ) F" :=
  (\big[op/idx]_(i | i \in A) F) : big_scope.

Notation BIG_F := (F in \big[_/_]_(i <- _ | _) F i)%pattern.
Notation BIG_P := (P in \big[_/_]_(i <- _ | P i) _)%pattern.

Local Notation "+%N" := addn (at level 0, only parsing).
Notation "\sum_ ( i <- r | P ) F" :=
  (\big[+%N/0%N]_(i <- r | P%B) F%N) : nat_scope.
Notation "\sum_ ( i <- r ) F" :=
  (\big[+%N/0%N]_(i <- r) F%N) : nat_scope.
Notation "\sum_ ( m <= i < n | P ) F" :=
  (\big[+%N/0%N]_(m <= i < n | P%B) F%N) : nat_scope.
Notation "\sum_ ( m <= i < n ) F" :=
  (\big[+%N/0%N]_(m <= i < n) F%N) : nat_scope.
Notation "\sum_ ( i | P ) F" :=
  (\big[+%N/0%N]_(i | P%B) F%N) : nat_scope.
Notation "\sum_ i F" :=
  (\big[+%N/0%N]_i F%N) : nat_scope.
Notation "\sum_ ( i : t | P ) F" :=
  (\big[+%N/0%N]_(i : t | P%B) F%N) (only parsing) : nat_scope.
Notation "\sum_ ( i : t ) F" :=
  (\big[+%N/0%N]_(i : t) F%N) (only parsing) : nat_scope.
Notation "\sum_ ( i < n | P ) F" :=
  (\big[+%N/0%N]_(i < n | P%B) F%N) : nat_scope.
Notation "\sum_ ( i < n ) F" :=
  (\big[+%N/0%N]_(i < n) F%N) : nat_scope.
Notation "\sum_ ( i 'in' A | P ) F" :=
  (\big[+%N/0%N]_(i in A | P%B) F%N) : nat_scope.
Notation "\sum_ ( i 'in' A ) F" :=
  (\big[+%N/0%N]_(i in A) F%N) : nat_scope.

Local Notation "*%N" := muln (at level 0, only parsing).
Notation "\prod_ ( i <- r | P ) F" :=
  (\big[*%N/1%N]_(i <- r | P%B) F%N) : nat_scope.
Notation "\prod_ ( i <- r ) F" :=
  (\big[*%N/1%N]_(i <- r) F%N) : nat_scope.
Notation "\prod_ ( m <= i < n | P ) F" :=
  (\big[*%N/1%N]_(m <= i < n | P%B) F%N) : nat_scope.
Notation "\prod_ ( m <= i < n ) F" :=
  (\big[*%N/1%N]_(m <= i < n) F%N) : nat_scope.
Notation "\prod_ ( i | P ) F" :=
  (\big[*%N/1%N]_(i | P%B) F%N) : nat_scope.
Notation "\prod_ i F" :=
  (\big[*%N/1%N]_i F%N) : nat_scope.
Notation "\prod_ ( i : t | P ) F" :=
  (\big[*%N/1%N]_(i : t | P%B) F%N) (only parsing) : nat_scope.
Notation "\prod_ ( i : t ) F" :=
  (\big[*%N/1%N]_(i : t) F%N) (only parsing) : nat_scope.
Notation "\prod_ ( i < n | P ) F" :=
  (\big[*%N/1%N]_(i < n | P%B) F%N) : nat_scope.
Notation "\prod_ ( i < n ) F" :=
  (\big[*%N/1%N]_(i < n) F%N) : nat_scope.
Notation "\prod_ ( i 'in' A | P ) F" :=
  (\big[*%N/1%N]_(i in A | P%B) F%N) : nat_scope.
Notation "\prod_ ( i 'in' A ) F" :=
  (\big[*%N/1%N]_(i in A) F%N) : nat_scope.

Notation "\max_ ( i <- r | P ) F" :=
  (\big[maxn/0%N]_(i <- r | P%B) F%N) : nat_scope.
Notation "\max_ ( i <- r ) F" :=
  (\big[maxn/0%N]_(i <- r) F%N) : nat_scope.
Notation "\max_ ( i | P ) F" :=
  (\big[maxn/0%N]_(i | P%B) F%N) : nat_scope.
Notation "\max_ i F" :=
  (\big[maxn/0%N]_i F%N) : nat_scope.
Notation "\max_ ( i : I | P ) F" :=
  (\big[maxn/0%N]_(i : I | P%B) F%N) (only parsing) : nat_scope.
Notation "\max_ ( i : I ) F" :=
  (\big[maxn/0%N]_(i : I) F%N) (only parsing) : nat_scope.
Notation "\max_ ( m <= i < n | P ) F" :=
 (\big[maxn/0%N]_(m <= i < n | P%B) F%N) : nat_scope.
Notation "\max_ ( m <= i < n ) F" :=
 (\big[maxn/0%N]_(m <= i < n) F%N) : nat_scope.
Notation "\max_ ( i < n | P ) F" :=
 (\big[maxn/0%N]_(i < n | P%B) F%N) : nat_scope.
Notation "\max_ ( i < n ) F" :=
 (\big[maxn/0%N]_(i < n) F%N) : nat_scope.
Notation "\max_ ( i 'in' A | P ) F" :=
 (\big[maxn/0%N]_(i in A | P%B) F%N) : nat_scope.
Notation "\max_ ( i 'in' A ) F" :=
 (\big[maxn/0%N]_(i in A) F%N) : nat_scope.

Lemma big_load R (K K' : R -> Type) idx op I r (P : pred I) F :
  K (\big[op/idx]_(i <- r | P i) F i) * K' (\big[op/idx]_(i <- r | P i) F i)
  -> K' (\big[op/idx]_(i <- r | P i) F i).
Proof. by case. Qed.

Arguments big_load [R] K [K'] idx op [I].

Section Elim3.

Variables (R1 R2 R3 : Type) (K : R1 -> R2 -> R3 -> Type).
Variables (id1 : R1) (op1 : R1 -> R1 -> R1).
Variables (id2 : R2) (op2 : R2 -> R2 -> R2).
Variables (id3 : R3) (op3 : R3 -> R3 -> R3).

Hypothesis Kid : K id1 id2 id3.

Lemma big_rec3 I r (P : pred I) F1 F2 F3
    (K_F : forall i y1 y2 y3, P i -> K y1 y2 y3 ->
       K (op1 (F1 i) y1) (op2 (F2 i) y2) (op3 (F3 i) y3)) :
  K (\big[op1/id1]_(i <- r | P i) F1 i)
    (\big[op2/id2]_(i <- r | P i) F2 i)
    (\big[op3/id3]_(i <- r | P i) F3 i).
Proof. by rewrite unlock; elim: r => //= i r; case: ifP => //; apply: K_F. Qed.

Hypothesis Kop : forall x1 x2 x3 y1 y2 y3,
  K x1 x2 x3 -> K y1 y2 y3-> K (op1 x1 y1) (op2 x2 y2) (op3 x3 y3).
Lemma big_ind3 I r (P : pred I) F1 F2 F3
   (K_F : forall i, P i -> K (F1 i) (F2 i) (F3 i)) :
  K (\big[op1/id1]_(i <- r | P i) F1 i)
    (\big[op2/id2]_(i <- r | P i) F2 i)
    (\big[op3/id3]_(i <- r | P i) F3 i).
Proof. by apply: big_rec3 => i x1 x2 x3 /K_F; apply: Kop. Qed.

End Elim3.

Arguments big_rec3 [R1 R2 R3] K [id1 op1 id2 op2 id3 op3] _ [I r P F1 F2 F3].
Arguments big_ind3 [R1 R2 R3] K [id1 op1 id2 op2 id3 op3] _ _ [I r P F1 F2 F3].

Section Elim2.

Variables (R1 R2 : Type) (K : R1 -> R2 -> Type) (f : R2 -> R1).
Variables (id1 : R1) (op1 : R1 -> R1 -> R1).
Variables (id2 : R2) (op2 : R2 -> R2 -> R2).

Hypothesis Kid : K id1 id2.

Lemma big_rec2 I r (P : pred I) F1 F2
    (K_F : forall i y1 y2, P i -> K y1 y2 ->
       K (op1 (F1 i) y1) (op2 (F2 i) y2)) :
  K (\big[op1/id1]_(i <- r | P i) F1 i) (\big[op2/id2]_(i <- r | P i) F2 i).
Proof. by rewrite unlock; elim: r => //= i r; case: ifP => //; apply: K_F. Qed.

Hypothesis Kop : forall x1 x2 y1 y2,
  K x1 x2 -> K y1 y2 -> K (op1 x1 y1) (op2 x2 y2).
Lemma big_ind2 I r (P : pred I) F1 F2 (K_F : forall i, P i -> K (F1 i) (F2 i)) :
  K (\big[op1/id1]_(i <- r | P i) F1 i) (\big[op2/id2]_(i <- r | P i) F2 i).
Proof. by apply: big_rec2 => i x1 x2 /K_F; apply: Kop. Qed.

Hypotheses (f_op : {morph f : x y / op2 x y >-> op1 x y}) (f_id : f id2 = id1).
Lemma big_morph I r (P : pred I) F :
  f (\big[op2/id2]_(i <- r | P i) F i) = \big[op1/id1]_(i <- r | P i) f (F i).
Proof. by rewrite unlock; elim: r => //= i r <-; rewrite -f_op -fun_if. Qed.

End Elim2.

Arguments big_rec2 [R1 R2] K [id1 op1 id2 op2] _ [I r P F1 F2].
Arguments big_ind2 [R1 R2] K [id1 op1 id2 op2] _ _ [I r P F1 F2].
Arguments big_morph [R1 R2] f [id1 op1 id2 op2] _ _ [I].

Section Elim1.

Variables (R : Type) (K : R -> Type) (f : R -> R).
Variables (idx : R) (op op' : R -> R -> R).

Hypothesis Kid : K idx.

Lemma big_rec I r (P : pred I) F
    (Kop : forall i x, P i -> K x -> K (op (F i) x)) :
  K (\big[op/idx]_(i <- r | P i) F i).
Proof. by rewrite unlock; elim: r => //= i r; case: ifP => //; apply: Kop. Qed.

Hypothesis Kop : forall x y, K x -> K y -> K (op x y).
Lemma big_ind I r (P : pred I) F (K_F : forall i, P i -> K (F i)) :
  K (\big[op/idx]_(i <- r | P i) F i).
Proof. by apply: big_rec => // i x /K_F /Kop; apply. Qed.

Hypothesis Kop' : forall x y, K x -> K y -> op x y = op' x y.
Lemma eq_big_op I r (P : pred I) F (K_F : forall i, P i -> K (F i)) :
  \big[op/idx]_(i <- r | P i) F i = \big[op'/idx]_(i <- r | P i) F i.
Proof.
by elim/(big_load K): _; elim/big_rec2: _ => // i _ y Pi [Ky <-]; auto.
Qed.

Hypotheses (fM : {morph f : x y / op x y}) (f_id : f idx = idx).
Lemma big_endo I r (P : pred I) F :
  f (\big[op/idx]_(i <- r | P i) F i) = \big[op/idx]_(i <- r | P i) f (F i).
Proof. exact: big_morph. Qed.

End Elim1.

Arguments big_rec [R] K [idx op] _ [I r P F].
Arguments big_ind [R] K [idx op] _ _ [I r P F].
Arguments eq_big_op [R] K [idx op] op' _ _ _ [I].
Arguments big_endo [R] f [idx op] _ _ [I].

Section Extensionality.

Variables (R : Type) (idx : R) (op : R -> R -> R).

Section SeqExtension.

Variable I : Type.

Lemma big_filter r (P : pred I) F :
  \big[op/idx]_(i <- filter P r) F i = \big[op/idx]_(i <- r | P i) F i.
Proof. by rewrite unlock; elim: r => //= i r <-; case (P i). Qed.

Lemma big_filter_cond r (P1 P2 : pred I) F :
  \big[op/idx]_(i <- filter P1 r | P2 i) F i
     = \big[op/idx]_(i <- r | P1 i && P2 i) F i.
Proof.
rewrite -big_filter -(big_filter r); congr bigop.
by rewrite -filter_predI; apply: eq_filter => i; apply: andbC.
Qed.

Lemma eq_bigl r (P1 P2 : pred I) F :
    P1 =1 P2 ->
  \big[op/idx]_(i <- r | P1 i) F i = \big[op/idx]_(i <- r | P2 i) F i.
Proof. by move=> eqP12; rewrite -!(big_filter r) (eq_filter eqP12). Qed.

Lemma big_andbC r (P Q : pred I) F :
  \big[op/idx]_(i <- r | P i && Q i) F i
    = \big[op/idx]_(i <- r | Q i && P i) F i.
Proof. by apply: eq_bigl => i; apply: andbC. Qed.

Lemma eq_bigr r (P : pred I) F1 F2 : (forall i, P i -> F1 i = F2 i) ->
  \big[op/idx]_(i <- r | P i) F1 i = \big[op/idx]_(i <- r | P i) F2 i.
Proof. by move=> eqF12; elim/big_rec2: _ => // i x _ /eqF12-> ->. Qed.

Lemma eq_big r (P1 P2 : pred I) F1 F2 :
    P1 =1 P2 -> (forall i, P1 i -> F1 i = F2 i) ->
  \big[op/idx]_(i <- r | P1 i) F1 i = \big[op/idx]_(i <- r | P2 i) F2 i.
Proof. by move/eq_bigl <-; move/eq_bigr->. Qed.

Lemma congr_big r1 r2 (P1 P2 : pred I) F1 F2 :
    r1 = r2 -> P1 =1 P2 -> (forall i, P1 i -> F1 i = F2 i) ->
  \big[op/idx]_(i <- r1 | P1 i) F1 i = \big[op/idx]_(i <- r2 | P2 i) F2 i.
Proof. by move=> <-{r2}; apply: eq_big. Qed.

Lemma big_nil (P : pred I) F : \big[op/idx]_(i <- [::] | P i) F i = idx.
Proof. by rewrite unlock. Qed.

Lemma big_cons i r (P : pred I) F :
    let x := \big[op/idx]_(j <- r | P j) F j in
  \big[op/idx]_(j <- i :: r | P j) F j = if P i then op (F i) x else x.
Proof. by rewrite unlock. Qed.

Lemma big_map J (h : J -> I) r (P : pred I) F :
  \big[op/idx]_(i <- map h r | P i) F i
     = \big[op/idx]_(j <- r | P (h j)) F (h j).
Proof. by rewrite unlock; elim: r => //= j r ->. Qed.

Lemma big_nth x0 r (P : pred I) F :
  \big[op/idx]_(i <- r | P i) F i
     = \big[op/idx]_(0 <= i < size r | P (nth x0 r i)) (F (nth x0 r i)).
Proof. by rewrite -{1}(mkseq_nth x0 r) big_map /index_iota subn0. Qed.

Lemma big_hasC r (P : pred I) F :
  ~~ has P r -> \big[op/idx]_(i <- r | P i) F i = idx.
Proof.
by rewrite -big_filter has_count -size_filter -eqn0Ngt unlock => /nilP->.
Qed.

Lemma big_pred0_eq (r : seq I) F : \big[op/idx]_(i <- r | false) F i = idx.
Proof. by rewrite big_hasC // has_pred0. Qed.

Lemma big_pred0 r (P : pred I) F :
  P =1 xpred0 -> \big[op/idx]_(i <- r | P i) F i = idx.
Proof. by move/eq_bigl->; apply: big_pred0_eq. Qed.

Lemma big_cat_nested r1 r2 (P : pred I) F :
    let x := \big[op/idx]_(i <- r2 | P i) F i in
  \big[op/idx]_(i <- r1 ++ r2 | P i) F i = \big[op/x]_(i <- r1 | P i) F i.
Proof. by rewrite unlock /reducebig foldr_cat. Qed.

Lemma big_catl r1 r2 (P : pred I) F :
    ~~ has P r2 ->
  \big[op/idx]_(i <- r1 ++ r2 | P i) F i = \big[op/idx]_(i <- r1 | P i) F i.
Proof. by rewrite big_cat_nested => /big_hasC->. Qed.

Lemma big_catr r1 r2 (P : pred I) F :
     ~~ has P r1 ->
  \big[op/idx]_(i <- r1 ++ r2 | P i) F i = \big[op/idx]_(i <- r2 | P i) F i.
Proof.
rewrite -big_filter -(big_filter r2) filter_cat.
by rewrite has_count -size_filter; case: filter.
Qed.

Lemma big_const_seq r (P : pred I) x :
  \big[op/idx]_(i <- r | P i) x = iter (count P r) (op x) idx.
Proof. by rewrite unlock; elim: r => //= i r ->; case: (P i). Qed.

End SeqExtension.

Lemma big_seq_cond (I : eqType) r (P : pred I) F :
  \big[op/idx]_(i <- r | P i) F i
    = \big[op/idx]_(i <- r | (i \in r) && P i) F i.
Proof.
by rewrite -!(big_filter r); congr bigop; apply: eq_in_filter => i ->.
Qed.

Lemma big_seq (I : eqType) (r : seq I) F :
  \big[op/idx]_(i <- r) F i = \big[op/idx]_(i <- r | i \in r) F i.
Proof. by rewrite big_seq_cond big_andbC. Qed.

Lemma eq_big_seq (I : eqType) (r : seq I) F1 F2 :
  {in r, F1 =1 F2} -> \big[op/idx]_(i <- r) F1 i = \big[op/idx]_(i <- r) F2 i.
Proof. by move=> eqF; rewrite !big_seq (eq_bigr _ eqF). Qed.

Lemma big_nat_cond m n (P : pred nat) F :
  \big[op/idx]_(m <= i < n | P i) F i
    = \big[op/idx]_(m <= i < n | (m <= i < n) && P i) F i.
Proof.
by rewrite big_seq_cond; apply: eq_bigl => i; rewrite mem_index_iota.
Qed.

Lemma big_nat m n F :
  \big[op/idx]_(m <= i < n) F i = \big[op/idx]_(m <= i < n | m <= i < n) F i.
Proof. by rewrite big_nat_cond big_andbC. Qed.

Lemma congr_big_nat m1 n1 m2 n2 P1 P2 F1 F2 :
    m1 = m2 -> n1 = n2 ->
    (forall i, m1 <= i < n2 -> P1 i = P2 i) ->
    (forall i, P1 i && (m1 <= i < n2) -> F1 i = F2 i) ->
  \big[op/idx]_(m1 <= i < n1 | P1 i) F1 i
    = \big[op/idx]_(m2 <= i < n2 | P2 i) F2 i.
Proof.
move=> <- <- eqP12 eqF12; rewrite big_seq_cond (big_seq_cond _ P2).
apply: eq_big => i; rewrite ?inE /= !mem_index_iota.
  by apply: andb_id2l; apply: eqP12.
by rewrite andbC; apply: eqF12.
Qed.

Lemma eq_big_nat m n F1 F2 :
    (forall i, m <= i < n -> F1 i = F2 i) ->
  \big[op/idx]_(m <= i < n) F1 i = \big[op/idx]_(m <= i < n) F2 i.
Proof. by move=> eqF; apply: congr_big_nat. Qed.

Lemma big_geq m n (P : pred nat) F :
  m >= n -> \big[op/idx]_(m <= i < n | P i) F i = idx.
Proof. by move=> ge_m_n; rewrite /index_iota (eqnP ge_m_n) big_nil. Qed.

Lemma big_ltn_cond m n (P : pred nat) F :
    m < n -> let x := \big[op/idx]_(m.+1 <= i < n | P i) F i in
  \big[op/idx]_(m <= i < n | P i) F i = if P m then op (F m) x else x.
Proof.
by case: n => [//|n] le_m_n; rewrite /index_iota subSn // big_cons.
Qed.

Lemma big_ltn m n F :
     m < n ->
  \big[op/idx]_(m <= i < n) F i = op (F m) (\big[op/idx]_(m.+1 <= i < n) F i).
Proof. by move=> lt_mn; apply: big_ltn_cond. Qed.

Lemma big_addn m n a (P : pred nat) F :
  \big[op/idx]_(m + a <= i < n | P i) F i =
     \big[op/idx]_(m <= i < n - a | P (i + a)) F (i + a).
Proof.
rewrite /index_iota -subnDA addnC iota_addl big_map.
by apply: eq_big => ? *; rewrite addnC.
Qed.

Lemma big_add1 m n (P : pred nat) F :
  \big[op/idx]_(m.+1 <= i < n | P i) F i =
     \big[op/idx]_(m <= i < n.-1 | P (i.+1)) F (i.+1).
Proof.
by rewrite -addn1 big_addn subn1; apply: eq_big => ? *; rewrite addn1.
Qed.

Lemma big_nat_recl n m F : m <= n ->
  \big[op/idx]_(m <= i < n.+1) F i =
     op (F m) (\big[op/idx]_(m <= i < n) F i.+1).
Proof. by move=> lemn; rewrite big_ltn // big_add1. Qed.

Lemma big_mkord n (P : pred nat) F :
  \big[op/idx]_(0 <= i < n | P i) F i = \big[op/idx]_(i < n | P i) F i.
Proof.
rewrite /index_iota subn0 -(big_map (@nat_of_ord n)).
by congr bigop; rewrite /index_enum unlock val_ord_enum.
Qed.

Lemma big_nat_widen m n1 n2 (P : pred nat) F :
     n1 <= n2 ->
  \big[op/idx]_(m <= i < n1 | P i) F i
      = \big[op/idx]_(m <= i < n2 | P i && (i < n1)) F i.
Proof.
move=> len12; symmetry; rewrite -big_filter filter_predI big_filter.
have [ltn_trans eq_by_mem] := (ltn_trans, eq_sorted_irr ltn_trans ltnn).
congr bigop; apply: eq_by_mem; rewrite ?sorted_filter ?iota_ltn_sorted // => i.
rewrite mem_filter !mem_index_iota andbCA andbA andb_idr => // /andP[_].
by move/leq_trans->.
Qed.

Lemma big_ord_widen_cond n1 n2 (P : pred nat) (F : nat -> R) :
     n1 <= n2 ->
  \big[op/idx]_(i < n1 | P i) F i
      = \big[op/idx]_(i < n2 | P i && (i < n1)) F i.
Proof. by move/big_nat_widen=> len12; rewrite -big_mkord len12 big_mkord. Qed.

Lemma big_ord_widen n1 n2 (F : nat -> R) :
    n1 <= n2 ->
  \big[op/idx]_(i < n1) F i = \big[op/idx]_(i < n2 | i < n1) F i.
Proof. by move=> le_n12; apply: (big_ord_widen_cond (predT)). Qed.

Lemma big_ord_widen_leq n1 n2 (P : pred 'I_(n1.+1)) F :
    n1 < n2 ->
  \big[op/idx]_(i < n1.+1 | P i) F i
      = \big[op/idx]_(i < n2 | P (inord i) && (i <= n1)) F (inord i).
Proof.
move=> len12; pose g G i := G (inord i : 'I_(n1.+1)).
rewrite -(big_ord_widen_cond (g _ P) (g _ F) len12) {}/g.
by apply: eq_big => i *; rewrite inord_val.
Qed.

Lemma big_ord0 P F : \big[op/idx]_(i < 0 | P i) F i = idx.
Proof. by rewrite big_pred0 => [|[]]. Qed.

Lemma big_tnth I r (P : pred I) F :
  let r_ := tnth (in_tuple r) in
  \big[op/idx]_(i <- r | P i) F i
     = \big[op/idx]_(i < size r | P (r_ i)) (F (r_ i)).
Proof.
case: r => /= [|x0 r]; first by rewrite big_nil big_ord0.
by rewrite (big_nth x0) big_mkord; apply: eq_big => i; rewrite (tnth_nth x0).
Qed.

Lemma big_index_uniq (I : eqType) (r : seq I) (E : 'I_(size r) -> R) :
    uniq r ->
  \big[op/idx]_i E i = \big[op/idx]_(x <- r) oapp E idx (insub (index x r)).
Proof.
move=> Ur; apply/esym; rewrite big_tnth; apply: eq_bigr => i _.
by rewrite index_uniq // valK.
Qed.

Lemma big_tuple I n (t : n.-tuple I) (P : pred I) F :
  \big[op/idx]_(i <- t | P i) F i
     = \big[op/idx]_(i < n | P (tnth t i)) F (tnth t i).
Proof. by rewrite big_tnth tvalK; case: _ / (esym _). Qed.

Lemma big_ord_narrow_cond n1 n2 (P : pred 'I_n2) F (le_n12 : n1 <= n2) :
    let w := widen_ord le_n12 in
  \big[op/idx]_(i < n2 | P i && (i < n1)) F i
    = \big[op/idx]_(i < n1 | P (w i)) F (w i).
Proof.
case: n1 => [|n1] /= in le_n12 *.
  by rewrite big_ord0 big_pred0 // => i; rewrite andbF.
rewrite (big_ord_widen_leq _ _ le_n12); apply: eq_big => i.
  by apply: andb_id2r => le_i_n1; congr P; apply: val_inj; rewrite /= inordK.
by case/andP=> _ le_i_n1; congr F; apply: val_inj; rewrite /= inordK.
Qed.

Lemma big_ord_narrow_cond_leq n1 n2 (P : pred _) F (le_n12 : n1 <= n2) :
    let w := @widen_ord n1.+1 n2.+1 le_n12 in
  \big[op/idx]_(i < n2.+1 | P i && (i <= n1)) F i
  = \big[op/idx]_(i < n1.+1 | P (w i)) F (w i).
Proof. exact: (@big_ord_narrow_cond n1.+1 n2.+1). Qed.

Lemma big_ord_narrow n1 n2 F (le_n12 : n1 <= n2) :
    let w := widen_ord le_n12 in
  \big[op/idx]_(i < n2 | i < n1) F i = \big[op/idx]_(i < n1) F (w i).
Proof. exact: (big_ord_narrow_cond (predT)). Qed.

Lemma big_ord_narrow_leq n1 n2 F (le_n12 : n1 <= n2) :
    let w := @widen_ord n1.+1 n2.+1 le_n12 in
  \big[op/idx]_(i < n2.+1 | i <= n1) F i = \big[op/idx]_(i < n1.+1) F (w i).
Proof. exact: (big_ord_narrow_cond_leq (predT)). Qed.

Lemma big_ord_recl n F :
  \big[op/idx]_(i < n.+1) F i =
     op (F ord0) (\big[op/idx]_(i < n) F (@lift n.+1 ord0 i)).
Proof.
pose G i := F (inord i); have eqFG i: F i = G i by rewrite /G inord_val.
rewrite (eq_bigr _ (fun i _ => eqFG i)) -(big_mkord _ (fun _ => _) G) eqFG.
rewrite big_ltn // big_add1 /= big_mkord; congr op.
by apply: eq_bigr => i _; rewrite eqFG.
Qed.

Lemma big_const (I : finType) (A : pred I) x :
  \big[op/idx]_(i in A) x = iter #|A| (op x) idx.
Proof. by rewrite big_const_seq -size_filter cardE. Qed.

Lemma big_const_nat m n x :
  \big[op/idx]_(m <= i < n) x = iter (n - m) (op x) idx.
Proof. by rewrite big_const_seq count_predT size_iota. Qed.

Lemma big_const_ord n x :
  \big[op/idx]_(i < n) x = iter n (op x) idx.
Proof. by rewrite big_const card_ord. Qed.

Lemma big_nseq_cond I n a (P : pred I) F :
  \big[op/idx]_(i <- nseq n a | P i) F i = if P a then iter n (op (F a)) idx else idx.
Proof. by rewrite unlock; elim: n => /= [|n ->]; case: (P a). Qed.

Lemma big_nseq I n a (F : I -> R):
  \big[op/idx]_(i <- nseq n a) F i = iter n (op (F a)) idx.
Proof. exact: big_nseq_cond. Qed.

End Extensionality.

Section MonoidProperties.

Import Monoid.Theory.

Variable R : Type.

Variable idx : R.
Local Notation "1" := idx.

Section Plain.

Variable op : Monoid.law 1.

Local Notation "*%M" := op (at level 0).
Local Notation "x * y" := (op x y).

Lemma eq_big_idx_seq idx' I r (P : pred I) F :
     right_id idx' *%M -> has P r ->
   \big[*%M/idx']_(i <- r | P i) F i =\big[*%M/1]_(i <- r | P i) F i.
Proof.
move=> op_idx'; rewrite -!(big_filter _ _ r) has_count -size_filter.
case/lastP: (filter P r) => {r}// r i _.
by rewrite -cats1 !(big_cat_nested, big_cons, big_nil) op_idx' mulm1.
Qed.

Lemma eq_big_idx idx' (I : finType) i0 (P : pred I) F :
     P i0 -> right_id idx' *%M ->
  \big[*%M/idx']_(i | P i) F i =\big[*%M/1]_(i | P i) F i.
Proof.
by move=> Pi0 op_idx'; apply: eq_big_idx_seq => //; apply/hasP; exists i0.
Qed.

Lemma big1_eq I r (P : pred I) : \big[*%M/1]_(i <- r | P i) 1 = 1.
Proof.
by rewrite big_const_seq; elim: (count _ _) => //= n ->; apply: mul1m.
Qed.

Lemma big1 I r (P : pred I) F :
  (forall i, P i -> F i = 1) -> \big[*%M/1]_(i <- r | P i) F i = 1.
Proof. by move/(eq_bigr _)->; apply: big1_eq. Qed.

Lemma big1_seq (I : eqType) r (P : pred I) F :
    (forall i, P i && (i \in r) -> F i = 1) ->
  \big[*%M/1]_(i <- r | P i) F i = 1.
Proof. by move=> eqF1; rewrite big_seq_cond big_andbC big1. Qed.

Lemma big_seq1 I (i : I) F : \big[*%M/1]_(j <- [:: i]) F j = F i.
Proof. by rewrite unlock /= mulm1. Qed.

Lemma big_mkcond I r (P : pred I) F :
  \big[*%M/1]_(i <- r | P i) F i =
     \big[*%M/1]_(i <- r) (if P i then F i else 1).
Proof. by rewrite unlock; elim: r => //= i r ->; case P; rewrite ?mul1m. Qed.

Lemma big_mkcondr I r (P Q : pred I) F :
  \big[*%M/1]_(i <- r | P i && Q i) F i =
     \big[*%M/1]_(i <- r | P i) (if Q i then F i else 1).
Proof. by rewrite -big_filter_cond big_mkcond big_filter. Qed.

Lemma big_mkcondl I r (P Q : pred I) F :
  \big[*%M/1]_(i <- r | P i && Q i) F i =
     \big[*%M/1]_(i <- r | Q i) (if P i then F i else 1).
Proof. by rewrite big_andbC big_mkcondr. Qed.

Lemma big_cat I r1 r2 (P : pred I) F :
  \big[*%M/1]_(i <- r1 ++ r2 | P i) F i =
     \big[*%M/1]_(i <- r1 | P i) F i * \big[*%M/1]_(i <- r2 | P i) F i.
Proof.
rewrite !(big_mkcond _ P) unlock.
by elim: r1 => /= [|i r1 ->]; rewrite (mul1m, mulmA).
Qed.

Lemma big_allpairs I1 I2 (r1 : seq I1) (r2 : seq I2) F :
  \big[*%M/1]_(i <- [seq (i1, i2) | i1 <- r1, i2 <- r2]) F i =
    \big[*%M/1]_(i1 <- r1) \big[op/idx]_(i2 <- r2) F (i1, i2).
Proof.
elim: r1 => [|i1 r1 IHr1]; first by rewrite !big_nil.
by rewrite big_cat IHr1 big_cons big_map.
Qed.

Lemma big_pred1_eq (I : finType) (i : I) F :
  \big[*%M/1]_(j | j == i) F j = F i.
Proof. by rewrite -big_filter filter_index_enum enum1 big_seq1. Qed.

Lemma big_pred1 (I : finType) i (P : pred I) F :
  P =1 pred1 i -> \big[*%M/1]_(j | P j) F j = F i.
Proof. by move/(eq_bigl _ _)->; apply: big_pred1_eq. Qed.

Lemma big_cat_nat n m p (P : pred nat) F : m <= n -> n <= p ->
  \big[*%M/1]_(m <= i < p | P i) F i =
   (\big[*%M/1]_(m <= i < n | P i) F i) * (\big[*%M/1]_(n <= i < p | P i) F i).
Proof.
move=> le_mn le_np; rewrite -big_cat -{2}(subnKC le_mn) -iota_add subnDA.
by rewrite subnKC // leq_sub.
Qed.

Lemma big_nat1 n F : \big[*%M/1]_(n <= i < n.+1) F i = F n.
Proof. by rewrite big_ltn // big_geq // mulm1. Qed.

Lemma big_nat_recr n m F : m <= n ->
  \big[*%M/1]_(m <= i < n.+1) F i = (\big[*%M/1]_(m <= i < n) F i) * F n.
Proof. by move=> lemn; rewrite (@big_cat_nat n) ?leqnSn // big_nat1. Qed.

Lemma big_ord_recr n F :
  \big[*%M/1]_(i < n.+1) F i =
     (\big[*%M/1]_(i < n) F (widen_ord (leqnSn n) i)) * F ord_max.
Proof.
transitivity (\big[*%M/1]_(0 <= i < n.+1) F (inord i)).
  by rewrite big_mkord; apply: eq_bigr=> i _; rewrite inord_val.
rewrite big_nat_recr // big_mkord; congr (_ * F _); last first.
  by apply: val_inj; rewrite /= inordK.
by apply: eq_bigr => [] i _; congr F; apply: ord_inj; rewrite inordK //= leqW.
Qed.

Lemma big_sumType (I1 I2 : finType) (P : pred (I1 + I2)) F :
  \big[*%M/1]_(i | P i) F i =
        (\big[*%M/1]_(i | P (inl _ i)) F (inl _ i))
      * (\big[*%M/1]_(i | P (inr _ i)) F (inr _ i)).
Proof.
by rewrite /index_enum {1}[@Finite.enum]unlock /= big_cat !big_map.
Qed.

Lemma big_split_ord m n (P : pred 'I_(m + n)) F :
  \big[*%M/1]_(i | P i) F i =
        (\big[*%M/1]_(i | P (lshift n i)) F (lshift n i))
      * (\big[*%M/1]_(i | P (rshift m i)) F (rshift m i)).
Proof.
rewrite -(big_map _ _ (lshift n) _ P F) -(big_map _ _ (@rshift m _) _ P F).
rewrite -big_cat; congr bigop; apply: (inj_map val_inj).
rewrite /index_enum -!enumT val_enum_ord map_cat -map_comp val_enum_ord.
rewrite -map_comp (map_comp (addn m)) val_enum_ord.
by rewrite -iota_addl addn0 iota_add.
Qed.

Lemma big_flatten I rr (P : pred I) F :
  \big[*%M/1]_(i <- flatten rr | P i) F i
    = \big[*%M/1]_(r <- rr) \big[*%M/1]_(i <- r | P i) F i.
Proof.
by elim: rr => [|r rr IHrr]; rewrite ?big_nil //= big_cat big_cons -IHrr.
Qed.

End Plain.

Section Abelian.

Variable op : Monoid.com_law 1.

Local Notation "'*%M'" := op (at level 0).
Local Notation "x * y" := (op x y).

Lemma eq_big_perm (I : eqType) r1 r2 (P : pred I) F :
    perm_eq r1 r2 ->
  \big[*%M/1]_(i <- r1 | P i) F i = \big[*%M/1]_(i <- r2 | P i) F i.
Proof.
move/perm_eqP; rewrite !(big_mkcond _ _ P).
elim: r1 r2 => [|i r1 IHr1] r2 eq_r12.
  by case: r2 eq_r12 => // i r2; move/(_ (pred1 i)); rewrite /= eqxx.
have r2i: i \in r2 by rewrite -has_pred1 has_count -eq_r12 /= eqxx.
case/splitPr: r2 / r2i => [r3 r4] in eq_r12 *; rewrite big_cat /= !big_cons.
rewrite mulmCA; congr (_ * _); rewrite -big_cat; apply: IHr1 => a.
by move/(_ a): eq_r12; rewrite !count_cat /= addnCA; apply: addnI.
Qed.

Lemma big_uniq (I : finType) (r : seq I) F :
  uniq r -> \big[*%M/1]_(i <- r) F i = \big[*%M/1]_(i in r) F i.
Proof.
move=> uniq_r; rewrite -(big_filter _ _ _ (mem r)); apply: eq_big_perm.
by rewrite filter_index_enum uniq_perm_eq ?enum_uniq // => i; rewrite mem_enum.
Qed.

Lemma big_rem (I : eqType) r x (P : pred I) F :
    x \in r ->
  \big[*%M/1]_(y <- r | P y) F y
    = (if P x then F x else 1) * \big[*%M/1]_(y <- rem x r | P y) F y.
Proof.
by move/perm_to_rem/(eq_big_perm _)->; rewrite !(big_mkcond _ _ P) big_cons.
Qed.

Lemma big_undup (I : eqType) (r : seq I) (P : pred I) F :
    idempotent *%M ->
  \big[*%M/1]_(i <- undup r | P i) F i = \big[*%M/1]_(i <- r | P i) F i.
Proof.
move=> idM; rewrite -!(big_filter _ _ _ P) filter_undup.
elim: {P r}(filter P r) => //= i r IHr.
case: ifP => [r_i | _]; rewrite !big_cons {}IHr //.
by rewrite (big_rem _ _ r_i) mulmA idM.
Qed.

Lemma eq_big_idem (I : eqType) (r1 r2 : seq I) (P : pred I) F :
    idempotent *%M -> r1 =i r2 ->
  \big[*%M/1]_(i <- r1 | P i) F i = \big[*%M/1]_(i <- r2 | P i) F i.
Proof.
move=> idM eq_r; rewrite -big_undup // -(big_undup r2) //; apply/eq_big_perm.
by rewrite uniq_perm_eq ?undup_uniq // => i; rewrite !mem_undup eq_r.
Qed.

Lemma big_undup_iterop_count (I : eqType) (r : seq I) (P : pred I) F :
  \big[*%M/1]_(i <- undup r | P i) iterop (count_mem i r) *%M (F i) 1
    = \big[*%M/1]_(i <- r | P i) F i.
Proof.
rewrite -[RHS](eq_big_perm _ F (perm_undup_count _)) big_flatten big_map.
by rewrite big_mkcond; apply: eq_bigr => i _; rewrite big_nseq_cond iteropE.
Qed.

Lemma big_split I r (P : pred I) F1 F2 :
  \big[*%M/1]_(i <- r | P i) (F1 i * F2 i) =
    \big[*%M/1]_(i <- r | P i) F1 i * \big[*%M/1]_(i <- r | P i) F2 i.
Proof.
by elim/big_rec3: _ => [|i x y _ _ ->]; rewrite ?mulm1 // mulmCA -!mulmA mulmCA.
Qed.

Lemma bigID I r (a P : pred I) F :
  \big[*%M/1]_(i <- r | P i) F i =
    \big[*%M/1]_(i <- r | P i && a i) F i *
    \big[*%M/1]_(i <- r | P i && ~~ a i) F i.
Proof.
rewrite !(big_mkcond _ _ _ F) -big_split.
by apply: eq_bigr => i; case: (a i); rewrite !simpm.
Qed.
Arguments bigID [I r].

Lemma bigU (I : finType) (A B : pred I) F :
    [disjoint A & B] ->
  \big[*%M/1]_(i in [predU A & B]) F i =
    (\big[*%M/1]_(i in A) F i) * (\big[*%M/1]_(i in B) F i).
Proof.
move=> dAB; rewrite (bigID (mem A)).
congr (_ * _); apply: eq_bigl => i; first by rewrite orbK.
by have:= pred0P dAB i; rewrite andbC /= !inE; case: (i \in A).
Qed.

Lemma bigD1 (I : finType) j (P : pred I) F :
  P j -> \big[*%M/1]_(i | P i) F i
    = F j * \big[*%M/1]_(i | P i && (i != j)) F i.
Proof.
move=> Pj; rewrite (bigID (pred1 j)); congr (_ * _).
by apply: big_pred1 => i; rewrite /= andbC; case: eqP => // ->.
Qed.
Arguments bigD1 [I] j [P F].

Lemma bigD1_seq (I : eqType) (r : seq I) j F :
    j \in r -> uniq r ->
  \big[*%M/1]_(i <- r) F i = F j * \big[*%M/1]_(i <- r | i != j) F i.
Proof. by move=> /big_rem-> /rem_filter->; rewrite big_filter. Qed.

Lemma cardD1x (I : finType) (A : pred I) j :
  A j -> #|SimplPred A| = 1 + #|[pred i | A i & i != j]|.
Proof.
move=> Aj; rewrite (cardD1 j) [j \in A]Aj; congr (_ + _).
by apply: eq_card => i; rewrite inE /= andbC.
Qed.
Arguments cardD1x [I A].

Lemma partition_big (I J : finType) (P : pred I) p (Q : pred J) F :
    (forall i, P i -> Q (p i)) ->
      \big[*%M/1]_(i | P i) F i =
         \big[*%M/1]_(j | Q j) \big[*%M/1]_(i | P i && (p i == j)) F i.
Proof.
move=> Qp; transitivity (\big[*%M/1]_(i | P i && Q (p i)) F i).
  by apply: eq_bigl => i; case Pi: (P i); rewrite // Qp.
elim: {Q Qp}_.+1 {-2}Q (ltnSn #|Q|) => // n IHn Q.
case: (pickP Q) => [j Qj | Q0 _]; last first.
  by rewrite !big_pred0 // => i; rewrite Q0 andbF.
rewrite ltnS (cardD1x j Qj) (bigD1 j) //; move/IHn=> {n IHn} <-.
rewrite (bigID (fun i => p i == j)); congr (_ * _); apply: eq_bigl => i.
  by case: eqP => [-> | _]; rewrite !(Qj, simpm).
by rewrite andbA.
Qed.

Arguments partition_big [I J P] p Q [F].

Lemma reindex_onto (I J : finType) (h : J -> I) h' (P : pred I) F :
   (forall i, P i -> h (h' i) = i) ->
  \big[*%M/1]_(i | P i) F i =
    \big[*%M/1]_(j | P (h j) && (h' (h j) == j)) F (h j).
Proof.
move=> h'K; elim: {P}_.+1 {-3}P h'K (ltnSn #|P|) => //= n IHn P h'K.
case: (pickP P) => [i Pi | P0 _]; last first.
  by rewrite !big_pred0 // => j; rewrite P0.
rewrite ltnS (cardD1x i Pi); move/IHn {n IHn} => IH.
rewrite (bigD1 i Pi) (bigD1 (h' i)) h'K ?Pi ?eq_refl //=; congr (_ * _).
rewrite {}IH => [|j]; [apply: eq_bigl => j | by case/andP; auto].
rewrite andbC -andbA (andbCA (P _)); case: eqP => //= hK; congr (_ && ~~ _).
by apply/eqP/eqP=> [<-|->] //; rewrite h'K.
Qed.
Arguments reindex_onto [I J] h h' [P F].

Lemma reindex (I J : finType) (h : J -> I) (P : pred I) F :
    {on [pred i | P i], bijective h} ->
  \big[*%M/1]_(i | P i) F i = \big[*%M/1]_(j | P (h j)) F (h j).
Proof.
case=> h' hK h'K; rewrite (reindex_onto h h' h'K).
by apply: eq_bigl => j; rewrite !inE; case Pi: (P _); rewrite //= hK ?eqxx.
Qed.
Arguments reindex [I J] h [P F].

Lemma reindex_inj (I : finType) (h : I -> I) (P : pred I) F :
  injective h -> \big[*%M/1]_(i | P i) F i = \big[*%M/1]_(j | P (h j)) F (h j).
Proof. by move=> injh; apply: reindex (onW_bij _ (injF_bij injh)). Qed.
Arguments reindex_inj [I h P F].

Lemma big_nat_rev m n P F :
  \big[*%M/1]_(m <= i < n | P i) F i
     = \big[*%M/1]_(m <= i < n | P (m + n - i.+1)) F (m + n - i.+1).
Proof.
case: (ltnP m n) => ltmn; last by rewrite !big_geq.
rewrite -{3 4}(subnK (ltnW ltmn)) addnA.
do 2!rewrite (big_addn _ _ 0) big_mkord; rewrite (reindex_inj rev_ord_inj) /=.
by apply: eq_big => [i | i _]; rewrite /= -addSn subnDr addnC addnBA.
Qed.

Lemma pair_big_dep (I J : finType) (P : pred I) (Q : I -> pred J) F :
  \big[*%M/1]_(i | P i) \big[*%M/1]_(j | Q i j) F i j =
    \big[*%M/1]_(p | P p.1 && Q p.1 p.2) F p.1 p.2.
Proof.
rewrite (partition_big (fun p => p.1) P) => [|j]; last by case/andP.
apply: eq_bigr => i /= Pi; rewrite (reindex_onto (pair i) (fun p => p.2)).
   by apply: eq_bigl => j; rewrite !eqxx [P i]Pi !andbT.
by case=> i' j /=; case/andP=> _ /=; move/eqP->.
Qed.

Lemma pair_big (I J : finType) (P : pred I) (Q : pred J) F :
  \big[*%M/1]_(i | P i) \big[*%M/1]_(j | Q j) F i j =
    \big[*%M/1]_(p | P p.1 && Q p.2) F p.1 p.2.
Proof. exact: pair_big_dep. Qed.

Lemma pair_bigA (I J : finType) (F : I -> J -> R) :
  \big[*%M/1]_i \big[*%M/1]_j F i j = \big[*%M/1]_p F p.1 p.2.
Proof. exact: pair_big_dep. Qed.

Lemma exchange_big_dep I J rI rJ (P : pred I) (Q : I -> pred J)
                       (xQ : pred J) F :
    (forall i j, P i -> Q i j -> xQ j) ->
  \big[*%M/1]_(i <- rI | P i) \big[*%M/1]_(j <- rJ | Q i j) F i j =
    \big[*%M/1]_(j <- rJ | xQ j) \big[*%M/1]_(i <- rI | P i && Q i j) F i j.
Proof.
move=> PQxQ; pose p u := (u.2, u.1).
rewrite (eq_bigr _ _ _ (fun _ _ => big_tnth _ _ rI _ _)) (big_tnth _ _ rJ).
rewrite (eq_bigr _ _ _ (fun _ _ => (big_tnth _ _ rJ _ _))) big_tnth.
rewrite !pair_big_dep (reindex_onto (p _ _) (p _ _)) => [|[]] //=.
apply: eq_big => [] [j i] //=; symmetry; rewrite eqxx andbT andb_idl //.
by case/andP; apply: PQxQ.
Qed.
Arguments exchange_big_dep [I J rI rJ P Q] xQ [F].

Lemma exchange_big I J rI rJ (P : pred I) (Q : pred J) F :
  \big[*%M/1]_(i <- rI | P i) \big[*%M/1]_(j <- rJ | Q j) F i j =
    \big[*%M/1]_(j <- rJ | Q j) \big[*%M/1]_(i <- rI | P i) F i j.
Proof.
rewrite (exchange_big_dep Q) //; apply: eq_bigr => i /= Qi.
by apply: eq_bigl => j; rewrite Qi andbT.
Qed.

Lemma exchange_big_dep_nat m1 n1 m2 n2 (P : pred nat) (Q : rel nat)
                           (xQ : pred nat) F :
    (forall i j, m1 <= i < n1 -> m2 <= j < n2 -> P i -> Q i j -> xQ j) ->
  \big[*%M/1]_(m1 <= i < n1 | P i) \big[*%M/1]_(m2 <= j < n2 | Q i j) F i j =
    \big[*%M/1]_(m2 <= j < n2 | xQ j)
       \big[*%M/1]_(m1 <= i < n1 | P i && Q i j) F i j.
Proof.
move=> PQxQ; rewrite (eq_bigr _ _ _ (fun _ _ => big_seq_cond _ _ _ _ _)).
rewrite big_seq_cond /= (exchange_big_dep xQ) => [|i j]; last first.
  by rewrite !mem_index_iota => /andP[mn_i Pi] /andP[mn_j /PQxQ->].
rewrite 2!(big_seq_cond _ _ _ xQ); apply: eq_bigr => j /andP[-> _] /=.
by rewrite [rhs in _ = rhs]big_seq_cond; apply: eq_bigl => i; rewrite -andbA.
Qed.
Arguments exchange_big_dep_nat [m1 n1 m2 n2 P Q] xQ [F].

Lemma exchange_big_nat m1 n1 m2 n2 (P Q : pred nat) F :
  \big[*%M/1]_(m1 <= i < n1 | P i) \big[*%M/1]_(m2 <= j < n2 | Q j) F i j =
    \big[*%M/1]_(m2 <= j < n2 | Q j) \big[*%M/1]_(m1 <= i < n1 | P i) F i j.
Proof.
rewrite (exchange_big_dep_nat Q) //.
by apply: eq_bigr => i /= Qi; apply: eq_bigl => j; rewrite Qi andbT.
Qed.

End Abelian.

End MonoidProperties.

Arguments big_filter [R idx op I].
Arguments big_filter_cond [R idx op I].
Arguments congr_big [R idx op I r1] r2 [P1] P2 [F1] F2.
Arguments eq_big [R idx op I r P1] P2 [F1] F2.
Arguments eq_bigl [R idx op I r P1] P2.
Arguments eq_bigr [R idx op I r P F1] F2.
Arguments eq_big_idx [R idx op idx' I] i0 [P F].
Arguments big_seq_cond [R idx op I r].
Arguments eq_big_seq [R idx op I r F1] F2.
Arguments congr_big_nat [R idx op m1 n1] m2 n2 [P1] P2 [F1] F2.
Arguments big_map [R idx op I J] h [r].
Arguments big_nth [R idx op I] x0 [r].
Arguments big_catl [R idx op I r1 r2 P F].
Arguments big_catr [R idx op I r1 r2 P F].
Arguments big_geq [R idx op m n P F].
Arguments big_ltn_cond [R idx op m n P F].
Arguments big_ltn [R idx op m n F].
Arguments big_addn [R idx op].
Arguments big_mkord [R idx op n].
Arguments big_nat_widen [R idx op] .
Arguments big_ord_widen_cond [R idx op n1].
Arguments big_ord_widen [R idx op n1].
Arguments big_ord_widen_leq [R idx op n1].
Arguments big_ord_narrow_cond [R idx op n1 n2 P F].
Arguments big_ord_narrow_cond_leq [R idx op n1 n2 P F].
Arguments big_ord_narrow [R idx op n1 n2 F].
Arguments big_ord_narrow_leq [R idx op n1 n2 F].
Arguments big_mkcond [R idx op I r].
Arguments big1_eq [R idx op I].
Arguments big1_seq [R idx op I].
Arguments big1 [R idx op I].
Arguments big_pred1 [R idx op I] i [P F].
Arguments eq_big_perm [R idx op I r1] r2 [P F].
Arguments big_uniq [R idx op I] r [F].
Arguments big_rem [R idx op I r] x [P F].
Arguments bigID [R idx op I r].
Arguments bigU [R idx op I].
Arguments bigD1 [R idx op I] j [P F].
Arguments bigD1_seq [R idx op I r] j [F].
Arguments partition_big [R idx op I J P] p Q [F].
Arguments reindex_onto [R idx op I J] h h' [P F].
Arguments reindex [R idx op I J] h [P F].
Arguments reindex_inj [R idx op I h P F].
Arguments pair_big_dep [R idx op I J].
Arguments pair_big [R idx op I J].
Arguments big_allpairs [R idx op I1 I2 r1 r2 F].
Arguments exchange_big_dep [R idx op I J rI rJ P Q] xQ [F].
Arguments exchange_big_dep_nat [R idx op m1 n1 m2 n2 P Q] xQ [F].
Arguments big_ord_recl [R idx op].
Arguments big_ord_recr [R idx op].
Arguments big_nat_recl [R idx op].
Arguments big_nat_recr [R idx op].

Section Distributivity.

Import Monoid.Theory.

Variable R : Type.
Variables zero one : R.
Local Notation "0" := zero.
Local Notation "1" := one.
Variable times : Monoid.mul_law 0.
Local Notation "*%M" := times (at level 0).
Local Notation "x * y" := (times x y).
Variable plus : Monoid.add_law 0 *%M.
Local Notation "+%M" := plus (at level 0).
Local Notation "x + y" := (plus x y).

Lemma big_distrl I r a (P : pred I) F :
  \big[+%M/0]_(i <- r | P i) F i * a = \big[+%M/0]_(i <- r | P i) (F i * a).
Proof. by rewrite (big_endo ( *%M^~ a)) ?mul0m // => x y; apply: mulm_addl. Qed.

Lemma big_distrr I r a (P : pred I) F :
  a * \big[+%M/0]_(i <- r | P i) F i = \big[+%M/0]_(i <- r | P i) (a * F i).
Proof. by rewrite big_endo ?mulm0 // => x y; apply: mulm_addr. Qed.

Lemma big_distrlr I J rI rJ (pI : pred I) (pJ : pred J) F G :
  (\big[+%M/0]_(i <- rI | pI i) F i) * (\big[+%M/0]_(j <- rJ | pJ j) G j)
   = \big[+%M/0]_(i <- rI | pI i) \big[+%M/0]_(j <- rJ | pJ j) (F i * G j).
Proof. by rewrite big_distrl; apply: eq_bigr => i _; rewrite big_distrr. Qed.

Lemma big_distr_big_dep (I J : finType) j0 (P : pred I) (Q : I -> pred J) F :
  \big[*%M/1]_(i | P i) \big[+%M/0]_(j | Q i j) F i j =
     \big[+%M/0]_(f in pfamily j0 P Q) \big[*%M/1]_(i | P i) F i (f i).
Proof.
pose fIJ := {ffun I -> J}; pose Pf := pfamily j0 (_ : seq I) Q.
rewrite -big_filter filter_index_enum; set r := enum P; symmetry.
transitivity (\big[+%M/0]_(f in Pf r) \big[*%M/1]_(i <- r) F i (f i)).
  apply: eq_big => f; last by rewrite -big_filter filter_index_enum.
  by apply: eq_forallb => i; rewrite /= mem_enum.
have: uniq r by apply: enum_uniq.
elim: {P}r => /= [_ | i r IHr].
  rewrite (big_pred1 [ffun => j0]) ?big_nil //= => f.
  apply/familyP/eqP=> /= [Df |->{f} i]; last by rewrite ffunE !inE.
  by apply/ffunP=> i; rewrite ffunE; apply/eqP/Df.
case/andP=> /negbTE nri; rewrite big_cons big_distrl => {IHr}/IHr <-.
rewrite (partition_big (fun f : fIJ => f i) (Q i)) => [|f]; last first.
  by move/familyP/(_ i); rewrite /= inE /= eqxx.
pose seti j (f : fIJ) := [ffun k => if k == i then j else f k].
apply: eq_bigr => j Qij.
rewrite (reindex_onto (seti j) (seti j0)) => [|f /andP[_ /eqP fi]]; last first.
  by apply/ffunP=> k; rewrite !ffunE; case: eqP => // ->.
rewrite big_distrr; apply: eq_big => [f | f eq_f]; last first.
  rewrite big_cons ffunE eqxx !big_seq; congr (_ * _).
  by apply: eq_bigr => k; rewrite ffunE; case: eqP nri => // -> ->.
rewrite !ffunE !eqxx andbT; apply/andP/familyP=> /= [[Pjf fij0] k | Pff].
  have:= familyP Pjf k; rewrite /= ffunE inE; case: eqP => // -> _.
  by rewrite nri -(eqP fij0) !ffunE !inE !eqxx.
split; [apply/familyP | apply/eqP/ffunP] => k; have:= Pff k; rewrite !ffunE.
  by rewrite inE; case: eqP => // ->.
by case: eqP => // ->; rewrite nri /= => /eqP.
Qed.

Lemma big_distr_big (I J : finType) j0 (P : pred I) (Q : pred J) F :
  \big[*%M/1]_(i | P i) \big[+%M/0]_(j | Q j) F i j =
     \big[+%M/0]_(f in pffun_on j0 P Q) \big[*%M/1]_(i | P i) F i (f i).
Proof.
rewrite (big_distr_big_dep j0); apply: eq_bigl => f.
by apply/familyP/familyP=> Pf i; case: ifP (Pf i).
Qed.

Lemma bigA_distr_big_dep (I J : finType) (Q : I -> pred J) F :
  \big[*%M/1]_i \big[+%M/0]_(j | Q i j) F i j
    = \big[+%M/0]_(f in family Q) \big[*%M/1]_i F i (f i).
Proof.
case: (pickP J) => [j0 _ | J0]; first exact: (big_distr_big_dep j0).
rewrite {1 4}/index_enum -enumT; case: (enum I) (mem_enum I) => [I0 | i r _].
  have f0: I -> J by move=> i; have:= I0 i.
  rewrite (big_pred1 (finfun f0)) ?big_nil // => g.
  by apply/familyP/eqP=> _; first apply/ffunP; move => i; have:= I0 i.
have Q0 i': Q i' =1 pred0 by move=> j; have:= J0 j.
rewrite big_cons /= big_pred0 // mul0m big_pred0 // => f.
by apply/familyP=> /(_ i); rewrite [_ \in _]Q0.
Qed.

Lemma bigA_distr_big (I J : finType) (Q : pred J) (F : I -> J -> R) :
  \big[*%M/1]_i \big[+%M/0]_(j | Q j) F i j
    = \big[+%M/0]_(f in ffun_on Q) \big[*%M/1]_i F i (f i).
Proof. exact: bigA_distr_big_dep. Qed.

Lemma bigA_distr_bigA (I J : finType) F :
  \big[*%M/1]_(i : I) \big[+%M/0]_(j : J) F i j
    = \big[+%M/0]_(f : {ffun I -> J}) \big[*%M/1]_i F i (f i).
Proof. by rewrite bigA_distr_big; apply: eq_bigl => ?; apply/familyP. Qed.

End Distributivity.

Arguments big_distrl [R zero times plus I r].
Arguments big_distrr [R zero times plus I r].
Arguments big_distr_big_dep [R zero one times plus I J].
Arguments big_distr_big [R zero one times plus I J].
Arguments bigA_distr_big_dep [R zero one times plus I J].
Arguments bigA_distr_big [R zero one times plus I J].
Arguments bigA_distr_bigA [R zero one times plus I J].

Section BigBool.

Section Seq.

Variables (I : Type) (r : seq I) (P B : pred I).

Lemma big_has : \big[orb/false]_(i <- r) B i = has B r.
Proof. by rewrite unlock. Qed.

Lemma big_all : \big[andb/true]_(i <- r) B i = all B r.
Proof. by rewrite unlock. Qed.

Lemma big_has_cond : \big[orb/false]_(i <- r | P i) B i = has (predI P B) r.
Proof. by rewrite big_mkcond unlock. Qed.

Lemma big_all_cond :
  \big[andb/true]_(i <- r | P i) B i = all [pred i | P i ==> B i] r.
Proof. by rewrite big_mkcond unlock. Qed.

End Seq.

Section FinType.

Variables (I : finType) (P B : pred I).

Lemma big_orE : \big[orb/false]_(i | P i) B i = [exists (i | P i), B i].
Proof. by rewrite big_has_cond; apply/hasP/existsP=> [] [i]; exists i. Qed.

Lemma big_andE : \big[andb/true]_(i | P i) B i = [forall (i | P i), B i].
Proof.
rewrite big_all_cond; apply/allP/forallP=> /= allB i; rewrite allB //.
exact: mem_index_enum.
Qed.

End FinType.

End BigBool.

Section NatConst.

Variables (I : finType) (A : pred I).

Lemma sum_nat_const n : \sum_(i in A) n = #|A| * n.
Proof. by rewrite big_const iter_addn_0 mulnC. Qed.

Lemma sum1_card : \sum_(i in A) 1 = #|A|.
Proof. by rewrite sum_nat_const muln1. Qed.

Lemma sum1_count J (r : seq J) (a : pred J) : \sum_(j <- r | a j) 1 = count a r.
Proof. by rewrite big_const_seq iter_addn_0 mul1n. Qed.

Lemma sum1_size J (r : seq J) : \sum_(j <- r) 1 = size r.
Proof. by rewrite sum1_count count_predT. Qed.

Lemma prod_nat_const n : \prod_(i in A) n = n ^ #|A|.
Proof. by rewrite big_const -Monoid.iteropE. Qed.

Lemma sum_nat_const_nat n1 n2 n : \sum_(n1 <= i < n2) n = (n2 - n1) * n.
Proof. by rewrite big_const_nat; elim: (_ - _) => //= ? ->. Qed.

Lemma prod_nat_const_nat n1 n2 n : \prod_(n1 <= i < n2) n = n ^ (n2 - n1).
Proof. by rewrite big_const_nat -Monoid.iteropE. Qed.

End NatConst.

Lemma leqif_sum (I : finType) (P C : pred I) (E1 E2 : I -> nat) :
    (forall i, P i -> E1 i <= E2 i ?= iff C i) ->
  \sum_(i | P i) E1 i <= \sum_(i | P i) E2 i ?= iff [forall (i | P i), C i].
Proof.
move=> leE12; rewrite -big_andE.
by elim/big_rec3: _ => // i Ci m1 m2 /leE12; apply: leqif_add.
Qed.

Lemma leq_sum I r (P : pred I) (E1 E2 : I -> nat) :
    (forall i, P i -> E1 i <= E2 i) ->
  \sum_(i <- r | P i) E1 i <= \sum_(i <- r | P i) E2 i.
Proof. by move=> leE12; elim/big_ind2: _ => // m1 m2 n1 n2; apply: leq_add. Qed.

Lemma sum_nat_eq0 (I : finType) (P : pred I) (E : I -> nat) :
  (\sum_(i | P i) E i == 0)%N = [forall (i | P i), E i == 0%N].
Proof. by rewrite eq_sym -(@leqif_sum I P _ (fun _ => 0%N) E) ?big1_eq. Qed.

Lemma prodn_cond_gt0 I r (P : pred I) F :
  (forall i, P i -> 0 < F i) -> 0 < \prod_(i <- r | P i) F i.
Proof. by move=> Fpos; elim/big_ind: _ => // n1 n2; rewrite muln_gt0 => ->. Qed.

Lemma prodn_gt0 I r (P : pred I) F :
  (forall i, 0 < F i) -> 0 < \prod_(i <- r | P i) F i.
Proof. by move=> Fpos; apply: prodn_cond_gt0. Qed.

Lemma leq_bigmax_cond (I : finType) (P : pred I) F i0 :
  P i0 -> F i0 <= \max_(i | P i) F i.
Proof. by move=> Pi0; rewrite (bigD1 i0) ?leq_maxl. Qed.
Arguments leq_bigmax_cond [I P F].

Lemma leq_bigmax (I : finType) F (i0 : I) : F i0 <= \max_i F i.
Proof. exact: leq_bigmax_cond. Qed.
Arguments leq_bigmax [I F].

Lemma bigmax_leqP (I : finType) (P : pred I) m F :
  reflect (forall i, P i -> F i <= m) (\max_(i | P i) F i <= m).
Proof.
apply: (iffP idP) => leFm => [i Pi|].
  by apply: leq_trans leFm; apply: leq_bigmax_cond.
by elim/big_ind: _ => // m1 m2; rewrite geq_max => ->.
Qed.

Lemma bigmax_sup (I : finType) i0 (P : pred I) m F :
  P i0 -> m <= F i0 -> m <= \max_(i | P i) F i.
Proof. by move=> Pi0 le_m_Fi0; apply: leq_trans (leq_bigmax_cond i0 Pi0). Qed.
Arguments bigmax_sup [I] i0 [P m F].

Lemma bigmax_eq_arg (I : finType) i0 (P : pred I) F :
  P i0 -> \max_(i | P i) F i = F [arg max_(i > i0 | P i) F i].
Proof.
move=> Pi0; case: arg_maxP => //= i Pi maxFi.
by apply/eqP; rewrite eqn_leq leq_bigmax_cond // andbT; apply/bigmax_leqP.
Qed.
Arguments bigmax_eq_arg [I] i0 [P F].

Lemma eq_bigmax_cond (I : finType) (A : pred I) F :
  #|A| > 0 -> {i0 | i0 \in A & \max_(i in A) F i = F i0}.
Proof.
case: (pickP A) => [i0 Ai0 _ | ]; last by move/eq_card0->.
by exists [arg max_(i > i0 in A) F i]; [case: arg_maxP | apply: bigmax_eq_arg].
Qed.

Lemma eq_bigmax (I : finType) F : #|I| > 0 -> {i0 : I | \max_i F i = F i0}.
Proof. by case/(eq_bigmax_cond F) => x _ ->; exists x. Qed.

Lemma expn_sum m I r (P : pred I) F :
  (m ^ (\sum_(i <- r | P i) F i) = \prod_(i <- r | P i) m ^ F i)%N.
Proof. exact: (big_morph _ (expnD m)). Qed.

Lemma dvdn_biglcmP (I : finType) (P : pred I) F m :
  reflect (forall i, P i -> F i %| m) (\big[lcmn/1%N]_(i | P i) F i %| m).
Proof.
apply: (iffP idP) => [dvFm i Pi | dvFm].
  by rewrite (bigD1 i) // dvdn_lcm in dvFm; case/andP: dvFm.
by elim/big_ind: _ => // p q p_m; rewrite dvdn_lcm p_m.
Qed.

Lemma biglcmn_sup (I : finType) i0 (P : pred I) F m :
  P i0 -> m %| F i0 -> m %| \big[lcmn/1%N]_(i | P i) F i.
Proof.
by move=> Pi0 m_Fi0; rewrite (dvdn_trans m_Fi0) // (bigD1 i0) ?dvdn_lcml.
Qed.
Arguments biglcmn_sup [I] i0 [P F m].

Lemma dvdn_biggcdP (I : finType) (P : pred I) F m :
  reflect (forall i, P i -> m %| F i) (m %| \big[gcdn/0]_(i | P i) F i).
Proof.
apply: (iffP idP) => [dvmF i Pi | dvmF].
  by rewrite (bigD1 i) // dvdn_gcd in dvmF; case/andP: dvmF.
by elim/big_ind: _ => // p q m_p; rewrite dvdn_gcd m_p.
Qed.

Lemma biggcdn_inf (I : finType) i0 (P : pred I) F m :
  P i0 -> F i0 %| m -> \big[gcdn/0]_(i | P i) F i %| m.
Proof. by move=> Pi0; apply: dvdn_trans; rewrite (bigD1 i0) ?dvdn_gcdl. Qed.
Arguments biggcdn_inf [I] i0 [P F m].

Unset Implicit Arguments.