Library mathcomp.field.countalg

Require Import mathcomp.ssreflect.ssreflect.
From mathcomp
Require Import ssrfun ssrbool eqtype ssrnat seq choice fintype.
From mathcomp
Require Import bigop ssralg finalg zmodp matrix mxalgebra.
From mathcomp
Require Import poly polydiv mxpoly generic_quotient ring_quotient closed_field.
From mathcomp
Require Import ssrint rat.


Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Local Open Scope ring_scope.
Import GRing.Theory CodeSeq.

Module CountRing.

Local Notation mixin_of T := (Countable.mixin_of T).

Section Generic.

Variables (type base_type : Type) (class_of base_of : Type -> Type).
Variable base_sort : base_type -> Type.

Variable Pack : forall T, class_of T -> Type -> type.
Variable Class : forall T, base_of T -> mixin_of T -> class_of T.
Variable base_class : forall bT, base_of (base_sort bT).

Definition gen_pack T :=
  fun bT b & phant_id (base_class bT) b =>
  fun fT c m & phant_id (Countable.class fT) (Countable.Class c m) =>
  Pack (@Class T b m) T.

End Generic.

Arguments gen_pack [type base_type class_of base_of base_sort].
Local Notation cnt_ c := (@Countable.Class _ c c).
Local Notation do_pack pack T := (pack T _ _ id _ _ _ id).
Import GRing.Theory.

Module Zmodule.

Section ClassDef.

Record class_of M :=
  Class { base : GRing.Zmodule.class_of M; mixin : mixin_of M }.
Local Coercion base : class_of >-> GRing.Zmodule.class_of.
Local Coercion mixin : class_of >-> mixin_of.

Structure type := Pack {sort; _ : class_of sort; _ : Type}.
Local Coercion sort : type >-> Sortclass.
Definition pack := gen_pack Pack Class GRing.Zmodule.class.
Variable cT : type.
Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ _ := cT in T.
Notation xclass := (class : class_of xT).

Definition eqType := @Equality.Pack cT xclass xT.
Definition choiceType := @Choice.Pack cT xclass xT.
Definition countType := @Countable.Pack cT (cnt_ xclass) xT.
Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.

Definition join_countType := @Countable.Pack zmodType (cnt_ xclass) xT.

End ClassDef.

Module Exports.
Coercion base : class_of >-> GRing.Zmodule.class_of.
Coercion mixin : class_of >-> mixin_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Canonical join_countType.
Notation countZmodType := type.
Notation "[ 'countZmodType' 'of' T ]" := (do_pack pack T)
  (at level 0, format "[ 'countZmodType' 'of' T ]") : form_scope.
End Exports.

End Zmodule.
Import Zmodule.Exports.

Module Ring.

Section ClassDef.

Record class_of R := Class { base : GRing.Ring.class_of R; mixin : mixin_of R }.
Definition base2 R (c : class_of R) := Zmodule.Class (base c) (mixin c).
Local Coercion base : class_of >-> GRing.Ring.class_of.
Local Coercion base2 : class_of >-> Zmodule.class_of.

Structure type := Pack {sort; _ : class_of sort; _ : Type}.
Local Coercion sort : type >-> Sortclass.
Definition pack := gen_pack Pack Class GRing.Ring.class.
Variable cT : type.
Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ _ := cT in T.
Notation xclass := (class : class_of xT).

Definition eqType := @Equality.Pack cT xclass xT.
Definition choiceType := @Choice.Pack cT xclass xT.
Definition countType := @Countable.Pack cT (cnt_ xclass) xT.
Definition zmodType := @GRing.Zmodule.Pack cT xclass cT.
Definition countZmodType := @Zmodule.Pack cT xclass xT.
Definition ringType := @GRing.Ring.Pack cT xclass xT.
Definition join_countType := @Countable.Pack ringType (cnt_ xclass) xT.
Definition join_countZmodType := @Zmodule.Pack ringType xclass xT.

End ClassDef.

Module Import Exports.
Coercion base : class_of >-> GRing.Ring.class_of.
Coercion base2 : class_of >-> Zmodule.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion countZmodType : type >-> Zmodule.type.
Canonical countZmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Canonical join_countType.
Canonical join_countZmodType.
Notation countRingType := type.
Notation "[ 'countRingType' 'of' T ]" := (do_pack pack T)
  (at level 0, format "[ 'countRingType' 'of' T ]") : form_scope.
End Exports.

End Ring.
Import Ring.Exports.

Module ComRing.

Section ClassDef.

Record class_of R :=
  Class { base : GRing.ComRing.class_of R; mixin : mixin_of R }.
Definition base2 R (c : class_of R) := Ring.Class (base c) (mixin c).
Local Coercion base : class_of >-> GRing.ComRing.class_of.
Local Coercion base2 : class_of >-> Ring.class_of.

Structure type := Pack {sort; _ : class_of sort; _ : Type}.
Local Coercion sort : type >-> Sortclass.
Definition pack := gen_pack Pack Class GRing.ComRing.class.
Variable cT : type.
Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ _ := cT in T.
Notation xclass := (class : class_of xT).

Definition eqType := @Equality.Pack cT xclass xT.
Definition choiceType := @Choice.Pack cT xclass xT.
Definition countType := @Countable.Pack cT (cnt_ xclass) xT.
Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
Definition countZmodType := @Zmodule.Pack cT xclass xT.
Definition ringType := @GRing.Ring.Pack cT xclass xT.
Definition countRingType := @Ring.Pack cT xclass xT.
Definition comRingType := @GRing.ComRing.Pack cT xclass xT.
Definition join_countType := @Countable.Pack comRingType (cnt_ xclass) xT.
Definition join_countZmodType := @Zmodule.Pack comRingType xclass xT.
Definition join_countRingType := @Ring.Pack comRingType xclass xT.

End ClassDef.

Module Exports.
Coercion base : class_of >-> GRing.ComRing.class_of.
Coercion base2 : class_of >-> Ring.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion countZmodType : type >-> Zmodule.type.
Canonical countZmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Coercion countRingType : type >-> Ring.type.
Canonical countRingType.
Coercion comRingType : type >-> GRing.ComRing.type.
Canonical comRingType.
Canonical join_countType.
Canonical join_countZmodType.
Canonical join_countRingType.
Notation countComRingType := CountRing.ComRing.type.
Notation "[ 'countComRingType' 'of' T ]" := (do_pack pack T)
  (at level 0, format "[ 'countComRingType' 'of' T ]") : form_scope.
End Exports.

End ComRing.
Import ComRing.Exports.

Module UnitRing.

Section ClassDef.

Record class_of R :=
  Class { base : GRing.UnitRing.class_of R; mixin : mixin_of R }.
Definition base2 R (c : class_of R) := Ring.Class (base c) (mixin c).
Local Coercion base : class_of >-> GRing.UnitRing.class_of.
Local Coercion base2 : class_of >-> Ring.class_of.

Structure type := Pack {sort; _ : class_of sort; _ : Type}.
Local Coercion sort : type >-> Sortclass.
Definition pack := gen_pack Pack Class GRing.UnitRing.class.
Variable cT : type.
Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ _ := cT in T.
Notation xclass := (class : class_of xT).

Definition eqType := @Equality.Pack cT xclass xT.
Definition choiceType := @Choice.Pack cT xclass xT.
Definition countType := @Countable.Pack cT (cnt_ xclass) xT.
Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
Definition countZmodType := @Zmodule.Pack cT xclass xT.
Definition ringType := @GRing.Ring.Pack cT xclass xT.
Definition countRingType := @Ring.Pack cT xclass xT.
Definition unitRingType := @GRing.UnitRing.Pack cT xclass xT.

Definition join_countType := @Countable.Pack unitRingType (cnt_ xclass) xT.
Definition join_countZmodType := @Zmodule.Pack unitRingType xclass xT.
Definition join_countRingType := @Ring.Pack unitRingType xclass xT.

End ClassDef.

Module Exports.
Coercion base : class_of >-> GRing.UnitRing.class_of.
Coercion base2 : class_of >-> Ring.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion countZmodType : type >-> Zmodule.type.
Canonical countZmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Coercion countRingType : type >-> Ring.type.
Canonical countRingType.
Coercion unitRingType : type >-> GRing.UnitRing.type.
Canonical unitRingType.
Canonical join_countType.
Canonical join_countZmodType.
Canonical join_countRingType.
Notation countUnitRingType := CountRing.UnitRing.type.
Notation "[ 'countUnitRingType' 'of' T ]" := (do_pack pack T)
  (at level 0, format "[ 'countUnitRingType' 'of' T ]") : form_scope.
End Exports.

End UnitRing.
Import UnitRing.Exports.

Module ComUnitRing.

Section ClassDef.

Record class_of R :=
  Class { base : GRing.ComUnitRing.class_of R; mixin : mixin_of R }.
Definition base2 R (c : class_of R) := ComRing.Class (base c) (mixin c).
Definition base3 R (c : class_of R) := @UnitRing.Class R (base c) (mixin c).
Local Coercion base : class_of >-> GRing.ComUnitRing.class_of.
Local Coercion base2 : class_of >-> ComRing.class_of.
Local Coercion base3 : class_of >-> UnitRing.class_of.

Structure type := Pack {sort; _ : class_of sort; _ : Type}.
Local Coercion sort : type >-> Sortclass.
Definition pack := gen_pack Pack Class GRing.ComUnitRing.class.
Variable cT : type.
Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ _ := cT in T.
Notation xclass := (class : class_of xT).

Definition eqType := @Equality.Pack cT xclass xT.
Definition choiceType := @Choice.Pack cT xclass xT.
Definition countType := @Countable.Pack cT (cnt_ xclass) xT.
Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
Definition countZmodType := @Zmodule.Pack cT xclass xT.
Definition ringType := @GRing.Ring.Pack cT xclass xT.
Definition countRingType := @Ring.Pack cT xclass xT.
Definition comRingType := @GRing.ComRing.Pack cT xclass xT.
Definition countComRingType := @ComRing.Pack cT xclass xT.
Definition unitRingType := @GRing.UnitRing.Pack cT xclass xT.
Definition countUnitRingType := @UnitRing.Pack cT xclass xT.
Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass xT.

Definition join_countType := @Countable.Pack comUnitRingType (cnt_ xclass) xT.
Definition join_countZmodType := @Zmodule.Pack comUnitRingType xclass xT.
Definition join_countRingType := @Ring.Pack comUnitRingType xclass xT.
Definition join_countComRingType := @ComRing.Pack comUnitRingType xclass xT.
Definition join_countUnitRingType := @UnitRing.Pack comUnitRingType xclass xT.
Definition ujoin_countComRingType := @ComRing.Pack unitRingType xclass xT.
Definition cjoin_countUnitRingType := @UnitRing.Pack comRingType xclass xT.
Definition ccjoin_countUnitRingType :=
  @UnitRing.Pack countComRingType xclass xT.

End ClassDef.

Module Exports.
Coercion base : class_of >-> GRing.ComUnitRing.class_of.
Coercion base2 : class_of >-> ComRing.class_of.
Coercion base3 : class_of >-> UnitRing.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion countZmodType : type >-> Zmodule.type.
Canonical countZmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Coercion countRingType : type >-> Ring.type.
Canonical countRingType.
Coercion comRingType : type >-> GRing.ComRing.type.
Canonical comRingType.
Coercion countComRingType : type >-> ComRing.type.
Canonical countComRingType.
Coercion unitRingType : type >-> GRing.UnitRing.type.
Canonical unitRingType.
Coercion countUnitRingType : type >-> UnitRing.type.
Canonical countUnitRingType.
Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
Canonical comUnitRingType.
Canonical join_countType.
Canonical join_countZmodType.
Canonical join_countRingType.
Canonical join_countComRingType.
Canonical join_countUnitRingType.
Canonical ujoin_countComRingType.
Canonical cjoin_countUnitRingType.
Canonical ccjoin_countUnitRingType.
Notation countComUnitRingType := CountRing.ComUnitRing.type.
Notation "[ 'countComUnitRingType' 'of' T ]" := (do_pack pack T)
  (at level 0, format "[ 'countComUnitRingType' 'of' T ]") : form_scope.
End Exports.

End ComUnitRing.
Import ComUnitRing.Exports.

Module IntegralDomain.

Section ClassDef.

Record class_of R :=
  Class { base : GRing.IntegralDomain.class_of R; mixin : mixin_of R }.
Definition base2 R (c : class_of R) := ComUnitRing.Class (base c) (mixin c).
Local Coercion base : class_of >-> GRing.IntegralDomain.class_of.
Local Coercion base2 : class_of >-> ComUnitRing.class_of.

Structure type := Pack {sort; _ : class_of sort; _ : Type}.
Local Coercion sort : type >-> Sortclass.
Definition pack := gen_pack Pack Class GRing.IntegralDomain.class.
Variable cT : type.
Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ _ := cT in T.
Notation xclass := (class : class_of xT).

Definition eqType := @Equality.Pack cT xclass xT.
Definition choiceType := @Choice.Pack cT xclass xT.
Definition countType := @Countable.Pack cT (cnt_ xclass) xT.
Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
Definition countZmodType := @Zmodule.Pack cT xclass xT.
Definition ringType := @GRing.Ring.Pack cT xclass xT.
Definition countRingType := @Ring.Pack cT xclass xT.
Definition comRingType := @GRing.ComRing.Pack cT xclass xT.
Definition countComRingType := @ComRing.Pack cT xclass xT.
Definition unitRingType := @GRing.UnitRing.Pack cT xclass xT.
Definition countUnitRingType := @UnitRing.Pack cT xclass xT.
Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass xT.
Definition countComUnitRingType := @ComUnitRing.Pack cT xclass xT.
Definition idomainType := @GRing.IntegralDomain.Pack cT xclass xT.

Definition join_countType := @Countable.Pack idomainType (cnt_ xclass) xT.
Definition join_countZmodType := @Zmodule.Pack idomainType xclass xT.
Definition join_countRingType := @Ring.Pack idomainType xclass xT.
Definition join_countUnitRingType := @UnitRing.Pack idomainType xclass xT.
Definition join_countComRingType := @ComRing.Pack idomainType xclass xT.
Definition join_countComUnitRingType := @ComUnitRing.Pack idomainType xclass xT.

End ClassDef.

Module Exports.
Coercion base : class_of >-> GRing.IntegralDomain.class_of.
Coercion base2 : class_of >-> ComUnitRing.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion countZmodType : type >-> Zmodule.type.
Canonical countZmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Coercion countRingType : type >-> Ring.type.
Canonical countRingType.
Coercion comRingType : type >-> GRing.ComRing.type.
Canonical comRingType.
Coercion countComRingType : type >-> ComRing.type.
Canonical countComRingType.
Coercion unitRingType : type >-> GRing.UnitRing.type.
Canonical unitRingType.
Coercion countUnitRingType : type >-> UnitRing.type.
Canonical countUnitRingType.
Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
Canonical comUnitRingType.
Coercion countComUnitRingType : type >-> ComUnitRing.type.
Canonical countComUnitRingType.
Coercion idomainType : type >-> GRing.IntegralDomain.type.
Canonical idomainType.
Canonical join_countType.
Canonical join_countZmodType.
Canonical join_countRingType.
Canonical join_countComRingType.
Canonical join_countUnitRingType.
Canonical join_countComUnitRingType.
Notation countIdomainType := CountRing.IntegralDomain.type.
Notation "[ 'countIdomainType' 'of' T ]" := (do_pack pack T)
  (at level 0, format "[ 'countIdomainType' 'of' T ]") : form_scope.
End Exports.

End IntegralDomain.
Import IntegralDomain.Exports.

Module Field.

Section ClassDef.

Record class_of R :=
  Class { base : GRing.Field.class_of R; mixin : mixin_of R }.
Definition base2 R (c : class_of R) := IntegralDomain.Class (base c) (mixin c).
Local Coercion base : class_of >-> GRing.Field.class_of.
Local Coercion base2 : class_of >-> IntegralDomain.class_of.

Structure type := Pack {sort; _ : class_of sort; _ : Type}.
Local Coercion sort : type >-> Sortclass.
Definition pack := gen_pack Pack Class GRing.Field.class.
Variable cT : type.
Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ _ := cT in T.
Notation xclass := (class : class_of xT).

Definition eqType := @Equality.Pack cT xclass xT.
Definition choiceType := @Choice.Pack cT xclass xT.
Definition countType := @Countable.Pack cT (cnt_ xclass) xT.
Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
Definition countZmodType := @Zmodule.Pack cT xclass xT.
Definition ringType := @GRing.Ring.Pack cT xclass xT.
Definition countRingType := @Ring.Pack cT xclass xT.
Definition comRingType := @GRing.ComRing.Pack cT xclass xT.
Definition countComRingType := @ComRing.Pack cT xclass xT.
Definition unitRingType := @GRing.UnitRing.Pack cT xclass xT.
Definition countUnitRingType := @UnitRing.Pack cT xclass xT.
Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass xT.
Definition countComUnitRingType := @ComUnitRing.Pack cT xclass xT.
Definition idomainType := @GRing.IntegralDomain.Pack cT xclass xT.
Definition countIdomainType := @IntegralDomain.Pack cT xclass xT.
Definition fieldType := @GRing.Field.Pack cT xclass xT.

Definition join_countType := @Countable.Pack fieldType (cnt_ xclass) xT.
Definition join_countZmodType := @Zmodule.Pack fieldType xclass xT.
Definition join_countRingType := @Ring.Pack fieldType xclass xT.
Definition join_countUnitRingType := @UnitRing.Pack fieldType xclass xT.
Definition join_countComRingType := @ComRing.Pack fieldType xclass xT.
Definition join_countComUnitRingType := @ComUnitRing.Pack fieldType xclass xT.
Definition join_countIdomainType := @IntegralDomain.Pack fieldType xclass xT.

End ClassDef.

Module Exports.
Coercion base : class_of >-> GRing.Field.class_of.
Coercion base2 : class_of >-> IntegralDomain.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion countZmodType : type >-> Zmodule.type.
Canonical countZmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Coercion countRingType : type >-> Ring.type.
Canonical countRingType.
Coercion comRingType : type >-> GRing.ComRing.type.
Canonical comRingType.
Coercion countComRingType : type >-> ComRing.type.
Canonical countComRingType.
Coercion unitRingType : type >-> GRing.UnitRing.type.
Canonical unitRingType.
Coercion countUnitRingType : type >-> UnitRing.type.
Canonical countUnitRingType.
Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
Canonical comUnitRingType.
Coercion countComUnitRingType : type >-> ComUnitRing.type.
Canonical countComUnitRingType.
Coercion idomainType : type >-> GRing.IntegralDomain.type.
Canonical idomainType.
Coercion countIdomainType : type >-> IntegralDomain.type.
Canonical countIdomainType.
Coercion fieldType : type >-> GRing.Field.type.
Canonical fieldType.
Canonical join_countType.
Canonical join_countZmodType.
Canonical join_countRingType.
Canonical join_countComRingType.
Canonical join_countUnitRingType.
Canonical join_countComUnitRingType.
Canonical join_countIdomainType.
Notation countFieldType := CountRing.Field.type.
Notation "[ 'countFieldType' 'of' T ]" := (do_pack pack T)
  (at level 0, format "[ 'countFieldType' 'of' T ]") : form_scope.
End Exports.

End Field.
Import Field.Exports.

Module DecidableField.

Section ClassDef.

Record class_of R :=
  Class { base : GRing.DecidableField.class_of R; mixin : mixin_of R }.
Definition base2 R (c : class_of R) := Field.Class (base c) (mixin c).
Local Coercion base : class_of >-> GRing.DecidableField.class_of.
Local Coercion base2 : class_of >-> Field.class_of.

Structure type := Pack {sort; _ : class_of sort; _ : Type}.
Local Coercion sort : type >-> Sortclass.
Definition pack := gen_pack Pack Class GRing.DecidableField.class.
Variable cT : type.
Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ _ := cT in T.
Notation xclass := (class : class_of xT).

Definition eqType := @Equality.Pack cT xclass xT.
Definition choiceType := @Choice.Pack cT xclass xT.
Definition countType := @Countable.Pack cT (cnt_ xclass) xT.
Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
Definition countZmodType := @Zmodule.Pack cT xclass xT.
Definition ringType := @GRing.Ring.Pack cT xclass xT.
Definition countRingType := @Ring.Pack cT xclass xT.
Definition comRingType := @GRing.ComRing.Pack cT xclass xT.
Definition countComRingType := @ComRing.Pack cT xclass xT.
Definition unitRingType := @GRing.UnitRing.Pack cT xclass xT.
Definition countUnitRingType := @UnitRing.Pack cT xclass xT.
Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass xT.
Definition countComUnitRingType := @ComUnitRing.Pack cT xclass xT.
Definition idomainType := @GRing.IntegralDomain.Pack cT xclass xT.
Definition countIdomainType := @IntegralDomain.Pack cT xclass xT.
Definition fieldType := @GRing.Field.Pack cT xclass xT.
Definition countFieldType := @Field.Pack cT xclass xT.
Definition decFieldType := @GRing.DecidableField.Pack cT xclass xT.

Definition join_countType := @Countable.Pack decFieldType (cnt_ xclass) xT.
Definition join_countZmodType := @Zmodule.Pack decFieldType xclass xT.
Definition join_countRingType := @Ring.Pack decFieldType xclass xT.
Definition join_countUnitRingType := @UnitRing.Pack decFieldType xclass xT.
Definition join_countComRingType := @ComRing.Pack decFieldType xclass xT.
Definition join_countComUnitRingType :=
  @ComUnitRing.Pack decFieldType xclass xT.
Definition join_countIdomainType := @IntegralDomain.Pack decFieldType xclass xT.
Definition join_countFieldType := @Field.Pack decFieldType xclass xT.

End ClassDef.

Module Exports.
Coercion base : class_of >-> GRing.DecidableField.class_of.
Coercion base2 : class_of >-> Field.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion countZmodType : type >-> Zmodule.type.
Canonical countZmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Coercion countRingType : type >-> Ring.type.
Canonical countRingType.
Coercion comRingType : type >-> GRing.ComRing.type.
Canonical comRingType.
Coercion countComRingType : type >-> ComRing.type.
Canonical countComRingType.
Coercion unitRingType : type >-> GRing.UnitRing.type.
Canonical unitRingType.
Coercion countUnitRingType : type >-> UnitRing.type.
Canonical countUnitRingType.
Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
Canonical comUnitRingType.
Coercion countComUnitRingType : type >-> ComUnitRing.type.
Canonical countComUnitRingType.
Coercion idomainType : type >-> GRing.IntegralDomain.type.
Canonical idomainType.
Coercion countIdomainType : type >-> IntegralDomain.type.
Canonical countIdomainType.
Coercion fieldType : type >-> GRing.Field.type.
Canonical fieldType.
Coercion countFieldType : type >-> Field.type.
Canonical countFieldType.
Coercion decFieldType : type >-> GRing.DecidableField.type.
Canonical decFieldType.
Canonical join_countType.
Canonical join_countZmodType.
Canonical join_countRingType.
Canonical join_countComRingType.
Canonical join_countUnitRingType.
Canonical join_countComUnitRingType.
Canonical join_countIdomainType.
Canonical join_countFieldType.
Notation countDecFieldType := CountRing.DecidableField.type.
Notation "[ 'countDecFieldType' 'of' T ]" := (do_pack pack T)
  (at level 0, format "[ 'countDecFieldType' 'of' T ]") : form_scope.
End Exports.

End DecidableField.
Import DecidableField.Exports.

Module ClosedField.

Section ClassDef.

Record class_of R :=
  Class { base : GRing.ClosedField.class_of R; mixin : mixin_of R }.
Definition base2 R (c : class_of R) := DecidableField.Class (base c) (mixin c).
Local Coercion base : class_of >-> GRing.ClosedField.class_of.
Local Coercion base2 : class_of >-> DecidableField.class_of.

Structure type := Pack {sort; _ : class_of sort; _ : Type}.
Local Coercion sort : type >-> Sortclass.
Definition pack := gen_pack Pack Class GRing.ClosedField.class.
Variable cT : type.
Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ _ := cT in T.
Notation xclass := (class : class_of xT).

Definition eqType := @Equality.Pack cT xclass xT.
Definition choiceType := @Choice.Pack cT xclass xT.
Definition countType := @Countable.Pack cT (cnt_ xclass) xT.
Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
Definition countZmodType := @Zmodule.Pack cT xclass xT.
Definition ringType := @GRing.Ring.Pack cT xclass xT.
Definition countRingType := @Ring.Pack cT xclass xT.
Definition comRingType := @GRing.ComRing.Pack cT xclass xT.
Definition countComRingType := @ComRing.Pack cT xclass xT.
Definition unitRingType := @GRing.UnitRing.Pack cT xclass xT.
Definition countUnitRingType := @UnitRing.Pack cT xclass xT.
Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass xT.
Definition countComUnitRingType := @ComUnitRing.Pack cT xclass xT.
Definition idomainType := @GRing.IntegralDomain.Pack cT xclass xT.
Definition countIdomainType := @IntegralDomain.Pack cT xclass xT.
Definition fieldType := @GRing.Field.Pack cT xclass xT.
Definition countFieldType := @Field.Pack cT xclass xT.
Definition decFieldType := @GRing.DecidableField.Pack cT xclass xT.
Definition countDecFieldType := @DecidableField.Pack cT xclass xT.
Definition closedFieldType := @GRing.ClosedField.Pack cT xclass xT.

Definition join_countType := @Countable.Pack closedFieldType (cnt_ xclass) xT.
Definition join_countZmodType := @Zmodule.Pack closedFieldType xclass xT.
Definition join_countRingType := @Ring.Pack closedFieldType xclass xT.
Definition join_countUnitRingType := @UnitRing.Pack closedFieldType xclass xT.
Definition join_countComRingType := @ComRing.Pack closedFieldType xclass xT.
Definition join_countComUnitRingType :=
  @ComUnitRing.Pack closedFieldType xclass xT.
Definition join_countIdomainType :=
  @IntegralDomain.Pack closedFieldType xclass xT.
Definition join_countFieldType := @Field.Pack closedFieldType xclass xT.
Definition join_countDecFieldType :=
  @DecidableField.Pack closedFieldType xclass xT.

End ClassDef.

Module Exports.
Coercion base : class_of >-> GRing.ClosedField.class_of.
Coercion base2 : class_of >-> DecidableField.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion countZmodType : type >-> Zmodule.type.
Canonical countZmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Coercion countRingType : type >-> Ring.type.
Canonical countRingType.
Coercion comRingType : type >-> GRing.ComRing.type.
Canonical comRingType.
Coercion countComRingType : type >-> ComRing.type.
Canonical countComRingType.
Coercion unitRingType : type >-> GRing.UnitRing.type.
Canonical unitRingType.
Coercion countUnitRingType : type >-> UnitRing.type.
Canonical countUnitRingType.
Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
Canonical comUnitRingType.
Coercion countComUnitRingType : type >-> ComUnitRing.type.
Canonical countComUnitRingType.
Coercion idomainType : type >-> GRing.IntegralDomain.type.
Canonical idomainType.
Coercion fieldType : type >-> GRing.Field.type.
Canonical fieldType.
Coercion countFieldType : type >-> Field.type.
Canonical countFieldType.
Coercion decFieldType : type >-> GRing.DecidableField.type.
Canonical decFieldType.
Coercion countDecFieldType : type >-> DecidableField.type.
Canonical countDecFieldType.
Coercion closedFieldType : type >-> GRing.ClosedField.type.
Canonical closedFieldType.
Canonical join_countType.
Canonical join_countZmodType.
Canonical join_countRingType.
Canonical join_countComRingType.
Canonical join_countUnitRingType.
Canonical join_countComUnitRingType.
Canonical join_countIdomainType.
Canonical join_countFieldType.
Canonical join_countDecFieldType.
Notation countClosedFieldType := CountRing.ClosedField.type.
Notation "[ 'countClosedFieldType' 'of' T ]" := (do_pack pack T)
  (at level 0, format "[ 'countClosedFieldType' 'of' T ]") : form_scope.
End Exports.

End ClosedField.
Import ClosedField.Exports.

End CountRing.

Import CountRing.
Export Zmodule.Exports Ring.Exports ComRing.Exports UnitRing.Exports.
Export ComUnitRing.Exports IntegralDomain.Exports.
Export Field.Exports DecidableField.Exports ClosedField.Exports.

From mathcomp
Require Import poly polydiv generic_quotient ring_quotient.
From mathcomp
Require Import mxpoly polyXY.
Import GRing.Theory.
From mathcomp
Require Import closed_field.

Canonical Zp_countZmodType m := [countZmodType of 'I_m.+1].
Canonical Zp_countRingType m := [countRingType of 'I_m.+2].
Canonical Zp_countComRingType m := [countComRingType of 'I_m.+2].
Canonical Zp_countUnitRingType m := [countUnitRingType of 'I_m.+2].
Canonical Zp_countComUnitRingType m := [countComUnitRingType of 'I_m.+2].
Canonical Fp_countIdomainType p := [countIdomainType of 'F_p].
Canonical Fp_countFieldType p := [countFieldType of 'F_p].
Canonical Fp_countDecFieldType p := [countDecFieldType of 'F_p].

Canonical matrix_countZmodType (M : countZmodType) m n :=
  [countZmodType of 'M[M]_(m, n)].
Canonical matrix_countRingType (R : countRingType) n :=
  [countRingType of 'M[R]_n.+1].
Canonical matrix_countUnitRingType (R : countComUnitRingType) n :=
  [countUnitRingType of 'M[R]_n.+1].

Definition poly_countMixin (R : countRingType) :=
  [countMixin of polynomial R by <:].
Canonical polynomial_countType R := CountType _ (poly_countMixin R).
Canonical poly_countType (R : countRingType) := [countType of {poly R}].
Canonical polynomial_countZmodType (R : countRingType) :=
  [countZmodType of polynomial R].
Canonical poly_countZmodType (R : countRingType) := [countZmodType of {poly R}].
Canonical polynomial_countRingType (R : countRingType) :=
  [countRingType of polynomial R].
Canonical poly_countRingType (R : countRingType) := [countRingType of {poly R}].
Canonical polynomial_countComRingType (R : countComRingType) :=
  [countComRingType of polynomial R].
Canonical poly_countComRingType (R : countComRingType) :=
  [countComRingType of {poly R}].
Canonical polynomial_countUnitRingType (R : countIdomainType) :=
  [countUnitRingType of polynomial R].
Canonical poly_countUnitRingType (R : countIdomainType) :=
  [countUnitRingType of {poly R}].
Canonical polynomial_countComUnitRingType (R : countIdomainType) :=
  [countComUnitRingType of polynomial R].
Canonical poly_countComUnitRingType (R : countIdomainType) :=
  [countComUnitRingType of {poly R}].
Canonical polynomial_countIdomainType (R : countIdomainType) :=
  [countIdomainType of polynomial R].
Canonical poly_countIdomainType (R : countIdomainType) :=
  [countIdomainType of {poly R}].

Canonical int_countZmodType := [countZmodType of int].
Canonical int_countRingType := [countRingType of int].
Canonical int_countComRingType := [countComRingType of int].
Canonical int_countUnitRingType := [countUnitRingType of int].
Canonical int_countComUnitRingType := [countComUnitRingType of int].
Canonical int_countIdomainType := [countIdomainType of int].

Canonical rat_countZmodType := [countZmodType of rat].
Canonical rat_countRingType := [countRingType of rat].
Canonical rat_countComRingType := [countComRingType of rat].
Canonical rat_countUnitRingType := [countUnitRingType of rat].
Canonical rat_countComUnitRingType := [countComUnitRingType of rat].
Canonical rat_countIdomainType := [countIdomainType of rat].
Canonical rat_countFieldType := [countFieldType of rat].

Lemma countable_field_extension (F : countFieldType) (p : {poly F}) :
    size p > 1 ->
  {E : countFieldType & {FtoE : {rmorphism F -> E} &
  {w : E | root (map_poly FtoE p) w
         & forall u : E, exists q, u = (map_poly FtoE q).[w]}}}.
Proof.
pose fix d i :=
  if i is i1.+1 then
    let d1 := oapp (gcdp (d i1)) 0 (unpickle i1) in
    if size d1 > 1 then d1 else d i1
  else p.
move=> p_gt1; have sz_d i: size (d i) > 1 by elim: i => //= i IHi; case: ifP.
have dv_d i j: i <= j -> d j %| d i.
  move/subnK <-; elim: {j}(j - i)%N => //= j IHj; case: ifP => //=.
  case: (unpickle _) => /= [q _|]; last by rewrite size_poly0.
  exact: dvdp_trans (dvdp_gcdl _ _) IHj.
pose I : pred {poly F} := [pred q | d (pickle q).+1 %| q].
have I'co q i: q \notin I -> i > pickle q -> coprimep q (d i).
  rewrite inE => I'q /dv_d/coprimep_dvdl-> //; apply: contraR I'q.
  rewrite coprimep_sym /coprimep /= pickleK /= neq_ltn.
  case: ifP => [_ _| ->]; first exact: dvdp_gcdr.
  rewrite orbF ltnS leqn0 size_poly_eq0 gcdp_eq0 -size_poly_eq0.
  by rewrite -leqn0 leqNgt ltnW //.
have memI q: reflect (exists i, d i %| q) (q \in I).
  apply: (iffP idP) => [|[i dv_di_q]]; first by exists (pickle q).+1.
  have [le_i_q | /I'co i_co_q] := leqP i (pickle q).
    rewrite inE /= pickleK /=; case: ifP => _; first exact: dvdp_gcdr.
    exact: dvdp_trans (dv_d _ _ le_i_q) dv_di_q.
  apply: contraR i_co_q _.
  by rewrite /coprimep (eqp_size (dvdp_gcd_idr dv_di_q)) neq_ltn sz_d orbT.
have I_ideal : idealr_closed I.
  split=> [||a q1 q2 Iq1 Iq2]; first exact: dvdp0.
    by apply/memI=> [[i /idPn[]]]; rewrite dvdp1 neq_ltn sz_d orbT.
  apply/memI; exists (maxn (pickle q1).+1 (pickle q2).+1); apply: dvdp_add.
    by apply: dvdp_mull; apply: dvdp_trans Iq1; apply/dv_d/leq_maxl.
  by apply: dvdp_trans Iq2; apply/dv_d/leq_maxr.
pose Iaddkey := GRing.Pred.Add (DefaultPredKey I) I_ideal.
pose Iidkey := MkIdeal (GRing.Pred.Zmod Iaddkey I_ideal) I_ideal.
pose E := ComRingType _ (@Quotient.mulqC _ _ _ (KeyedPred Iidkey)).
pose PtoE : {rmorphism {poly F} -> E} := [rmorphism of \pi_E%qT : {poly F} -> E].
have PtoEd i: PtoE (d i) = 0.
  by apply/eqP; rewrite piE Quotient.equivE subr0; apply/memI; exists i.
pose Einv (z : E) (q := repr z) (dq := d (pickle q).+1) :=
  let q_unitP := Bezout_eq1_coprimepP q dq in
  if q_unitP is ReflectT ex_uv then PtoE (sval (sig_eqW ex_uv)).1 else 0.
have Einv0: Einv 0 = 0.
  rewrite /Einv; case: Bezout_eq1_coprimepP => // ex_uv.
  case/negP: (oner_neq0 E); rewrite piE -[_ 1]/(PtoE 1); have [uv <-] := ex_uv.
  by rewrite rmorphD !rmorphM PtoEd /= reprK !mulr0 addr0.
have EmulV: GRing.Field.axiom Einv.
  rewrite /Einv=> z nz_z; case: Bezout_eq1_coprimepP => [ex_uv |]; last first.
    move/Bezout_eq1_coprimepP; rewrite I'co //.
    by rewrite piE -{1}[z]reprK -Quotient.idealrBE subr0 in nz_z.
  apply/eqP; case: sig_eqW => {ex_uv} [uv uv1]; set i := _.+1 in uv1 *.
  rewrite piE /= -[z]reprK -(rmorphM PtoE) -Quotient.idealrBE.
  by rewrite -uv1 opprD addNKr -mulNr; apply/memI; exists i; apply: dvdp_mull.
pose EringU := [comUnitRingType of UnitRingType _ (FieldUnitMixin EmulV Einv0)].
have Eunitf := @FieldMixin _ _ EmulV Einv0.
pose Efield := FieldType (IdomainType EringU (FieldIdomainMixin Eunitf)) Eunitf.
pose Ecount := CountType Efield (CanCountMixin (@reprK _ _)).
pose FtoE := [rmorphism of PtoE \o polyC]; pose w : E := PtoE 'X.
have defPtoE q: (map_poly FtoE q).[w] = PtoE q.
  by rewrite map_poly_comp horner_map [_.['X]]comp_polyXr.
exists [countFieldType of Ecount], FtoE, w => [|u].
  by rewrite /root defPtoE (PtoEd 0%N).
by exists (repr u); rewrite defPtoE /= reprK.
Qed.

Lemma countable_algebraic_closure (F : countFieldType) :
  {K : countClosedFieldType & {FtoK : {rmorphism F -> K} | integralRange FtoK}}.
Proof.
pose minXp (R : ringType) (p : {poly R}) := if size p > 1 then p else 'X.
have minXp_gt1 R p: size (minXp R p) > 1.
  by rewrite /minXp; case: ifP => // _; rewrite size_polyX.
have minXpE (R : ringType) (p : {poly R}) : size p > 1 -> minXp R p = p.
  by rewrite /minXp => ->.
have ext1 p := countable_field_extension (minXp_gt1 _ p).
pose ext1fT E p := tag (ext1 E p).
pose ext1to E p : {rmorphism _ -> ext1fT E p} := tag (tagged (ext1 E p)).
pose ext1w E p : ext1fT E p := s2val (tagged (tagged (ext1 E p))).
have ext1root E p: root (map_poly (ext1to E p) (minXp E p)) (ext1w E p).
  by rewrite /ext1w; case: (tagged (tagged (ext1 E p))).
have ext1gen E p u: {q | u = (map_poly (ext1to E p) q).[ext1w E p]}.
  by apply: sig_eqW; rewrite /ext1w; case: (tagged (tagged (ext1 E p))) u.
pose pExtEnum (E : countFieldType) := nat -> {poly E}.
pose Ext := {E : countFieldType & pExtEnum E}; pose MkExt : Ext := Tagged _ _.
pose EtoInc (E : Ext) i := ext1to (tag E) (tagged E i).
pose incEp E i j :=
  let v := map_poly (EtoInc E i) (tagged E j) in
  if decode j is [:: i1; k] then
    if i1 == i then odflt v (unpickle k) else v
  else v.
pose fix E_ i := if i is i1.+1 then MkExt _ (incEp (E_ i1) i1) else MkExt F \0.
pose E i := tag (E_ i); pose Krep := {i : nat & E i}.
pose fix toEadd i k : {rmorphism E i -> E (k + i)%N} :=
  if k is k1.+1 then [rmorphism of EtoInc _ (k1 + i)%N \o toEadd _ _]
  else [rmorphism of idfun].
pose toE i j (le_ij : i <= j) :=
  ecast j {rmorphism E i -> E j} (subnK le_ij) (toEadd i (j - i)%N).
have toEeq i le_ii: toE i i le_ii =1 id.
  by rewrite /toE; move: (subnK _); rewrite subnn => ?; rewrite eq_axiomK.
have toEleS i j leij leiSj z: toE i j.+1 leiSj z = EtoInc _ _ (toE i j leij z).
  rewrite /toE; move: (j - i)%N {leij leiSj}(subnK _) (subnK _) => k.
  by case: j /; rewrite (addnK i k.+1) => eq_kk; rewrite [eq_kk]eq_axiomK.
have toEirr := congr1 ((toE _ _)^~ _) (bool_irrelevance _ _).
have toEtrans j i k leij lejk leik z:
  toE i k leik z = toE j k lejk (toE i j leij z).
- elim: k leik lejk => [|k IHk] leiSk lejSk.
    by case: j => // in leij lejSk *; rewrite toEeq.
  have:= lejSk; rewrite {1}leq_eqVlt ltnS => /predU1P[Dk | lejk].
    by rewrite -Dk in leiSk lejSk *; rewrite toEeq.
  by have leik := leq_trans leij lejk; rewrite !toEleS -IHk.
have [leMl leMr] := (leq_maxl, leq_maxr); pose le_max := (leq_max, leqnn, orbT).
pose pairK (x y : Krep) (m := maxn _ _) :=
  (toE _ m (leMl _ _) (tagged x), toE _ m (leMr _ _) (tagged y)).
pose eqKrep x y := prod_curry (@eq_op _) (pairK x y).
have eqKrefl : reflexive eqKrep by move=> z; apply/eqP; apply: toEirr.
have eqKsym : symmetric eqKrep.
  move=> z1 z2; rewrite {1}/eqKrep /= eq_sym; move: (leMl _ _) (leMr _ _).
  by rewrite maxnC => lez1m lez2m; congr (_ == _); apply: toEirr.
have eqKtrans : transitive eqKrep.
  rewrite /eqKrep /= => z2 z1 z3 /eqP eq_z12 /eqP eq_z23.
  rewrite -(inj_eq (fmorph_inj (toE _ _ (leMr (tag z2) _)))).
  rewrite -!toEtrans ?le_max // maxnCA maxnA => lez3m lez1m.
  rewrite {lez1m}(toEtrans (maxn (tag z1) (tag z2))) // {}eq_z12.
  do [rewrite -toEtrans ?le_max // -maxnA => lez2m] in lez3m *.
  by rewrite (toEtrans (maxn (tag z2) (tag z3))) // eq_z23 -toEtrans.
pose K := {eq_quot (EquivRel _ eqKrefl eqKsym eqKtrans)}%qT.
have cntK : Countable.mixin_of K := CanCountMixin (@reprK _ _).
pose EtoKrep i (x : E i) : K := \pi%qT (Tagged E x).
have [EtoK piEtoK]: {EtoK | forall i, EtoKrep i =1 EtoK i} by exists EtoKrep.
pose FtoK := EtoK 0%N; rewrite {}/EtoKrep in piEtoK.
have eqEtoK i j x y:
  toE i _ (leMl i j) x = toE j _ (leMr i j) y -> EtoK i x = EtoK j y.
- by move/eqP=> eq_xy; rewrite -!piEtoK; apply/eqmodP.
have toEtoK j i leij x : EtoK j (toE i j leij x) = EtoK i x.
  by apply: eqEtoK; rewrite -toEtrans.
have EtoK_0 i: EtoK i 0 = FtoK 0 by apply: eqEtoK; rewrite !rmorph0.
have EtoK_1 i: EtoK i 1 = FtoK 1 by apply: eqEtoK; rewrite !rmorph1.
have EtoKeq0 i x: (EtoK i x == FtoK 0) = (x == 0).
  by rewrite /FtoK -!piEtoK eqmodE /= /eqKrep /= rmorph0 fmorph_eq0.
have toErepr m i leim x lerm:
  toE _ m lerm (tagged (repr (EtoK i x))) = toE i m leim x.
- have: (Tagged E x == repr (EtoK i x) %[mod K])%qT by rewrite reprK piEtoK.
  rewrite eqmodE /= /eqKrep; case: (repr _) => j y /= in lerm * => /eqP /=.
  have leijm: maxn i j <= m by rewrite geq_max leim.
  by move/(congr1 (toE _ _ leijm)); rewrite -!toEtrans.
pose Kadd (x y : K) := EtoK _ (prod_curry +%R (pairK (repr x) (repr y))).
pose Kopp (x : K) := EtoK _ (- tagged (repr x)).
pose Kmul (x y : K) := EtoK _ (prod_curry *%R (pairK (repr x) (repr y))).
pose Kinv (x : K) := EtoK _ (tagged (repr x))^-1.
have EtoK_D i: {morph EtoK i : x y / x + y >-> Kadd x y}.
  move=> x y; apply: eqEtoK; set j := maxn (tag _) _; rewrite !rmorphD.
  by rewrite -!toEtrans ?le_max // => lexm leym; rewrite !toErepr.
have EtoK_N i: {morph EtoK i : x / - x >-> Kopp x}.
  by move=> x; apply: eqEtoK; set j := tag _; rewrite !rmorphN toErepr.
have EtoK_M i: {morph EtoK i : x y / x * y >-> Kmul x y}.
  move=> x y; apply: eqEtoK; set j := maxn (tag _) _; rewrite !rmorphM.
  by rewrite -!toEtrans ?le_max // => lexm leym; rewrite !toErepr.
have EtoK_V i: {morph EtoK i : x / x^-1 >-> Kinv x}.
  by move=> x; apply: eqEtoK; set j := tag _; rewrite !fmorphV toErepr.
case: {toErepr}I in (Kadd) (Kopp) (Kmul) (Kinv) EtoK_D EtoK_N EtoK_M EtoK_V.
pose inEi i z := {x : E i | z = EtoK i x}; have KtoE z: {i : nat & inEi i z}.
  by elim/quotW: z => [[i x] /=]; exists i, x; rewrite piEtoK.
have inEle i j z: i <= j -> inEi i z -> inEi j z.
  by move=> leij [x ->]; exists (toE i j leij x); rewrite toEtoK.
have KtoE2 z1 z2: {i : nat & inEi i z1 & inEi i z2}.
  have [[i1 Ez1] [i2 Ez2]] := (KtoE z1, KtoE z2).
  by exists (maxn i1 i2); [apply: inEle Ez1 | apply: inEle Ez2].
have KtoE3 z1 z2 z3: {i : nat & inEi i z1 & inEi i z2 * inEi i z3}%type.
  have [[i1 Ez1] [i2 Ez2 Ez3]] := (KtoE z1, KtoE2 z2 z3).
  by exists (maxn i1 i2); [apply: inEle Ez1 | split; apply: inEle (leMr _ _) _].
have KaddC: commutative Kadd.
  by move=> u v; have [i [x ->] [y ->]] := KtoE2 u v; rewrite -!EtoK_D addrC.
have KaddA: associative Kadd.
  move=> u v w; have [i [x ->] [[y ->] [z ->]]] := KtoE3 u v w.
  by rewrite -!EtoK_D addrA.
have Kadd0: left_id (FtoK 0) Kadd.
  by move=> u; have [i [x ->]] := KtoE u; rewrite -(EtoK_0 i) -EtoK_D add0r.
have KaddN: left_inverse (FtoK 0) Kopp Kadd.
  by move=> u; have [i [x ->]] := KtoE u; rewrite -EtoK_N -EtoK_D addNr EtoK_0.
pose Kzmod := ZmodType K (ZmodMixin KaddA KaddC Kadd0 KaddN).
have KmulC: commutative Kmul.
  by move=> u v; have [i [x ->] [y ->]] := KtoE2 u v; rewrite -!EtoK_M mulrC.
have KmulA: @associative Kzmod Kmul.
  move=> u v w; have [i [x ->] [[y ->] [z ->]]] := KtoE3 u v w.
  by rewrite -!EtoK_M mulrA.
have Kmul1: left_id (FtoK 1) Kmul.
  by move=> u; have [i [x ->]] := KtoE u; rewrite -(EtoK_1 i) -EtoK_M mul1r.
have KmulD: left_distributive Kmul Kadd.
  move=> u v w; have [i [x ->] [[y ->] [z ->]]] := KtoE3 u v w.
  by rewrite -!(EtoK_M, EtoK_D) mulrDl.
have Kone_nz: FtoK 1 != FtoK 0 by rewrite EtoKeq0 oner_neq0.
pose KringMixin := ComRingMixin KmulA KmulC Kmul1 KmulD Kone_nz.
pose Kring := ComRingType (RingType Kzmod KringMixin) KmulC.
have KmulV: @GRing.Field.axiom Kring Kinv.
  move=> u; have [i [x ->]] := KtoE u; rewrite EtoKeq0 => nz_x.
  by rewrite -EtoK_V -[_ * _]EtoK_M mulVf ?EtoK_1.
have Kinv0: Kinv (FtoK 0) = FtoK 0 by rewrite -EtoK_V invr0.
pose Kuring := [comUnitRingType of UnitRingType _ (FieldUnitMixin KmulV Kinv0)].
pose KfieldMixin := @FieldMixin _ _ KmulV Kinv0.
pose Kidomain := IdomainType Kuring (FieldIdomainMixin KfieldMixin).
pose Kfield := FieldType Kidomain KfieldMixin.
have EtoKrmorphism i: rmorphism (EtoK i : E i -> Kfield).
  by do 2?split=> [x y|]; rewrite ?EtoK_D ?EtoK_N ?EtoK_M ?EtoK_1.
pose EtoKM := RMorphism (EtoKrmorphism _); have EtoK_E: EtoK _ = EtoKM _ by [].
have toEtoKp := @eq_map_poly _ Kring _ _(toEtoK _ _ _).
have Kclosed: GRing.ClosedField.axiom Kfield.
  move=> n pK n_gt0; pose m0 := \max_(i < n) tag (KtoE (pK i)); pose m := m0.+1.
  have /fin_all_exists[pE DpE] (i : 'I_n): exists y, EtoK m y = pK i.
    pose u := KtoE (pK i); have leum0: tag u <= m0 by rewrite (bigmax_sup i).
    by have [y ->] := tagged u; exists (toE _ _ (leqW leum0) y); rewrite toEtoK.
  pose p := 'X^n - rVpoly (\row_i pE i); pose j := code [:: m0; pickle p].
  pose pj := tagged (E_ j) j; pose w : E j.+1 := ext1w (E j) pj.
  have lemj: m <= j by rewrite (allP (ltn_code _)) ?mem_head.
  exists (EtoKM j.+1 w); apply/eqP; rewrite -subr_eq0; apply/eqP.
  transitivity (EtoKM j.+1 (map_poly (toE m j.+1 (leqW lemj)) p).[w]).
    rewrite -horner_map -map_poly_comp toEtoKp EtoK_E; move/EtoKM: w => w.
    rewrite rmorphB [_ 'X^n]map_polyXn !hornerE hornerXn; congr (_ - _ : Kring).
    rewrite (@horner_coef_wide _ n) ?size_map_poly ?size_poly //.
    by apply: eq_bigr => i _; rewrite coef_map coef_rVpoly valK mxE /= DpE.
  suffices Dpj: map_poly (toE m j lemj) p = pj.
    apply/eqP; rewrite EtoKeq0 (eq_map_poly (toEleS _ _ _ _)) map_poly_comp Dpj.
    rewrite -rootE -[pj]minXpE ?ext1root // -Dpj size_map_poly.
    by rewrite size_addl ?size_polyXn ltnS ?size_opp ?size_poly.
  rewrite {w}/pj; elim: {-9}j lemj => // k IHk lemSk.
  move: lemSk (lemSk); rewrite {1}leq_eqVlt ltnS => /predU1P[<- | lemk] lemSk.
    rewrite {k IHk lemSk}(eq_map_poly (toEeq m _)) map_poly_id //= /incEp.
    by rewrite codeK eqxx pickleK.
  rewrite (eq_map_poly (toEleS _ _ _ _)) map_poly_comp {}IHk //= /incEp codeK.
  by rewrite -if_neg neq_ltn lemk.
suffices{Kclosed} algF_K: {FtoK : {rmorphism F -> Kfield} | integralRange FtoK}.
  pose Kdec := DecFieldType Kfield (closed_fields_QEMixin Kclosed).
  pose KclosedField := ClosedFieldType Kdec Kclosed.
  by exists [countClosedFieldType of CountType KclosedField cntK].
exists (EtoKM 0%N) => /= z; have [i [{z}z ->]] := KtoE z.
suffices{z} /(_ z)[p mon_p]: integralRange (toE 0%N i isT).
  by rewrite -(fmorph_root (EtoKM i)) -map_poly_comp toEtoKp; exists p.
rewrite /toE /E; clear - minXp_gt1 ext1root ext1gen.
move: (i - 0)%N (subnK _) => n; case: i /.
elim: n => [|n IHn] /= z; first exact: integral_id.
have{z} [q ->] := ext1gen _ _ z; set pn := tagged (E_ _) _.
apply: integral_horner.
  by apply/integral_poly=> i; rewrite coef_map; apply: integral_rmorph.
apply: integral_root (ext1root _ _) _.
  by rewrite map_poly_eq0 -size_poly_gt0 ltnW.
by apply/integral_poly=> i; rewrite coef_map; apply: integral_rmorph.
Qed.