Library mathcomp.finmap.set
From mathcomp
Require Import ssreflect ssrbool eqtype ssrfun ssrnat choice seq.
From mathcomp
Require Import fintype tuple bigop path.
From mathcomp Require Import order.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Reserved Notation "x \subset y" (at level 70, y at next level).
Reserved Notation "x \contains y" (at level 70, y at next level, only parsing).
Reserved Notation "x \proper y" (at level 70, y at next level).
Reserved Notation "x \containsproper y" (at level 70, y at next level, only parsing).
Reserved Notation "x \subset y :> T" (at level 70, y at next level).
Reserved Notation "x \contains y :> T" (at level 70, y at next level, only parsing).
Reserved Notation "x \proper y :> T" (at level 70, y at next level).
Reserved Notation "x \containsproper y :> T" (at level 70, y at next level, only parsing).
Reserved Notation "\subsets y" (at level 35).
Reserved Notation "\supersets y" (at level 35).
Reserved Notation "\propersets y" (at level 35).
Reserved Notation "\superpropersets y" (at level 35).
Reserved Notation "\subsets y :> T" (at level 35, y at next level).
Reserved Notation "\supersets y :> T" (at level 35, y at next level).
Reserved Notation "\propersets y :> T" (at level 35, y at next level).
Reserved Notation "\superpropersets y :> T" (at level 35, y at next level).
Reserved Notation "x \subset y \subset z" (at level 70, y, z at next level).
Reserved Notation "x \proper y \subset z" (at level 70, y, z at next level).
Reserved Notation "x \subset y \proper z" (at level 70, y, z at next level).
Reserved Notation "x \proper y \proper z" (at level 70, y, z at next level).
Reserved Notation "x \subset y ?= 'iff' c" (at level 70, y, c at next level,
format "x '[hv' \subset y '/' ?= 'iff' c ']'").
Reserved Notation "x \subset y ?= 'iff' c :> T" (at level 70, y, c at next level,
format "x '[hv' \subset y '/' ?= 'iff' c :> T ']'").
Reserved Notation "~: A" (at level 35, right associativity).
Reserved Notation "[ 'set' ~ a ]" (at level 0, format "[ 'set' ~ a ]").
Reserved Notation "[ 'set' a1 ; a2 ; .. ; an ]"
(at level 0, a1 at level 99, format "[ 'set' a1 ; a2 ; .. ; an ]").
Delimit Scope abstract_set_scope with set.
Local Open Scope abstract_set_scope.
Module SET.
Import Order.Theory Order.Syntax Order.Def.
Fact display_set : unit -> unit. Proof. exact. Qed.
Module Import SetSyntax.
Notation "\sub%set" := (@le (display_set _) _) : abstract_set_scope.
Notation "\super%set" := (@ge (display_set _) _) : abstract_set_scope.
Notation "\proper%set" := (@lt (display_set _) _) : abstract_set_scope.
Notation "\superproper%set" := (@gt (display_set _) _) : abstract_set_scope.
Notation "\sub?%set" := (@leif (display_set _) _) : abstract_set_scope.
Notation "\subsets y" := (\super%set y) : abstract_set_scope.
Notation "\subsets y :> T" := (\subsets (y : T)) : abstract_set_scope.
Notation "\supersets y" := (\sub%set y) : abstract_set_scope.
Notation "\supersets y :> T" := (\supersets (y : T)) : abstract_set_scope.
Notation "\propersets y" := (\superproper%set y) : abstract_set_scope.
Notation "\propersets y :> T" := (\propersets (y : T)) : abstract_set_scope.
Notation "\superpropersets y" := (\proper%set y) : abstract_set_scope.
Notation "\superpropersets y :> T" := (\superpropersets (y : T)) : abstract_set_scope.
Notation "x \subset y" := (\sub%set x y) : abstract_set_scope.
Notation "x \subset y :> T" := ((x : T) \subset (y : T)) : abstract_set_scope.
Notation "x \proper y" := (\proper%set x y) : abstract_set_scope.
Notation "x \proper y :> T" := ((x : T) \proper (y : T)) : abstract_set_scope.
Notation "x \subset y \subset z" := ((x \subset y)%set && (y \subset z)%set) : abstract_set_scope.
Notation "x \proper y \subset z" := ((x \proper y)%set && (y \subset z)%set) : abstract_set_scope.
Notation "x \subset y \proper z" := ((x \subset y)%set && (y \proper z)%set) : abstract_set_scope.
Notation "x \proper y \proper z" := ((x \proper y)%set && (y \proper z)%set) : abstract_set_scope.
Notation "x \subset y ?= 'iff' C" := (\sub?%set x y C) : abstract_set_scope.
Notation "x \subset y ?= 'iff' C :> R" := ((x : R) \subset (y : R) ?= iff C)
(only parsing) : abstract_set_scope.
Notation set0 := (@bottom (display_set _) _).
Notation setT := (@top (display_set _) _).
Notation setU := (@join (display_set _) _).
Notation setI := (@meet (display_set _) _).
Notation setD := (@sub (display_set _) _).
Notation setC := (@compl (display_set _) _).
Notation "x :&: y" := (setI x y).
Notation "x :|: y" := (setU x y).
Notation "x :\: y" := (setD x y).
Notation "~: x" := (setC x).
Notation "x \subset y" := (\sub%set x y) : bool_scope.
Notation "x \proper y" := (\proper%set x y) : bool_scope.
End SetSyntax.
Module Semiset.
Section ClassDef.
Variable elementType : Type. Variable eqType_of_elementType : elementType -> eqType.
Coercion eqType_of_elementType : elementType >-> eqType.
Implicit Types (X Y : elementType).
Structure mixin_of d (set : elementType -> (cblatticeType (display_set d))) :=
Mixin {
memset : forall X, set X -> X -> bool;
set1 : forall X, X -> set X;
_ : forall X (x : X), ~~ memset set0 x;
_ : forall X (x y : X), memset (set1 y) x = (x == y);
_ : forall X (x : X) A, (set1 x \subset A) = (memset A x);
_ : forall X (A : set X), (set0 \proper A) -> {x | memset A x} ;
_ : forall X (A B : set X), {subset memset A <= memset B} -> A \subset B;
_ : forall X (x : X) A B, (memset (A :|: B) x) =
(memset A x) || (memset B x);
funsort : elementType -> elementType -> Type;
fun_of_funsort : forall X Y, funsort X Y -> X -> Y;
imset : forall X Y, funsort X Y -> set X -> set Y;
_ : forall X Y (f : funsort X Y) (A : set X) (y : Y),
reflect (exists2 x : X, memset A x & y = fun_of_funsort f x)
(memset (imset f A) y)
}.
Record class_of d (set : elementType -> Type) := Class {
base : forall X, @Order.CBLattice.class_of (display_set d) (set X);
mixin : mixin_of (fun X => Order.CBLattice.Pack (base X) (set X))
}.
Local Coercion base : class_of >-> Funclass.
Structure type d := Pack { sort ; _ : class_of d sort;
_ : elementType -> Type }.
Local Coercion sort : type >-> Funclass.
Variables (set : elementType -> Type) (disp : unit) (cT : type disp).
Definition class := let: Pack _ c _ as cT' := cT return class_of _ cT' in c.
Definition clone disp' c of (disp = disp') & phant_id class c :=
@Pack disp' set c set.
Let xset := let: Pack set _ _ := cT in set.
Notation xclass := (class : class_of _ xset).
Definition pack b0
(m0 : mixin_of
(fun X=> @Order.CBLattice.Pack (display_set disp) (set X) (b0 X) (set X))) :=
fun bT b &
(forall X, phant_id (@Order.CBLattice.class (display_set disp) (bT X)) (b X)) =>
fun m & phant_id m0 m => Pack (@Class disp set b m) set.
End ClassDef.
Section CanonicalDef.
Variable elementType : Type.
Variable eqType_of_elementType : elementType -> eqType.
Coercion eqType_of_elementType : elementType >-> eqType.
Notation type := (type eqType_of_elementType).
Local Coercion base : class_of >-> Funclass.
Local Coercion sort : type >-> Funclass.
Variables (set : elementType -> Type) (X : elementType).
Variables (disp : unit) (cT : type disp).
Local Notation ddisp := (display_set disp).
Let xset := let: Pack set _ _ := cT in set.
Notation xclass := (@class _ eqType_of_elementType _ cT : class_of eqType_of_elementType _ xset).
Definition eqType := @Equality.Pack (cT X) (xclass X) (xset X).
Definition choiceType := @Choice.Pack (cT X) (xclass X) (xset X).
Definition porderType :=
@Order.POrder.Pack ddisp (cT X) (xclass X) (xset X).
Definition latticeType :=
@Order.Lattice.Pack ddisp (cT X) (xclass X) (xset X).
Definition blatticeType :=
@Order.BLattice.Pack ddisp (cT X) (xclass X) (xset X).
Definition cblatticeType :=
@Order.CBLattice.Pack ddisp (cT X) (xclass X) (xset X).
End CanonicalDef.
Module Import Exports.
Coercion mixin : class_of >-> mixin_of.
Coercion base : class_of >-> Funclass.
Coercion sort : type >-> Funclass.
Coercion eqType : type >-> Equality.type.
Coercion choiceType : type >-> Choice.type.
Coercion porderType : type >-> Order.POrder.type.
Coercion latticeType : type >-> Order.Lattice.type.
Coercion blatticeType : type >-> Order.BLattice.type.
Coercion cblatticeType : type >-> Order.CBLattice.type.
Canonical eqType.
Canonical choiceType.
Canonical porderType.
Canonical latticeType.
Canonical blatticeType.
Canonical cblatticeType.
Notation semisetType := type.
Notation semisetMixin := mixin_of.
Notation SemisetMixin := Mixin.
Notation SemisetType set m := (@pack _ _ set _ _ m _ _ (fun=> id) _ id).
Notation "[ 'semisetType' 'of' set 'for' cset ]" := (@clone _ _ set _ cset _ _ erefl id)
(at level 0, format "[ 'semisetType' 'of' set 'for' cset ]") : form_scope.
Notation "[ 'semisetType' 'of' set 'for' cset 'with' disp ]" :=
(@clone _ _ set _ cset disp _ (unit_irrelevance _ _) id)
(at level 0, format "[ 'semisetType' 'of' set 'for' cset 'with' disp ]") : form_scope.
Notation "[ 'semisetType' 'of' set ]" := [semisetType of set for _]
(at level 0, format "[ 'semisetType' 'of' set ]") : form_scope.
Notation "[ 'semisetType' 'of' set 'with' disp ]" := [semisetType of set for _ with disp]
(at level 0, format "[ 'semisetType' 'of' set 'with' disp ]") : form_scope.
End Exports.
End Semiset.
Import Semiset.Exports.
Section SemisetOperations.
Context {elementType : Type} {eqType_of_elementType : elementType -> eqType}.
Coercion eqType_of_elementType : elementType >-> eqType.
Context {disp : unit}.
Section setfun.
Variable (set : semisetType eqType_of_elementType disp).
Definition setfun := Semiset.funsort (Semiset.class set).
Definition fun_of_setfun X Y (f : setfun X Y) : X -> Y :=
@Semiset.fun_of_funsort _ _ _ _ (Semiset.class set) _ _ f.
Coercion fun_of_setfun : setfun >-> Funclass.
End setfun.
Context {set : semisetType eqType_of_elementType disp}.
Variable X Y : elementType.
Definition memset : set X -> X -> bool :=
@Semiset.memset _ _ _ _ (Semiset.class set) _.
Definition set1 : X -> set X :=
@Semiset.set1 _ _ _ _ (Semiset.class set) _.
Definition imset : setfun set X Y -> set X -> set Y:=
@Semiset.imset _ _ _ _ (Semiset.class set) _ _.
Canonical set_predType := Eval hnf in mkPredType memset.
Structure setpredType := SetPredType {
setpred_sort :> Type;
tosetpred : setpred_sort -> pred X;
_ : {mem : setpred_sort -> mem_pred X | isMem tosetpred mem};
_ : {pred_fset : setpred_sort -> set X |
forall p x, x \in pred_fset p = tosetpred p x}
}.
Canonical setpredType_predType (fpX : setpredType) :=
@PredType X (setpred_sort fpX) (@tosetpred fpX)
(let: SetPredType _ _ mem _ := fpX in mem).
Definition predset (fpX : setpredType) : fpX -> set X :=
let: SetPredType _ _ _ (exist pred_fset _) := fpX in pred_fset.
End SemisetOperations.
Module Import SemisetSyntax.
Notation "[ 'set' x : T | P ]" := (predset (fun x : T => P%B))
(at level 0, x at level 99, only parsing) : abstract_set_scope.
Notation "[ 'set' x | P ]" := [set x : _ | P]
(at level 0, x, P at level 99, format "[ 'set' x | P ]") : abstract_set_scope.
Notation "[ 'set' x 'in' A ]" := [set x | x \in A]
(at level 0, x at level 99, format "[ 'set' x 'in' A ]") : abstract_set_scope.
Notation "[ 'set' x : T 'in' A ]" := [set x : T | x \in A]
(at level 0, x at level 99, only parsing) : abstract_set_scope.
Notation "[ 'set' x : T | P & Q ]" := [set x : T | P && Q]
(at level 0, x at level 99, only parsing) : abstract_set_scope.
Notation "[ 'set' x | P & Q ]" := [set x | P && Q ]
(at level 0, x, P at level 99, format "[ 'set' x | P & Q ]") : abstract_set_scope.
Notation "[ 'set' x : T 'in' A | P ]" := [set x : T | x \in A & P]
(at level 0, x at level 99, only parsing) : abstract_set_scope.
Notation "[ 'set' x 'in' A | P ]" := [set x | x \in A & P]
(at level 0, x at level 99, format "[ 'set' x 'in' A | P ]") : abstract_set_scope.
Notation "[ 'set' x 'in' A | P & Q ]" := [set x in A | P && Q]
(at level 0, x at level 99,
format "[ 'set' x 'in' A | P & Q ]") : abstract_set_scope.
Notation "[ 'set' x : T 'in' A | P & Q ]" := [set x : T in A | P && Q]
(at level 0, x at level 99, only parsing) : abstract_set_scope.
Notation "[ 'set' a ]" := (set1 a)
(at level 0, a at level 99, format "[ 'set' a ]") : abstract_set_scope.
Notation "[ 'set' a : T ]" := [set (a : T)]
(at level 0, a at level 99, format "[ 'set' a : T ]") : abstract_set_scope.
Notation "a |: y" := ([set a] :|: y) : abstract_set_scope.
Notation "x :\ a" := (x :\: [set a]) : abstract_set_scope.
Notation "[ 'set' a1 ; a2 ; .. ; an ]" := (setU .. (a1 |: [set a2]) .. [set an]).
Notation "f @: A" := (imset f A) (at level 24) : abstract_set_scope.
End SemisetSyntax.
Module Import SemisetTheory.
Section SemisetTheory.
Variable elementType : Type.
Variable eqType_of_elementType : elementType -> eqType.
Coercion eqType_of_elementType : elementType >-> eqType.
Variable disp : unit.
Variable set : semisetType eqType_of_elementType disp.
Section setX.
Variables X : elementType.
Implicit Types (x y : X) (A B C : set X).
Lemma notin_set0 (x : X) : x \notin (set0 : set X).
Proof.
rewrite /set1 /in_mem /= /memset.
case: set => [S [base [memset set1 /= H ? ? ? ? ? ? ? ? ?]] ?] /=.
exact: H.
Qed.
Lemma in_set1 x y : x \in ([set y] : set X) = (x == y).
Proof.
rewrite /set1 /in_mem /= /memset.
case: set => [S [base [memset set1 /= ? H ? ? ? ? ? ? ? ?]] ?] /=.
exact: H.
Qed.
Lemma sub1set x A : ([set x] \subset A) = (x \in A).
Proof.
rewrite /set1 /in_mem /= /memset.
case: set A => [S [base [memset set1 /= ? ? H ? ? ? ? ? ? ?]] ?] A /=.
exact: H.
Qed.
Lemma set_gt0_ex A : set0 \proper A -> {x | x \in A}.
Proof.
rewrite /set1 /in_mem /= /memset.
case: set A => [S [base [memset set1 /= ? ? ? H ? ? ? ? ? ?]] ?] A /=.
exact: H.
Qed.
Lemma subsetP_subproof A B : {subset A <= B} -> A \subset B.
Proof.
rewrite /set1 /in_mem /= /memset.
case: set A B => [S [base [memset set1 /= ? ? ? ? H ? ? ? ? ?]] ?] /=.
exact: H.
Qed.
Lemma in_setU (x : X) A B : (x \in A :|: B) = (x \in A) || (x \in B).
Proof.
rewrite /set1 /in_mem /= /memset.
case: set A B => [S [base [memset set1 /= ? ? ? ? ? H ? ? ? ?]] ?] /=.
exact: H.
Qed.
Lemma in_set0 x : x \in (set0 : set X) = false.
Proof. by rewrite (negPf (notin_set0 _)). Qed.
Lemma subsetP {A B} : reflect {subset A <= B} (A <= B)%O.
Proof.
apply: (iffP idP) => [sAB x xA|/subsetP_subproof//].
by rewrite -sub1set (le_trans _ sAB) // sub1set.
Qed.
Lemma setP A B : A =i B <-> A = B.
Proof.
split=> [eqAB|->//]; apply/eqP; rewrite eq_le.
gen have leAB : A B eqAB / A \subset B; last by rewrite !leAB.
by apply/subsetP => x; rewrite eqAB.
Qed.
Lemma set1_neq0 (x : X) : [set x] != set0 :> set X.
Proof. by apply/negP=> /eqP /setP /(_ x); rewrite in_set0 in_set1 eqxx. Qed.
Lemma set1_eq0 x : ([set x] == set0 :> set X) = false.
Proof. by rewrite (negPf (set1_neq0 _)). Qed.
Lemma set11 x : x \in ([set x] : set X).
Proof. by rewrite -sub1set. Qed.
Hint Resolve set11.
Lemma set1_inj : injective (@set1 _ _ _ set X).
Proof.
move=> x y /eqP; rewrite eq_le sub1set => /andP [].
by rewrite in_set1 => /eqP.
Qed.
Lemma set_0Vmem A : (A = set0) + {x : X | x \in A}.
Proof.
have [|AN0] := eqVneq A set0; [left|right] => //.
by move: AN0; rewrite -lt0x => /set_gt0_ex.
Qed.
Lemma set0Pn A : reflect (exists x, x \in A) (A != set0).
Proof.
have [->|[x xA]] := set_0Vmem A; rewrite ?eqxx -?lt0x.
by constructor=> [[x]]; rewrite in_set0.
suff -> : set0 \proper A by constructor; exists x.
by move: xA; rewrite -sub1set => /(lt_le_trans _)->; rewrite ?lt0x ?set1_eq0.
Qed.
Lemma subset1 A x : (A \subset [set x]) = (A == [set x]) || (A == set0).
Proof.
symmetry; rewrite eq_le; have [] /= := boolP (A \subset [set x]); last first.
by apply: contraNF => /eqP ->; rewrite ?le0x.
have [/eqP->|[y yA]] := set_0Vmem A; rewrite ?orbT // ?sub1set.
by move=> /subsetP /(_ _ yA); rewrite in_set1 => /eqP<-; rewrite yA.
Qed.
Lemma eq_set1 (x : X) A : (A == [set x]) = (set0 \proper A \subset [set x]).
Proof.
by rewrite subset1; have [->|?] := posxP A; rewrite 1?eq_sym ?set1_eq0 ?orbF.
Qed.
Lemma in_setI A B (x : X) : (x \in A :&: B) = (x \in A) && (x \in B).
Proof.
apply/idP/idP => [xAB|?]; last by rewrite -sub1set lexI !sub1set.
by rewrite (subsetP (leIr _ _) _ xAB) (subsetP (leIl _ _) _ xAB).
Qed.
Lemma set1U A x : [set x] :&: A = if x \in A then [set x] else set0.
Proof.
apply/setP => y; rewrite (fun_if (fun E => y \in E)) in_setI in_set1 in_set0.
by have [->|] := altP (y =P x); rewrite ?if_same //; case: (_ \in A).
Qed.
Lemma set1U_eq0 A x : ([set x] :&: A == set0) = (x \notin A).
Proof. by rewrite set1U; case: (x \in A); rewrite ?set1_eq0 ?eqxx. Qed.
Lemma in_setD A B x : (x \in A :\: B) = (x \notin B) && (x \in A).
Proof.
apply/idP/idP => [|/andP[xNB xA]]; last first.
by rewrite -sub1set leBRL sub1set xA set1U_eq0.
rewrite -sub1set leBRL sub1set => /andP [-> dxB].
by rewrite -sub1set disj_le ?set1_eq0.
Qed.
Definition inE := ((in_set0, in_set1, in_setU, in_setI, in_setD), inE).
Definition subset_trans B A C := (@le_trans _ _ B A C).
Definition proper_trans B A C := (@lt_trans _ _ B A C).
Definition sub_proper_trans B A C := (@le_lt_trans _ _ B A C).
Definition proper_sub_trans B A C := (@lt_le_trans _ _ B A C).
Definition proper_sub A B := (@ltW _ _ A B).
Lemma properP A B : reflect (A \subset B /\ (exists2 x, x \in B & x \notin A))
(A \proper B).
Proof.
apply: (iffP idP)=> [ltAB|[leAB [x xB xNA]]].
rewrite ltW //; split => //; have := lt0B ltAB; rewrite lt0x.
by move => /set0Pn [x]; rewrite in_setD => /andP [xNA xB]; exists x.
rewrite lt_neqAle leAB andbT; apply: contraTneq xNA.
by move=> /setP /(_ x) ->; rewrite xB.
Qed.
Lemma set1P x y : reflect (x = y) (x \in ([set y] : set X)).
Proof. by rewrite in_set1; apply/eqP. Qed.
Lemma subset_eqP A B : reflect (A =i B) (A \subset B \subset A)%set.
Proof.
apply: (iffP andP) => [[AB BA] x|eqAB]; first by apply/idP/idP; apply: subsetP.
by split; apply/subsetP=> x; rewrite !eqAB.
Qed.
Lemma eqEsubset A B : (A == B) = (A \subset B) && (B \subset A).
Proof. exact: eq_le. Qed.
Lemma properE A B : A \proper B = (A \subset B) && ~~ (B \subset A).
Proof. by case: comparableP. Qed.
Lemma subEproper A B : A \subset B = (A == B) || (A \proper B).
Proof. exact: le_eqVlt. Qed.
Lemma eqVproper A B : A \subset B -> A = B \/ A \proper B.
Proof. by rewrite subEproper => /predU1P. Qed.
Lemma properEneq A B : A \proper B = (A != B) && (A \subset B).
Proof. exact: lt_neqAle. Qed.
Lemma proper_neq A B : A \proper B -> A != B.
Proof. by rewrite properEneq; case/andP. Qed.
Lemma eqEproper A B : (A == B) = (A \subset B) && ~~ (A \proper B).
Proof. by case: comparableP. Qed.
Lemma sub0set A : set0 \subset A.
Proof. by apply/subsetP=> x; rewrite inE. Qed.
Lemma subset0 A : (A \subset set0) = (A == set0).
Proof. by rewrite eqEsubset sub0set andbT. Qed.
Lemma proper0 A : (set0 \proper A) = (A != set0).
Proof. by rewrite properE sub0set subset0. Qed.
Lemma subset_neq0 A B : A \subset B -> A != set0 -> B != set0.
Proof. by rewrite -!proper0 => sAB /proper_sub_trans->. Qed.
Lemma setU1r x a B : x \in B -> x \in a |: B.
Proof. by move=> Bx; rewrite !inE predU1r. Qed.
Lemma setU1P x a B : reflect (x = a \/ x \in B) (x \in a |: B).
Proof. by rewrite !inE; apply: predU1P. Qed.
Lemma set1Ul x A b : x \in A -> x \in A :|: [set b].
Proof. by move=> Ax; rewrite !inE Ax. Qed.
Lemma set1Ur A b : b \in A :|: [set b].
Proof. by rewrite !inE eqxx orbT. Qed.
Lemma setD1P x A b : reflect (x != b /\ x \in A) (x \in A :\ b).
Proof. by rewrite !inE; apply: andP. Qed.
Lemma in_setD1 x A b : (x \in A :\ b) = (x != b) && (x \in A) .
Proof. by rewrite !inE. Qed.
Lemma setD11 b A : (b \in A :\ b) = false.
Proof. by rewrite !inE eqxx. Qed.
Lemma setD1K a A : a \in A -> a |: (A :\ a) = A.
Proof. by move=> Aa; apply/setP=> x; rewrite !inE; case: eqP => // ->. Qed.
Lemma setU1K a B : a \notin B -> (a |: B) :\ a = B.
Proof.
by move/negPf=> nBa; apply/setP=> x; rewrite !inE; case: eqP => // ->.
Qed.
Lemma set2P x a b : reflect (x = a \/ x = b) (x \in ([set a; b] : set X)).
Proof. by rewrite !inE; apply: pred2P. Qed.
Lemma in_set2 x a b : (x \in ([set a; b] : set X)) = (x == a) || (x == b).
Proof. by rewrite !inE. Qed.
Lemma set21 a b : a \in ([set a; b] : set X).
Proof. by rewrite !inE eqxx. Qed.
Lemma set22 a b : b \in ([set a; b] : set X).
Proof. by rewrite !inE eqxx orbT. Qed.
Lemma setUP x A B : reflect (x \in A \/ x \in B) (x \in A :|: B).
Proof. by rewrite !inE; apply: orP. Qed.
Lemma setUC A B : A :|: B = B :|: A.
Proof. by apply/setP => x; rewrite !inE orbC. Qed.
Lemma setUS A B C : A \subset B -> C :|: A \subset C :|: B.
Proof.
move=> sAB; apply/subsetP=> x; rewrite !inE.
by case: (x \in C) => //; apply: (subsetP sAB).
Qed.
Lemma setSU A B C : A \subset B -> A :|: C \subset B :|: C.
Proof. by move=> sAB; rewrite -!(setUC C) setUS. Qed.
Lemma setUSS A B C D : A \subset C -> B \subset D -> A :|: B \subset C :|: D.
Proof. by move=> /(setSU B) /subset_trans sAC /(setUS C)/sAC. Qed.
Lemma set0U A : set0 :|: A = A.
Proof. by apply/setP => x; rewrite !inE orFb. Qed.
Lemma setU0 A : A :|: set0 = A.
Proof. by rewrite setUC set0U. Qed.
Lemma setUA A B C : A :|: (B :|: C) = A :|: B :|: C.
Proof. by apply/setP => x; rewrite !inE orbA. Qed.
Lemma setUCA A B C : A :|: (B :|: C) = B :|: (A :|: C).
Proof. by rewrite !setUA (setUC B). Qed.
Lemma setUAC A B C : A :|: B :|: C = A :|: C :|: B.
Proof. by rewrite -!setUA (setUC B). Qed.
Lemma setUACA A B C D : (A :|: B) :|: (C :|: D) = (A :|: C) :|: (B :|: D).
Proof. by rewrite -!setUA (setUCA B). Qed.
Lemma setUid A : A :|: A = A.
Proof. by apply/setP=> x; rewrite inE orbb. Qed.
Lemma setUUl A B C : A :|: B :|: C = (A :|: C) :|: (B :|: C).
Proof. by rewrite setUA !(setUAC _ C) -(setUA _ C) setUid. Qed.
Lemma setUUr A B C : A :|: (B :|: C) = (A :|: B) :|: (A :|: C).
Proof. by rewrite !(setUC A) setUUl. Qed.
Lemma setIP x A B : reflect (x \in A /\ x \in B) (x \in A :&: B).
Proof. by rewrite !inE; apply: andP. Qed.
Lemma setIC A B : A :&: B = B :&: A.
Proof. by apply/setP => x; rewrite !inE andbC. Qed.
Lemma setIS A B C : A \subset B -> C :&: A \subset C :&: B.
Proof.
move=> sAB; apply/subsetP=> x; rewrite !inE.
by case: (x \in C) => //; apply: (subsetP sAB).
Qed.
Lemma setSI A B C : A \subset B -> A :&: C \subset B :&: C.
Proof. by move=> sAB; rewrite -!(setIC C) setIS. Qed.
Lemma setISS A B C D : A \subset C -> B \subset D -> A :&: B \subset C :&: D.
Proof. by move=> /(setSI B) /subset_trans sAC /(setIS C) /sAC. Qed.
Lemma set0I A : set0 :&: A = set0.
Proof. by apply/setP => x; rewrite !inE andFb. Qed.
Lemma setI0 A : A :&: set0 = set0.
Proof. by rewrite setIC set0I. Qed.
Lemma setIA A B C : A :&: (B :&: C) = A :&: B :&: C.
Proof. by apply/setP=> x; rewrite !inE andbA. Qed.
Lemma setICA A B C : A :&: (B :&: C) = B :&: (A :&: C).
Proof. by rewrite !setIA (setIC A). Qed.
Lemma setIAC A B C : A :&: B :&: C = A :&: C :&: B.
Proof. by rewrite -!setIA (setIC B). Qed.
Lemma setIACA A B C D : (A :&: B) :&: (C :&: D) = (A :&: C) :&: (B :&: D).
Proof. by rewrite -!setIA (setICA B). Qed.
Lemma setIid A : A :&: A = A.
Proof. by apply/setP=> x; rewrite inE andbb. Qed.
Lemma setIIl A B C : A :&: B :&: C = (A :&: C) :&: (B :&: C).
Proof. by rewrite setIA !(setIAC _ C) -(setIA _ C) setIid. Qed.
Lemma setIIr A B C : A :&: (B :&: C) = (A :&: B) :&: (A :&: C).
Proof. by rewrite !(setIC A) setIIl. Qed.
Lemma setIUr A B C : A :&: (B :|: C) = (A :&: B) :|: (A :&: C).
Proof. by apply/setP=> x; rewrite !inE andb_orr. Qed.
Lemma setIUl A B C : (A :|: B) :&: C = (A :&: C) :|: (B :&: C).
Proof. by apply/setP=> x; rewrite !inE andb_orl. Qed.
Lemma setUIr A B C : A :|: (B :&: C) = (A :|: B) :&: (A :|: C).
Proof. by apply/setP=> x; rewrite !inE orb_andr. Qed.
Lemma setUIl A B C : (A :&: B) :|: C = (A :|: C) :&: (B :|: C).
Proof. by apply/setP=> x; rewrite !inE orb_andl. Qed.
Lemma setUK A B : (A :|: B) :&: A = A.
Proof. by apply/setP=> x; rewrite !inE orbK. Qed.
Lemma setKU A B : A :&: (B :|: A) = A.
Proof. by apply/setP=> x; rewrite !inE orKb. Qed.
Lemma setIK A B : (A :&: B) :|: A = A.
Proof. by apply/setP=> x; rewrite !inE andbK. Qed.
Lemma setKI A B : A :|: (B :&: A) = A.
Proof. by apply/setP=> x; rewrite !inE andKb. Qed.
Lemma setDP A B x : reflect (x \in A /\ x \notin B) (x \in A :\: B).
Proof. by rewrite inE andbC; apply: andP. Qed.
Lemma setSD A B C : A \subset B -> A :\: C \subset B :\: C.
Proof.
by move=> /subsetP AB; apply/subsetP => x; rewrite !inE => /andP[-> /AB].
Qed.
Lemma setDS A B C : A \subset B -> C :\: B \subset C :\: A.
Proof.
move=> /subsetP AB; apply/subsetP => x; rewrite !inE => /andP[].
by move=> /(contra (AB _)) ->.
Qed.
Lemma setDSS A B C D : A \subset C -> D \subset B -> A :\: B \subset C :\: D.
Proof. by move=> /(setSD B) /subset_trans sAC /(setDS C) /sAC. Qed.
Lemma setD0 A : A :\: set0 = A.
Proof. exact: subx0. Qed.
Lemma set0D A : set0 :\: A = set0.
Proof. exact: sub0x. Qed.
Lemma setDv A : A :\: A = set0.
Proof. exact: subxx. Qed.
Lemma setID A B : A :&: B :|: A :\: B = A.
Proof. exact: joinIB. Qed.
Lemma setDUl A B C : (A :|: B) :\: C = (A :\: C) :|: (B :\: C).
Proof. exact: subUx. Qed.
Lemma setDUr A B C : A :\: (B :|: C) = (A :\: B) :&: (A :\: C).
Proof. exact: subxU. Qed.
Lemma setDIl A B C : (A :&: B) :\: C = (A :\: C) :&: (B :\: C).
Proof. exact: subIx. Qed.
Lemma setIDA A B C : A :&: (B :\: C) = (A :&: B) :\: C.
Proof. exact: meetxB. Qed.
Lemma setIDAC A B C : (A :\: B) :&: C = (A :&: C) :\: B.
Proof. exact: meetBx. Qed.
Lemma setDIr A B C : A :\: (B :&: C) = (A :\: B) :|: (A :\: C).
Proof. exact: subxI. Qed.
Lemma setDDl A B C : (A :\: B) :\: C = A :\: (B :|: C).
Proof. exact: subBx. Qed.
Lemma setDDr A B C : A :\: (B :\: C) = (A :\: B) :|: (A :&: C).
Proof. exact: subxB. Qed.
Lemma subsetIl A B : A :&: B \subset A.
Proof. by apply/subsetP=> x; rewrite inE; case/andP. Qed.
Lemma subsetIr A B : A :&: B \subset B.
Proof. by apply/subsetP=> x; rewrite inE; case/andP. Qed.
Lemma subsetUl A B : A \subset A :|: B.
Proof. by apply/subsetP=> x; rewrite inE => ->. Qed.
Lemma subsetUr A B : B \subset A :|: B.
Proof. by apply/subsetP=> x; rewrite inE orbC => ->. Qed.
Lemma subsetU1 x A : A \subset x |: A.
Proof. exact: subsetUr. Qed.
Lemma subsetDl A B : A :\: B \subset A.
Proof. exact: leBx. Qed.
Lemma subD1set A x : A :\ x \subset A.
Proof. by rewrite subsetDl. Qed.
Lemma setIidPl A B : reflect (A :&: B = A) (A \subset B).
Proof.
apply: (iffP subsetP) => [sAB | <- x /setIP[] //].
by apply/setP=> x; rewrite inE; apply/andb_idr/sAB.
Qed.
Arguments setIidPl {A B}.
Lemma setIidPr A B : reflect (A :&: B = B) (B \subset A).
Proof. by rewrite setIC; apply: setIidPl. Qed.
Lemma setUidPl A B : reflect (A :|: B = A) (B \subset A).
Proof. exact: join_idPr. Qed.
Lemma setUidPr A B : reflect (A :|: B = B) (A \subset B).
Proof. by rewrite setUC; apply: setUidPl. Qed.
Lemma subIset A B C : (B \subset A) || (C \subset A) -> (B :&: C \subset A).
Proof. by case/orP; apply: subset_trans; rewrite (subsetIl, subsetIr). Qed.
Lemma subsetI A B C : (A \subset B :&: C) = (A \subset B) && (A \subset C).
Proof.
rewrite !(sameP setIidPl eqP) setIA; have [-> //| ] := altP (A :&: B =P A).
by apply: contraNF => /eqP <-; rewrite -setIA -setIIl setIAC.
Qed.
Lemma subsetIP A B C : reflect (A \subset B /\ A \subset C) (A \subset B :&: C).
Proof. by rewrite subsetI; apply: andP. Qed.
Lemma subsetIidl A B : (A \subset A :&: B) = (A \subset B).
Proof. by rewrite subsetI lexx. Qed.
Lemma subsetIidr A B : (B \subset A :&: B) = (B \subset A).
Proof. by rewrite setIC subsetIidl. Qed.
Lemma subUset A B C : (B :|: C \subset A) = (B \subset A) && (C \subset A).
Proof. exact: leUx. Qed.
Lemma subsetU A B C : (A \subset B) || (A \subset C) -> A \subset B :|: C.
Proof. exact: lexU. Qed.
Lemma subUsetP A B C : reflect (A \subset C /\ B \subset C) (A :|: B \subset C).
Proof. by rewrite subUset; apply: andP. Qed.
Lemma subDset A B C : (A :\: B \subset C) = (A \subset B :|: C).
Proof. exact: leBLR. Qed.
Lemma setU_eq0 A B : (A :|: B == set0) = (A == set0) && (B == set0).
Proof. by rewrite -!subset0 subUset. Qed.
Lemma setD_eq0 A B : (A :\: B == set0) = (A \subset B).
Proof. by rewrite -subset0 subDset setU0. Qed.
Lemma subsetD1 A B x : (A \subset B :\ x) = (A \subset B) && (x \notin A).
Proof.
rewrite andbC; have [xA|] //= := boolP (x \in A).
by apply: contraTF isT => /subsetP /(_ x xA); rewrite !inE eqxx.
move=> xNA; apply/subsetP/subsetP => sAB y yA.
by have:= sAB y yA; rewrite !inE => /andP[].
by rewrite !inE sAB // andbT; apply: contraNneq xNA => <-.
Qed.
Lemma subsetD1P A B x : reflect (A \subset B /\ x \notin A) (A \subset B :\ x).
Proof. by rewrite subsetD1; apply: andP. Qed.
Lemma properD1 A x : x \in A -> A :\ x \proper A.
Proof. by move=> Ax; rewrite properE subsetDl /= subsetD1 Ax andbF. Qed.
Lemma properIr A B : ~~ (B \subset A) -> A :&: B \proper B.
Proof. by move=> nsAB; rewrite properE subsetIr subsetI negb_and nsAB. Qed.
Lemma properIl A B : ~~ (A \subset B) -> A :&: B \proper A.
Proof. by move=> nsBA; rewrite properE subsetIl subsetI negb_and nsBA orbT. Qed.
Lemma properUr A B : ~~ (A \subset B) -> B \proper A :|: B.
Proof. by rewrite properE subsetUr subUset lexx /= andbT. Qed.
Lemma properUl A B : ~~ (B \subset A) -> A \proper A :|: B.
Proof. by move=> not_sBA; rewrite setUC properUr. Qed.
Lemma proper1set A x : ([set x] \proper A) -> (x \in A).
Proof. by move/proper_sub; rewrite sub1set. Qed.
Lemma properIset A B C : (B \proper A) || (C \proper A) -> (B :&: C \proper A).
Proof. by case/orP; apply: sub_proper_trans; rewrite (subsetIl, subsetIr). Qed.
Lemma properI A B C : (A \proper B :&: C) -> (A \proper B) && (A \proper C).
Proof.
move=> pAI; apply/andP.
by split; apply: (proper_sub_trans pAI); rewrite (subsetIl, subsetIr).
Qed.
Lemma properU A B C : (B :|: C \proper A) -> (B \proper A) && (C \proper A).
Proof.
move=> pUA; apply/andP.
by split; apply: sub_proper_trans pUA; rewrite (subsetUr, subsetUl).
Qed.
End setX.
Section setXY.
Variables X Y : elementType.
Implicit Types (x : X) (y : Y) (A : set X) (B : set Y) (f : setfun set X Y).
Lemma imsetP (f : setfun set X Y) A y :
reflect (exists2 x : X, x \in A & y = f x) (y \in imset f A).
Proof.
move: A f; rewrite /set1 /in_mem /= /memset /imset /setfun.
case: set => [S [base [memset set1 /= ? ? ? ? ? ? ? ? ? H]]] ? /= A f.
exact: H.
Qed.
Lemma mem_imset f A x : x \in A -> f x \in imset f A.
Proof. by move=> Dx; apply/imsetP; exists x. Qed.
Lemma imset0 f : imset f set0 = set0.
Proof.
apply/setP => y; rewrite in_set0.
by apply/imsetP => [[x]]; rewrite in_set0.
Qed.
Lemma imset_eq0 f A : (imset f A == set0) = (A == set0).
Proof.
have [->|/set_gt0_ex [x xA]] := posxP A; first by rewrite imset0 eqxx.
by apply/set0Pn; exists (f x); rewrite mem_imset.
Qed.
Lemma imset_set1 f x : imset f [set x] = [set f x].
Proof.
apply/setP => y.
by apply/imsetP/set1P=> [[x' /set1P-> //]| ->]; exists x; rewrite ?set11.
Qed.
Lemma imsetS f A A' : A \subset A' -> imset f A \subset imset f A'.
Proof.
move=> leAB; apply/subsetP => y /imsetP [x xA ->].
by rewrite mem_imset // (subsetP leAB).
Qed.
Lemma imset_proper f A A' :
{in A' &, injective f} -> A \proper A' -> imset f A \proper imset f A'.
Proof.
move=> injf /properP[sAB [x Bx nAx]]; rewrite lt_leAnge imsetS //=.
apply: contra nAx => sfBA.
have: f x \in imset f A by rewrite (subsetP sfBA) ?mem_imset.
by case/imsetP=> y Ay /injf-> //; apply: subsetP sAB y Ay.
Qed.
End setXY.
End SemisetTheory.
End SemisetTheory.
Module set.
Section ClassDef.
Variable elementType : Type.
Variable eqType_of_elementType : elementType -> eqType.
Coercion eqType_of_elementType : elementType >-> eqType.
Implicit Types (X Y : elementType).
Record class_of d (set : elementType -> Type) := Class {
base : forall X, Order.CTBLattice.class_of (display_set d) (set X);
mixin : Semiset.mixin_of eqType_of_elementType
(fun X => Order.CBLattice.Pack (base X) (set X))
}.
Local Coercion base : class_of >-> Funclass.
Definition base2 d (set : elementType -> Type)
(c : class_of d set) := Semiset.Class (@mixin _ set c).
Local Coercion base2 : class_of >-> Semiset.class_of.
Structure type d := Pack { sort ; _ : class_of d sort;
_ : elementType -> Type }.
Local Coercion sort : type >-> Funclass.
Variables (set : elementType -> Type) (disp : unit) (cT : type disp).
Definition class := let: Pack _ c _ as cT' := cT return class_of _ cT' in c.
Let xset := let: Pack set _ _ := cT in set.
Notation xclass := (class : class_of xset).
Definition pack :=
fun bT (b : forall X, Order.CTBLattice.class_of _ _)
& (forall X, phant_id (@Order.CTBLattice.class disp (bT X)) (b X)) =>
fun mT m & phant_id (@Semiset.class _ eqType_of_elementType mT)
(@Semiset.Class _ _ disp set b m) =>
Pack (@Class _ set (fun x => b x) m) set.
End ClassDef.
Section CanonicalDef.
Variable elementType : Type.
Variable eqType_of_elementType : elementType -> eqType.
Coercion eqType_of_elementType : elementType >-> eqType.
Notation type := (type eqType_of_elementType).
Local Coercion sort : type >-> Funclass.
Local Coercion base : class_of >-> Funclass.
Local Coercion base2 : class_of >-> Semiset.class_of.
Variables (set : elementType -> Type) (X : elementType).
Variable (disp : unit) (cT : type disp).
Local Notation ddisp := (display_set disp).
Let xset := let: Pack set _ _ := cT in set.
Notation xclass := (@class _ eqType_of_elementType _ cT : class_of eqType_of_elementType _ xset).
Definition eqType := @Equality.Pack (cT X) (xclass X) (xset X).
Definition choiceType := @Choice.Pack (cT X) (xclass X) (xset X).
Definition porderType := @Order.POrder.Pack ddisp (cT X) (xclass X) (xset X).
Definition latticeType :=
@Order.Lattice.Pack ddisp (cT X) (xclass X) (xset X).
Definition blatticeType :=
@Order.BLattice.Pack ddisp (cT X) (xclass X) (xset X).
Definition cblatticeType :=
@Order.CBLattice.Pack ddisp (cT X) (xclass X) (xset X).
Definition ctblatticeType :=
@Order.CTBLattice.Pack ddisp (cT X) (xclass X) (xset X).
Definition semisetType := @Semiset.Pack _ _ disp cT xclass xset.
Definition semiset_ctblatticeType :=
@Order.CTBLattice.Pack ddisp (semisetType X) (xclass X) (xset X).
End CanonicalDef.
Module Import Exports.
Coercion base : class_of >-> Funclass.
Coercion base2 : class_of >-> Semiset.class_of.
Coercion sort : type >-> Funclass.
Coercion eqType : type >-> Equality.type.
Coercion choiceType : type >-> Choice.type.
Coercion porderType : type >-> Order.POrder.type.
Coercion latticeType : type >-> Order.Lattice.type.
Coercion blatticeType : type >-> Order.BLattice.type.
Coercion cblatticeType : type >-> Order.CBLattice.type.
Coercion ctblatticeType : type >-> Order.CTBLattice.type.
Coercion semisetType : type >-> Semiset.type.
Canonical eqType.
Canonical choiceType.
Canonical porderType.
Canonical latticeType.
Canonical blatticeType.
Canonical cblatticeType.
Canonical ctblatticeType.
Canonical semisetType.
Notation setType := type.
Notation "[ 'setType' 'of' set ]" :=
(@pack _ _ set _ _ _ (fun=> id) _ _ id)
(at level 0, format "[ 'setType' 'of' set ]") : form_scope.
End Exports.
End set.
Import set.Exports.
Module Import setTheory.
Section setTheory.
Variable elementType : Type.
Variable eqType_of_elementType : elementType -> eqType.
Coercion eqType_of_elementType : elementType >-> eqType.
Variable disp : unit.
Variable set : setType eqType_of_elementType disp.
Section setX.
Variables X : elementType.
Implicit Types (x y : X) (A B : set X).
End setX.
End setTheory.
End setTheory.
Module Theory.
Export Semiset.Exports.
Export set.Exports.
Export SetSyntax.
Export SemisetSyntax.
Export SemisetTheory.
Export setTheory.
End Theory.
End SET.
Require Import ssreflect ssrbool eqtype ssrfun ssrnat choice seq.
From mathcomp
Require Import fintype tuple bigop path.
From mathcomp Require Import order.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Reserved Notation "x \subset y" (at level 70, y at next level).
Reserved Notation "x \contains y" (at level 70, y at next level, only parsing).
Reserved Notation "x \proper y" (at level 70, y at next level).
Reserved Notation "x \containsproper y" (at level 70, y at next level, only parsing).
Reserved Notation "x \subset y :> T" (at level 70, y at next level).
Reserved Notation "x \contains y :> T" (at level 70, y at next level, only parsing).
Reserved Notation "x \proper y :> T" (at level 70, y at next level).
Reserved Notation "x \containsproper y :> T" (at level 70, y at next level, only parsing).
Reserved Notation "\subsets y" (at level 35).
Reserved Notation "\supersets y" (at level 35).
Reserved Notation "\propersets y" (at level 35).
Reserved Notation "\superpropersets y" (at level 35).
Reserved Notation "\subsets y :> T" (at level 35, y at next level).
Reserved Notation "\supersets y :> T" (at level 35, y at next level).
Reserved Notation "\propersets y :> T" (at level 35, y at next level).
Reserved Notation "\superpropersets y :> T" (at level 35, y at next level).
Reserved Notation "x \subset y \subset z" (at level 70, y, z at next level).
Reserved Notation "x \proper y \subset z" (at level 70, y, z at next level).
Reserved Notation "x \subset y \proper z" (at level 70, y, z at next level).
Reserved Notation "x \proper y \proper z" (at level 70, y, z at next level).
Reserved Notation "x \subset y ?= 'iff' c" (at level 70, y, c at next level,
format "x '[hv' \subset y '/' ?= 'iff' c ']'").
Reserved Notation "x \subset y ?= 'iff' c :> T" (at level 70, y, c at next level,
format "x '[hv' \subset y '/' ?= 'iff' c :> T ']'").
Reserved Notation "~: A" (at level 35, right associativity).
Reserved Notation "[ 'set' ~ a ]" (at level 0, format "[ 'set' ~ a ]").
Reserved Notation "[ 'set' a1 ; a2 ; .. ; an ]"
(at level 0, a1 at level 99, format "[ 'set' a1 ; a2 ; .. ; an ]").
Delimit Scope abstract_set_scope with set.
Local Open Scope abstract_set_scope.
Module SET.
Import Order.Theory Order.Syntax Order.Def.
Fact display_set : unit -> unit. Proof. exact. Qed.
Module Import SetSyntax.
Notation "\sub%set" := (@le (display_set _) _) : abstract_set_scope.
Notation "\super%set" := (@ge (display_set _) _) : abstract_set_scope.
Notation "\proper%set" := (@lt (display_set _) _) : abstract_set_scope.
Notation "\superproper%set" := (@gt (display_set _) _) : abstract_set_scope.
Notation "\sub?%set" := (@leif (display_set _) _) : abstract_set_scope.
Notation "\subsets y" := (\super%set y) : abstract_set_scope.
Notation "\subsets y :> T" := (\subsets (y : T)) : abstract_set_scope.
Notation "\supersets y" := (\sub%set y) : abstract_set_scope.
Notation "\supersets y :> T" := (\supersets (y : T)) : abstract_set_scope.
Notation "\propersets y" := (\superproper%set y) : abstract_set_scope.
Notation "\propersets y :> T" := (\propersets (y : T)) : abstract_set_scope.
Notation "\superpropersets y" := (\proper%set y) : abstract_set_scope.
Notation "\superpropersets y :> T" := (\superpropersets (y : T)) : abstract_set_scope.
Notation "x \subset y" := (\sub%set x y) : abstract_set_scope.
Notation "x \subset y :> T" := ((x : T) \subset (y : T)) : abstract_set_scope.
Notation "x \proper y" := (\proper%set x y) : abstract_set_scope.
Notation "x \proper y :> T" := ((x : T) \proper (y : T)) : abstract_set_scope.
Notation "x \subset y \subset z" := ((x \subset y)%set && (y \subset z)%set) : abstract_set_scope.
Notation "x \proper y \subset z" := ((x \proper y)%set && (y \subset z)%set) : abstract_set_scope.
Notation "x \subset y \proper z" := ((x \subset y)%set && (y \proper z)%set) : abstract_set_scope.
Notation "x \proper y \proper z" := ((x \proper y)%set && (y \proper z)%set) : abstract_set_scope.
Notation "x \subset y ?= 'iff' C" := (\sub?%set x y C) : abstract_set_scope.
Notation "x \subset y ?= 'iff' C :> R" := ((x : R) \subset (y : R) ?= iff C)
(only parsing) : abstract_set_scope.
Notation set0 := (@bottom (display_set _) _).
Notation setT := (@top (display_set _) _).
Notation setU := (@join (display_set _) _).
Notation setI := (@meet (display_set _) _).
Notation setD := (@sub (display_set _) _).
Notation setC := (@compl (display_set _) _).
Notation "x :&: y" := (setI x y).
Notation "x :|: y" := (setU x y).
Notation "x :\: y" := (setD x y).
Notation "~: x" := (setC x).
Notation "x \subset y" := (\sub%set x y) : bool_scope.
Notation "x \proper y" := (\proper%set x y) : bool_scope.
End SetSyntax.
Module Semiset.
Section ClassDef.
Variable elementType : Type. Variable eqType_of_elementType : elementType -> eqType.
Coercion eqType_of_elementType : elementType >-> eqType.
Implicit Types (X Y : elementType).
Structure mixin_of d (set : elementType -> (cblatticeType (display_set d))) :=
Mixin {
memset : forall X, set X -> X -> bool;
set1 : forall X, X -> set X;
_ : forall X (x : X), ~~ memset set0 x;
_ : forall X (x y : X), memset (set1 y) x = (x == y);
_ : forall X (x : X) A, (set1 x \subset A) = (memset A x);
_ : forall X (A : set X), (set0 \proper A) -> {x | memset A x} ;
_ : forall X (A B : set X), {subset memset A <= memset B} -> A \subset B;
_ : forall X (x : X) A B, (memset (A :|: B) x) =
(memset A x) || (memset B x);
funsort : elementType -> elementType -> Type;
fun_of_funsort : forall X Y, funsort X Y -> X -> Y;
imset : forall X Y, funsort X Y -> set X -> set Y;
_ : forall X Y (f : funsort X Y) (A : set X) (y : Y),
reflect (exists2 x : X, memset A x & y = fun_of_funsort f x)
(memset (imset f A) y)
}.
Record class_of d (set : elementType -> Type) := Class {
base : forall X, @Order.CBLattice.class_of (display_set d) (set X);
mixin : mixin_of (fun X => Order.CBLattice.Pack (base X) (set X))
}.
Local Coercion base : class_of >-> Funclass.
Structure type d := Pack { sort ; _ : class_of d sort;
_ : elementType -> Type }.
Local Coercion sort : type >-> Funclass.
Variables (set : elementType -> Type) (disp : unit) (cT : type disp).
Definition class := let: Pack _ c _ as cT' := cT return class_of _ cT' in c.
Definition clone disp' c of (disp = disp') & phant_id class c :=
@Pack disp' set c set.
Let xset := let: Pack set _ _ := cT in set.
Notation xclass := (class : class_of _ xset).
Definition pack b0
(m0 : mixin_of
(fun X=> @Order.CBLattice.Pack (display_set disp) (set X) (b0 X) (set X))) :=
fun bT b &
(forall X, phant_id (@Order.CBLattice.class (display_set disp) (bT X)) (b X)) =>
fun m & phant_id m0 m => Pack (@Class disp set b m) set.
End ClassDef.
Section CanonicalDef.
Variable elementType : Type.
Variable eqType_of_elementType : elementType -> eqType.
Coercion eqType_of_elementType : elementType >-> eqType.
Notation type := (type eqType_of_elementType).
Local Coercion base : class_of >-> Funclass.
Local Coercion sort : type >-> Funclass.
Variables (set : elementType -> Type) (X : elementType).
Variables (disp : unit) (cT : type disp).
Local Notation ddisp := (display_set disp).
Let xset := let: Pack set _ _ := cT in set.
Notation xclass := (@class _ eqType_of_elementType _ cT : class_of eqType_of_elementType _ xset).
Definition eqType := @Equality.Pack (cT X) (xclass X) (xset X).
Definition choiceType := @Choice.Pack (cT X) (xclass X) (xset X).
Definition porderType :=
@Order.POrder.Pack ddisp (cT X) (xclass X) (xset X).
Definition latticeType :=
@Order.Lattice.Pack ddisp (cT X) (xclass X) (xset X).
Definition blatticeType :=
@Order.BLattice.Pack ddisp (cT X) (xclass X) (xset X).
Definition cblatticeType :=
@Order.CBLattice.Pack ddisp (cT X) (xclass X) (xset X).
End CanonicalDef.
Module Import Exports.
Coercion mixin : class_of >-> mixin_of.
Coercion base : class_of >-> Funclass.
Coercion sort : type >-> Funclass.
Coercion eqType : type >-> Equality.type.
Coercion choiceType : type >-> Choice.type.
Coercion porderType : type >-> Order.POrder.type.
Coercion latticeType : type >-> Order.Lattice.type.
Coercion blatticeType : type >-> Order.BLattice.type.
Coercion cblatticeType : type >-> Order.CBLattice.type.
Canonical eqType.
Canonical choiceType.
Canonical porderType.
Canonical latticeType.
Canonical blatticeType.
Canonical cblatticeType.
Notation semisetType := type.
Notation semisetMixin := mixin_of.
Notation SemisetMixin := Mixin.
Notation SemisetType set m := (@pack _ _ set _ _ m _ _ (fun=> id) _ id).
Notation "[ 'semisetType' 'of' set 'for' cset ]" := (@clone _ _ set _ cset _ _ erefl id)
(at level 0, format "[ 'semisetType' 'of' set 'for' cset ]") : form_scope.
Notation "[ 'semisetType' 'of' set 'for' cset 'with' disp ]" :=
(@clone _ _ set _ cset disp _ (unit_irrelevance _ _) id)
(at level 0, format "[ 'semisetType' 'of' set 'for' cset 'with' disp ]") : form_scope.
Notation "[ 'semisetType' 'of' set ]" := [semisetType of set for _]
(at level 0, format "[ 'semisetType' 'of' set ]") : form_scope.
Notation "[ 'semisetType' 'of' set 'with' disp ]" := [semisetType of set for _ with disp]
(at level 0, format "[ 'semisetType' 'of' set 'with' disp ]") : form_scope.
End Exports.
End Semiset.
Import Semiset.Exports.
Section SemisetOperations.
Context {elementType : Type} {eqType_of_elementType : elementType -> eqType}.
Coercion eqType_of_elementType : elementType >-> eqType.
Context {disp : unit}.
Section setfun.
Variable (set : semisetType eqType_of_elementType disp).
Definition setfun := Semiset.funsort (Semiset.class set).
Definition fun_of_setfun X Y (f : setfun X Y) : X -> Y :=
@Semiset.fun_of_funsort _ _ _ _ (Semiset.class set) _ _ f.
Coercion fun_of_setfun : setfun >-> Funclass.
End setfun.
Context {set : semisetType eqType_of_elementType disp}.
Variable X Y : elementType.
Definition memset : set X -> X -> bool :=
@Semiset.memset _ _ _ _ (Semiset.class set) _.
Definition set1 : X -> set X :=
@Semiset.set1 _ _ _ _ (Semiset.class set) _.
Definition imset : setfun set X Y -> set X -> set Y:=
@Semiset.imset _ _ _ _ (Semiset.class set) _ _.
Canonical set_predType := Eval hnf in mkPredType memset.
Structure setpredType := SetPredType {
setpred_sort :> Type;
tosetpred : setpred_sort -> pred X;
_ : {mem : setpred_sort -> mem_pred X | isMem tosetpred mem};
_ : {pred_fset : setpred_sort -> set X |
forall p x, x \in pred_fset p = tosetpred p x}
}.
Canonical setpredType_predType (fpX : setpredType) :=
@PredType X (setpred_sort fpX) (@tosetpred fpX)
(let: SetPredType _ _ mem _ := fpX in mem).
Definition predset (fpX : setpredType) : fpX -> set X :=
let: SetPredType _ _ _ (exist pred_fset _) := fpX in pred_fset.
End SemisetOperations.
Module Import SemisetSyntax.
Notation "[ 'set' x : T | P ]" := (predset (fun x : T => P%B))
(at level 0, x at level 99, only parsing) : abstract_set_scope.
Notation "[ 'set' x | P ]" := [set x : _ | P]
(at level 0, x, P at level 99, format "[ 'set' x | P ]") : abstract_set_scope.
Notation "[ 'set' x 'in' A ]" := [set x | x \in A]
(at level 0, x at level 99, format "[ 'set' x 'in' A ]") : abstract_set_scope.
Notation "[ 'set' x : T 'in' A ]" := [set x : T | x \in A]
(at level 0, x at level 99, only parsing) : abstract_set_scope.
Notation "[ 'set' x : T | P & Q ]" := [set x : T | P && Q]
(at level 0, x at level 99, only parsing) : abstract_set_scope.
Notation "[ 'set' x | P & Q ]" := [set x | P && Q ]
(at level 0, x, P at level 99, format "[ 'set' x | P & Q ]") : abstract_set_scope.
Notation "[ 'set' x : T 'in' A | P ]" := [set x : T | x \in A & P]
(at level 0, x at level 99, only parsing) : abstract_set_scope.
Notation "[ 'set' x 'in' A | P ]" := [set x | x \in A & P]
(at level 0, x at level 99, format "[ 'set' x 'in' A | P ]") : abstract_set_scope.
Notation "[ 'set' x 'in' A | P & Q ]" := [set x in A | P && Q]
(at level 0, x at level 99,
format "[ 'set' x 'in' A | P & Q ]") : abstract_set_scope.
Notation "[ 'set' x : T 'in' A | P & Q ]" := [set x : T in A | P && Q]
(at level 0, x at level 99, only parsing) : abstract_set_scope.
Notation "[ 'set' a ]" := (set1 a)
(at level 0, a at level 99, format "[ 'set' a ]") : abstract_set_scope.
Notation "[ 'set' a : T ]" := [set (a : T)]
(at level 0, a at level 99, format "[ 'set' a : T ]") : abstract_set_scope.
Notation "a |: y" := ([set a] :|: y) : abstract_set_scope.
Notation "x :\ a" := (x :\: [set a]) : abstract_set_scope.
Notation "[ 'set' a1 ; a2 ; .. ; an ]" := (setU .. (a1 |: [set a2]) .. [set an]).
Notation "f @: A" := (imset f A) (at level 24) : abstract_set_scope.
End SemisetSyntax.
Module Import SemisetTheory.
Section SemisetTheory.
Variable elementType : Type.
Variable eqType_of_elementType : elementType -> eqType.
Coercion eqType_of_elementType : elementType >-> eqType.
Variable disp : unit.
Variable set : semisetType eqType_of_elementType disp.
Section setX.
Variables X : elementType.
Implicit Types (x y : X) (A B C : set X).
Lemma notin_set0 (x : X) : x \notin (set0 : set X).
Proof.
rewrite /set1 /in_mem /= /memset.
case: set => [S [base [memset set1 /= H ? ? ? ? ? ? ? ? ?]] ?] /=.
exact: H.
Qed.
Lemma in_set1 x y : x \in ([set y] : set X) = (x == y).
Proof.
rewrite /set1 /in_mem /= /memset.
case: set => [S [base [memset set1 /= ? H ? ? ? ? ? ? ? ?]] ?] /=.
exact: H.
Qed.
Lemma sub1set x A : ([set x] \subset A) = (x \in A).
Proof.
rewrite /set1 /in_mem /= /memset.
case: set A => [S [base [memset set1 /= ? ? H ? ? ? ? ? ? ?]] ?] A /=.
exact: H.
Qed.
Lemma set_gt0_ex A : set0 \proper A -> {x | x \in A}.
Proof.
rewrite /set1 /in_mem /= /memset.
case: set A => [S [base [memset set1 /= ? ? ? H ? ? ? ? ? ?]] ?] A /=.
exact: H.
Qed.
Lemma subsetP_subproof A B : {subset A <= B} -> A \subset B.
Proof.
rewrite /set1 /in_mem /= /memset.
case: set A B => [S [base [memset set1 /= ? ? ? ? H ? ? ? ? ?]] ?] /=.
exact: H.
Qed.
Lemma in_setU (x : X) A B : (x \in A :|: B) = (x \in A) || (x \in B).
Proof.
rewrite /set1 /in_mem /= /memset.
case: set A B => [S [base [memset set1 /= ? ? ? ? ? H ? ? ? ?]] ?] /=.
exact: H.
Qed.
Lemma in_set0 x : x \in (set0 : set X) = false.
Proof. by rewrite (negPf (notin_set0 _)). Qed.
Lemma subsetP {A B} : reflect {subset A <= B} (A <= B)%O.
Proof.
apply: (iffP idP) => [sAB x xA|/subsetP_subproof//].
by rewrite -sub1set (le_trans _ sAB) // sub1set.
Qed.
Lemma setP A B : A =i B <-> A = B.
Proof.
split=> [eqAB|->//]; apply/eqP; rewrite eq_le.
gen have leAB : A B eqAB / A \subset B; last by rewrite !leAB.
by apply/subsetP => x; rewrite eqAB.
Qed.
Lemma set1_neq0 (x : X) : [set x] != set0 :> set X.
Proof. by apply/negP=> /eqP /setP /(_ x); rewrite in_set0 in_set1 eqxx. Qed.
Lemma set1_eq0 x : ([set x] == set0 :> set X) = false.
Proof. by rewrite (negPf (set1_neq0 _)). Qed.
Lemma set11 x : x \in ([set x] : set X).
Proof. by rewrite -sub1set. Qed.
Hint Resolve set11.
Lemma set1_inj : injective (@set1 _ _ _ set X).
Proof.
move=> x y /eqP; rewrite eq_le sub1set => /andP [].
by rewrite in_set1 => /eqP.
Qed.
Lemma set_0Vmem A : (A = set0) + {x : X | x \in A}.
Proof.
have [|AN0] := eqVneq A set0; [left|right] => //.
by move: AN0; rewrite -lt0x => /set_gt0_ex.
Qed.
Lemma set0Pn A : reflect (exists x, x \in A) (A != set0).
Proof.
have [->|[x xA]] := set_0Vmem A; rewrite ?eqxx -?lt0x.
by constructor=> [[x]]; rewrite in_set0.
suff -> : set0 \proper A by constructor; exists x.
by move: xA; rewrite -sub1set => /(lt_le_trans _)->; rewrite ?lt0x ?set1_eq0.
Qed.
Lemma subset1 A x : (A \subset [set x]) = (A == [set x]) || (A == set0).
Proof.
symmetry; rewrite eq_le; have [] /= := boolP (A \subset [set x]); last first.
by apply: contraNF => /eqP ->; rewrite ?le0x.
have [/eqP->|[y yA]] := set_0Vmem A; rewrite ?orbT // ?sub1set.
by move=> /subsetP /(_ _ yA); rewrite in_set1 => /eqP<-; rewrite yA.
Qed.
Lemma eq_set1 (x : X) A : (A == [set x]) = (set0 \proper A \subset [set x]).
Proof.
by rewrite subset1; have [->|?] := posxP A; rewrite 1?eq_sym ?set1_eq0 ?orbF.
Qed.
Lemma in_setI A B (x : X) : (x \in A :&: B) = (x \in A) && (x \in B).
Proof.
apply/idP/idP => [xAB|?]; last by rewrite -sub1set lexI !sub1set.
by rewrite (subsetP (leIr _ _) _ xAB) (subsetP (leIl _ _) _ xAB).
Qed.
Lemma set1U A x : [set x] :&: A = if x \in A then [set x] else set0.
Proof.
apply/setP => y; rewrite (fun_if (fun E => y \in E)) in_setI in_set1 in_set0.
by have [->|] := altP (y =P x); rewrite ?if_same //; case: (_ \in A).
Qed.
Lemma set1U_eq0 A x : ([set x] :&: A == set0) = (x \notin A).
Proof. by rewrite set1U; case: (x \in A); rewrite ?set1_eq0 ?eqxx. Qed.
Lemma in_setD A B x : (x \in A :\: B) = (x \notin B) && (x \in A).
Proof.
apply/idP/idP => [|/andP[xNB xA]]; last first.
by rewrite -sub1set leBRL sub1set xA set1U_eq0.
rewrite -sub1set leBRL sub1set => /andP [-> dxB].
by rewrite -sub1set disj_le ?set1_eq0.
Qed.
Definition inE := ((in_set0, in_set1, in_setU, in_setI, in_setD), inE).
Definition subset_trans B A C := (@le_trans _ _ B A C).
Definition proper_trans B A C := (@lt_trans _ _ B A C).
Definition sub_proper_trans B A C := (@le_lt_trans _ _ B A C).
Definition proper_sub_trans B A C := (@lt_le_trans _ _ B A C).
Definition proper_sub A B := (@ltW _ _ A B).
Lemma properP A B : reflect (A \subset B /\ (exists2 x, x \in B & x \notin A))
(A \proper B).
Proof.
apply: (iffP idP)=> [ltAB|[leAB [x xB xNA]]].
rewrite ltW //; split => //; have := lt0B ltAB; rewrite lt0x.
by move => /set0Pn [x]; rewrite in_setD => /andP [xNA xB]; exists x.
rewrite lt_neqAle leAB andbT; apply: contraTneq xNA.
by move=> /setP /(_ x) ->; rewrite xB.
Qed.
Lemma set1P x y : reflect (x = y) (x \in ([set y] : set X)).
Proof. by rewrite in_set1; apply/eqP. Qed.
Lemma subset_eqP A B : reflect (A =i B) (A \subset B \subset A)%set.
Proof.
apply: (iffP andP) => [[AB BA] x|eqAB]; first by apply/idP/idP; apply: subsetP.
by split; apply/subsetP=> x; rewrite !eqAB.
Qed.
Lemma eqEsubset A B : (A == B) = (A \subset B) && (B \subset A).
Proof. exact: eq_le. Qed.
Lemma properE A B : A \proper B = (A \subset B) && ~~ (B \subset A).
Proof. by case: comparableP. Qed.
Lemma subEproper A B : A \subset B = (A == B) || (A \proper B).
Proof. exact: le_eqVlt. Qed.
Lemma eqVproper A B : A \subset B -> A = B \/ A \proper B.
Proof. by rewrite subEproper => /predU1P. Qed.
Lemma properEneq A B : A \proper B = (A != B) && (A \subset B).
Proof. exact: lt_neqAle. Qed.
Lemma proper_neq A B : A \proper B -> A != B.
Proof. by rewrite properEneq; case/andP. Qed.
Lemma eqEproper A B : (A == B) = (A \subset B) && ~~ (A \proper B).
Proof. by case: comparableP. Qed.
Lemma sub0set A : set0 \subset A.
Proof. by apply/subsetP=> x; rewrite inE. Qed.
Lemma subset0 A : (A \subset set0) = (A == set0).
Proof. by rewrite eqEsubset sub0set andbT. Qed.
Lemma proper0 A : (set0 \proper A) = (A != set0).
Proof. by rewrite properE sub0set subset0. Qed.
Lemma subset_neq0 A B : A \subset B -> A != set0 -> B != set0.
Proof. by rewrite -!proper0 => sAB /proper_sub_trans->. Qed.
Lemma setU1r x a B : x \in B -> x \in a |: B.
Proof. by move=> Bx; rewrite !inE predU1r. Qed.
Lemma setU1P x a B : reflect (x = a \/ x \in B) (x \in a |: B).
Proof. by rewrite !inE; apply: predU1P. Qed.
Lemma set1Ul x A b : x \in A -> x \in A :|: [set b].
Proof. by move=> Ax; rewrite !inE Ax. Qed.
Lemma set1Ur A b : b \in A :|: [set b].
Proof. by rewrite !inE eqxx orbT. Qed.
Lemma setD1P x A b : reflect (x != b /\ x \in A) (x \in A :\ b).
Proof. by rewrite !inE; apply: andP. Qed.
Lemma in_setD1 x A b : (x \in A :\ b) = (x != b) && (x \in A) .
Proof. by rewrite !inE. Qed.
Lemma setD11 b A : (b \in A :\ b) = false.
Proof. by rewrite !inE eqxx. Qed.
Lemma setD1K a A : a \in A -> a |: (A :\ a) = A.
Proof. by move=> Aa; apply/setP=> x; rewrite !inE; case: eqP => // ->. Qed.
Lemma setU1K a B : a \notin B -> (a |: B) :\ a = B.
Proof.
by move/negPf=> nBa; apply/setP=> x; rewrite !inE; case: eqP => // ->.
Qed.
Lemma set2P x a b : reflect (x = a \/ x = b) (x \in ([set a; b] : set X)).
Proof. by rewrite !inE; apply: pred2P. Qed.
Lemma in_set2 x a b : (x \in ([set a; b] : set X)) = (x == a) || (x == b).
Proof. by rewrite !inE. Qed.
Lemma set21 a b : a \in ([set a; b] : set X).
Proof. by rewrite !inE eqxx. Qed.
Lemma set22 a b : b \in ([set a; b] : set X).
Proof. by rewrite !inE eqxx orbT. Qed.
Lemma setUP x A B : reflect (x \in A \/ x \in B) (x \in A :|: B).
Proof. by rewrite !inE; apply: orP. Qed.
Lemma setUC A B : A :|: B = B :|: A.
Proof. by apply/setP => x; rewrite !inE orbC. Qed.
Lemma setUS A B C : A \subset B -> C :|: A \subset C :|: B.
Proof.
move=> sAB; apply/subsetP=> x; rewrite !inE.
by case: (x \in C) => //; apply: (subsetP sAB).
Qed.
Lemma setSU A B C : A \subset B -> A :|: C \subset B :|: C.
Proof. by move=> sAB; rewrite -!(setUC C) setUS. Qed.
Lemma setUSS A B C D : A \subset C -> B \subset D -> A :|: B \subset C :|: D.
Proof. by move=> /(setSU B) /subset_trans sAC /(setUS C)/sAC. Qed.
Lemma set0U A : set0 :|: A = A.
Proof. by apply/setP => x; rewrite !inE orFb. Qed.
Lemma setU0 A : A :|: set0 = A.
Proof. by rewrite setUC set0U. Qed.
Lemma setUA A B C : A :|: (B :|: C) = A :|: B :|: C.
Proof. by apply/setP => x; rewrite !inE orbA. Qed.
Lemma setUCA A B C : A :|: (B :|: C) = B :|: (A :|: C).
Proof. by rewrite !setUA (setUC B). Qed.
Lemma setUAC A B C : A :|: B :|: C = A :|: C :|: B.
Proof. by rewrite -!setUA (setUC B). Qed.
Lemma setUACA A B C D : (A :|: B) :|: (C :|: D) = (A :|: C) :|: (B :|: D).
Proof. by rewrite -!setUA (setUCA B). Qed.
Lemma setUid A : A :|: A = A.
Proof. by apply/setP=> x; rewrite inE orbb. Qed.
Lemma setUUl A B C : A :|: B :|: C = (A :|: C) :|: (B :|: C).
Proof. by rewrite setUA !(setUAC _ C) -(setUA _ C) setUid. Qed.
Lemma setUUr A B C : A :|: (B :|: C) = (A :|: B) :|: (A :|: C).
Proof. by rewrite !(setUC A) setUUl. Qed.
Lemma setIP x A B : reflect (x \in A /\ x \in B) (x \in A :&: B).
Proof. by rewrite !inE; apply: andP. Qed.
Lemma setIC A B : A :&: B = B :&: A.
Proof. by apply/setP => x; rewrite !inE andbC. Qed.
Lemma setIS A B C : A \subset B -> C :&: A \subset C :&: B.
Proof.
move=> sAB; apply/subsetP=> x; rewrite !inE.
by case: (x \in C) => //; apply: (subsetP sAB).
Qed.
Lemma setSI A B C : A \subset B -> A :&: C \subset B :&: C.
Proof. by move=> sAB; rewrite -!(setIC C) setIS. Qed.
Lemma setISS A B C D : A \subset C -> B \subset D -> A :&: B \subset C :&: D.
Proof. by move=> /(setSI B) /subset_trans sAC /(setIS C) /sAC. Qed.
Lemma set0I A : set0 :&: A = set0.
Proof. by apply/setP => x; rewrite !inE andFb. Qed.
Lemma setI0 A : A :&: set0 = set0.
Proof. by rewrite setIC set0I. Qed.
Lemma setIA A B C : A :&: (B :&: C) = A :&: B :&: C.
Proof. by apply/setP=> x; rewrite !inE andbA. Qed.
Lemma setICA A B C : A :&: (B :&: C) = B :&: (A :&: C).
Proof. by rewrite !setIA (setIC A). Qed.
Lemma setIAC A B C : A :&: B :&: C = A :&: C :&: B.
Proof. by rewrite -!setIA (setIC B). Qed.
Lemma setIACA A B C D : (A :&: B) :&: (C :&: D) = (A :&: C) :&: (B :&: D).
Proof. by rewrite -!setIA (setICA B). Qed.
Lemma setIid A : A :&: A = A.
Proof. by apply/setP=> x; rewrite inE andbb. Qed.
Lemma setIIl A B C : A :&: B :&: C = (A :&: C) :&: (B :&: C).
Proof. by rewrite setIA !(setIAC _ C) -(setIA _ C) setIid. Qed.
Lemma setIIr A B C : A :&: (B :&: C) = (A :&: B) :&: (A :&: C).
Proof. by rewrite !(setIC A) setIIl. Qed.
Lemma setIUr A B C : A :&: (B :|: C) = (A :&: B) :|: (A :&: C).
Proof. by apply/setP=> x; rewrite !inE andb_orr. Qed.
Lemma setIUl A B C : (A :|: B) :&: C = (A :&: C) :|: (B :&: C).
Proof. by apply/setP=> x; rewrite !inE andb_orl. Qed.
Lemma setUIr A B C : A :|: (B :&: C) = (A :|: B) :&: (A :|: C).
Proof. by apply/setP=> x; rewrite !inE orb_andr. Qed.
Lemma setUIl A B C : (A :&: B) :|: C = (A :|: C) :&: (B :|: C).
Proof. by apply/setP=> x; rewrite !inE orb_andl. Qed.
Lemma setUK A B : (A :|: B) :&: A = A.
Proof. by apply/setP=> x; rewrite !inE orbK. Qed.
Lemma setKU A B : A :&: (B :|: A) = A.
Proof. by apply/setP=> x; rewrite !inE orKb. Qed.
Lemma setIK A B : (A :&: B) :|: A = A.
Proof. by apply/setP=> x; rewrite !inE andbK. Qed.
Lemma setKI A B : A :|: (B :&: A) = A.
Proof. by apply/setP=> x; rewrite !inE andKb. Qed.
Lemma setDP A B x : reflect (x \in A /\ x \notin B) (x \in A :\: B).
Proof. by rewrite inE andbC; apply: andP. Qed.
Lemma setSD A B C : A \subset B -> A :\: C \subset B :\: C.
Proof.
by move=> /subsetP AB; apply/subsetP => x; rewrite !inE => /andP[-> /AB].
Qed.
Lemma setDS A B C : A \subset B -> C :\: B \subset C :\: A.
Proof.
move=> /subsetP AB; apply/subsetP => x; rewrite !inE => /andP[].
by move=> /(contra (AB _)) ->.
Qed.
Lemma setDSS A B C D : A \subset C -> D \subset B -> A :\: B \subset C :\: D.
Proof. by move=> /(setSD B) /subset_trans sAC /(setDS C) /sAC. Qed.
Lemma setD0 A : A :\: set0 = A.
Proof. exact: subx0. Qed.
Lemma set0D A : set0 :\: A = set0.
Proof. exact: sub0x. Qed.
Lemma setDv A : A :\: A = set0.
Proof. exact: subxx. Qed.
Lemma setID A B : A :&: B :|: A :\: B = A.
Proof. exact: joinIB. Qed.
Lemma setDUl A B C : (A :|: B) :\: C = (A :\: C) :|: (B :\: C).
Proof. exact: subUx. Qed.
Lemma setDUr A B C : A :\: (B :|: C) = (A :\: B) :&: (A :\: C).
Proof. exact: subxU. Qed.
Lemma setDIl A B C : (A :&: B) :\: C = (A :\: C) :&: (B :\: C).
Proof. exact: subIx. Qed.
Lemma setIDA A B C : A :&: (B :\: C) = (A :&: B) :\: C.
Proof. exact: meetxB. Qed.
Lemma setIDAC A B C : (A :\: B) :&: C = (A :&: C) :\: B.
Proof. exact: meetBx. Qed.
Lemma setDIr A B C : A :\: (B :&: C) = (A :\: B) :|: (A :\: C).
Proof. exact: subxI. Qed.
Lemma setDDl A B C : (A :\: B) :\: C = A :\: (B :|: C).
Proof. exact: subBx. Qed.
Lemma setDDr A B C : A :\: (B :\: C) = (A :\: B) :|: (A :&: C).
Proof. exact: subxB. Qed.
Lemma subsetIl A B : A :&: B \subset A.
Proof. by apply/subsetP=> x; rewrite inE; case/andP. Qed.
Lemma subsetIr A B : A :&: B \subset B.
Proof. by apply/subsetP=> x; rewrite inE; case/andP. Qed.
Lemma subsetUl A B : A \subset A :|: B.
Proof. by apply/subsetP=> x; rewrite inE => ->. Qed.
Lemma subsetUr A B : B \subset A :|: B.
Proof. by apply/subsetP=> x; rewrite inE orbC => ->. Qed.
Lemma subsetU1 x A : A \subset x |: A.
Proof. exact: subsetUr. Qed.
Lemma subsetDl A B : A :\: B \subset A.
Proof. exact: leBx. Qed.
Lemma subD1set A x : A :\ x \subset A.
Proof. by rewrite subsetDl. Qed.
Lemma setIidPl A B : reflect (A :&: B = A) (A \subset B).
Proof.
apply: (iffP subsetP) => [sAB | <- x /setIP[] //].
by apply/setP=> x; rewrite inE; apply/andb_idr/sAB.
Qed.
Arguments setIidPl {A B}.
Lemma setIidPr A B : reflect (A :&: B = B) (B \subset A).
Proof. by rewrite setIC; apply: setIidPl. Qed.
Lemma setUidPl A B : reflect (A :|: B = A) (B \subset A).
Proof. exact: join_idPr. Qed.
Lemma setUidPr A B : reflect (A :|: B = B) (A \subset B).
Proof. by rewrite setUC; apply: setUidPl. Qed.
Lemma subIset A B C : (B \subset A) || (C \subset A) -> (B :&: C \subset A).
Proof. by case/orP; apply: subset_trans; rewrite (subsetIl, subsetIr). Qed.
Lemma subsetI A B C : (A \subset B :&: C) = (A \subset B) && (A \subset C).
Proof.
rewrite !(sameP setIidPl eqP) setIA; have [-> //| ] := altP (A :&: B =P A).
by apply: contraNF => /eqP <-; rewrite -setIA -setIIl setIAC.
Qed.
Lemma subsetIP A B C : reflect (A \subset B /\ A \subset C) (A \subset B :&: C).
Proof. by rewrite subsetI; apply: andP. Qed.
Lemma subsetIidl A B : (A \subset A :&: B) = (A \subset B).
Proof. by rewrite subsetI lexx. Qed.
Lemma subsetIidr A B : (B \subset A :&: B) = (B \subset A).
Proof. by rewrite setIC subsetIidl. Qed.
Lemma subUset A B C : (B :|: C \subset A) = (B \subset A) && (C \subset A).
Proof. exact: leUx. Qed.
Lemma subsetU A B C : (A \subset B) || (A \subset C) -> A \subset B :|: C.
Proof. exact: lexU. Qed.
Lemma subUsetP A B C : reflect (A \subset C /\ B \subset C) (A :|: B \subset C).
Proof. by rewrite subUset; apply: andP. Qed.
Lemma subDset A B C : (A :\: B \subset C) = (A \subset B :|: C).
Proof. exact: leBLR. Qed.
Lemma setU_eq0 A B : (A :|: B == set0) = (A == set0) && (B == set0).
Proof. by rewrite -!subset0 subUset. Qed.
Lemma setD_eq0 A B : (A :\: B == set0) = (A \subset B).
Proof. by rewrite -subset0 subDset setU0. Qed.
Lemma subsetD1 A B x : (A \subset B :\ x) = (A \subset B) && (x \notin A).
Proof.
rewrite andbC; have [xA|] //= := boolP (x \in A).
by apply: contraTF isT => /subsetP /(_ x xA); rewrite !inE eqxx.
move=> xNA; apply/subsetP/subsetP => sAB y yA.
by have:= sAB y yA; rewrite !inE => /andP[].
by rewrite !inE sAB // andbT; apply: contraNneq xNA => <-.
Qed.
Lemma subsetD1P A B x : reflect (A \subset B /\ x \notin A) (A \subset B :\ x).
Proof. by rewrite subsetD1; apply: andP. Qed.
Lemma properD1 A x : x \in A -> A :\ x \proper A.
Proof. by move=> Ax; rewrite properE subsetDl /= subsetD1 Ax andbF. Qed.
Lemma properIr A B : ~~ (B \subset A) -> A :&: B \proper B.
Proof. by move=> nsAB; rewrite properE subsetIr subsetI negb_and nsAB. Qed.
Lemma properIl A B : ~~ (A \subset B) -> A :&: B \proper A.
Proof. by move=> nsBA; rewrite properE subsetIl subsetI negb_and nsBA orbT. Qed.
Lemma properUr A B : ~~ (A \subset B) -> B \proper A :|: B.
Proof. by rewrite properE subsetUr subUset lexx /= andbT. Qed.
Lemma properUl A B : ~~ (B \subset A) -> A \proper A :|: B.
Proof. by move=> not_sBA; rewrite setUC properUr. Qed.
Lemma proper1set A x : ([set x] \proper A) -> (x \in A).
Proof. by move/proper_sub; rewrite sub1set. Qed.
Lemma properIset A B C : (B \proper A) || (C \proper A) -> (B :&: C \proper A).
Proof. by case/orP; apply: sub_proper_trans; rewrite (subsetIl, subsetIr). Qed.
Lemma properI A B C : (A \proper B :&: C) -> (A \proper B) && (A \proper C).
Proof.
move=> pAI; apply/andP.
by split; apply: (proper_sub_trans pAI); rewrite (subsetIl, subsetIr).
Qed.
Lemma properU A B C : (B :|: C \proper A) -> (B \proper A) && (C \proper A).
Proof.
move=> pUA; apply/andP.
by split; apply: sub_proper_trans pUA; rewrite (subsetUr, subsetUl).
Qed.
End setX.
Section setXY.
Variables X Y : elementType.
Implicit Types (x : X) (y : Y) (A : set X) (B : set Y) (f : setfun set X Y).
Lemma imsetP (f : setfun set X Y) A y :
reflect (exists2 x : X, x \in A & y = f x) (y \in imset f A).
Proof.
move: A f; rewrite /set1 /in_mem /= /memset /imset /setfun.
case: set => [S [base [memset set1 /= ? ? ? ? ? ? ? ? ? H]]] ? /= A f.
exact: H.
Qed.
Lemma mem_imset f A x : x \in A -> f x \in imset f A.
Proof. by move=> Dx; apply/imsetP; exists x. Qed.
Lemma imset0 f : imset f set0 = set0.
Proof.
apply/setP => y; rewrite in_set0.
by apply/imsetP => [[x]]; rewrite in_set0.
Qed.
Lemma imset_eq0 f A : (imset f A == set0) = (A == set0).
Proof.
have [->|/set_gt0_ex [x xA]] := posxP A; first by rewrite imset0 eqxx.
by apply/set0Pn; exists (f x); rewrite mem_imset.
Qed.
Lemma imset_set1 f x : imset f [set x] = [set f x].
Proof.
apply/setP => y.
by apply/imsetP/set1P=> [[x' /set1P-> //]| ->]; exists x; rewrite ?set11.
Qed.
Lemma imsetS f A A' : A \subset A' -> imset f A \subset imset f A'.
Proof.
move=> leAB; apply/subsetP => y /imsetP [x xA ->].
by rewrite mem_imset // (subsetP leAB).
Qed.
Lemma imset_proper f A A' :
{in A' &, injective f} -> A \proper A' -> imset f A \proper imset f A'.
Proof.
move=> injf /properP[sAB [x Bx nAx]]; rewrite lt_leAnge imsetS //=.
apply: contra nAx => sfBA.
have: f x \in imset f A by rewrite (subsetP sfBA) ?mem_imset.
by case/imsetP=> y Ay /injf-> //; apply: subsetP sAB y Ay.
Qed.
End setXY.
End SemisetTheory.
End SemisetTheory.
Module set.
Section ClassDef.
Variable elementType : Type.
Variable eqType_of_elementType : elementType -> eqType.
Coercion eqType_of_elementType : elementType >-> eqType.
Implicit Types (X Y : elementType).
Record class_of d (set : elementType -> Type) := Class {
base : forall X, Order.CTBLattice.class_of (display_set d) (set X);
mixin : Semiset.mixin_of eqType_of_elementType
(fun X => Order.CBLattice.Pack (base X) (set X))
}.
Local Coercion base : class_of >-> Funclass.
Definition base2 d (set : elementType -> Type)
(c : class_of d set) := Semiset.Class (@mixin _ set c).
Local Coercion base2 : class_of >-> Semiset.class_of.
Structure type d := Pack { sort ; _ : class_of d sort;
_ : elementType -> Type }.
Local Coercion sort : type >-> Funclass.
Variables (set : elementType -> Type) (disp : unit) (cT : type disp).
Definition class := let: Pack _ c _ as cT' := cT return class_of _ cT' in c.
Let xset := let: Pack set _ _ := cT in set.
Notation xclass := (class : class_of xset).
Definition pack :=
fun bT (b : forall X, Order.CTBLattice.class_of _ _)
& (forall X, phant_id (@Order.CTBLattice.class disp (bT X)) (b X)) =>
fun mT m & phant_id (@Semiset.class _ eqType_of_elementType mT)
(@Semiset.Class _ _ disp set b m) =>
Pack (@Class _ set (fun x => b x) m) set.
End ClassDef.
Section CanonicalDef.
Variable elementType : Type.
Variable eqType_of_elementType : elementType -> eqType.
Coercion eqType_of_elementType : elementType >-> eqType.
Notation type := (type eqType_of_elementType).
Local Coercion sort : type >-> Funclass.
Local Coercion base : class_of >-> Funclass.
Local Coercion base2 : class_of >-> Semiset.class_of.
Variables (set : elementType -> Type) (X : elementType).
Variable (disp : unit) (cT : type disp).
Local Notation ddisp := (display_set disp).
Let xset := let: Pack set _ _ := cT in set.
Notation xclass := (@class _ eqType_of_elementType _ cT : class_of eqType_of_elementType _ xset).
Definition eqType := @Equality.Pack (cT X) (xclass X) (xset X).
Definition choiceType := @Choice.Pack (cT X) (xclass X) (xset X).
Definition porderType := @Order.POrder.Pack ddisp (cT X) (xclass X) (xset X).
Definition latticeType :=
@Order.Lattice.Pack ddisp (cT X) (xclass X) (xset X).
Definition blatticeType :=
@Order.BLattice.Pack ddisp (cT X) (xclass X) (xset X).
Definition cblatticeType :=
@Order.CBLattice.Pack ddisp (cT X) (xclass X) (xset X).
Definition ctblatticeType :=
@Order.CTBLattice.Pack ddisp (cT X) (xclass X) (xset X).
Definition semisetType := @Semiset.Pack _ _ disp cT xclass xset.
Definition semiset_ctblatticeType :=
@Order.CTBLattice.Pack ddisp (semisetType X) (xclass X) (xset X).
End CanonicalDef.
Module Import Exports.
Coercion base : class_of >-> Funclass.
Coercion base2 : class_of >-> Semiset.class_of.
Coercion sort : type >-> Funclass.
Coercion eqType : type >-> Equality.type.
Coercion choiceType : type >-> Choice.type.
Coercion porderType : type >-> Order.POrder.type.
Coercion latticeType : type >-> Order.Lattice.type.
Coercion blatticeType : type >-> Order.BLattice.type.
Coercion cblatticeType : type >-> Order.CBLattice.type.
Coercion ctblatticeType : type >-> Order.CTBLattice.type.
Coercion semisetType : type >-> Semiset.type.
Canonical eqType.
Canonical choiceType.
Canonical porderType.
Canonical latticeType.
Canonical blatticeType.
Canonical cblatticeType.
Canonical ctblatticeType.
Canonical semisetType.
Notation setType := type.
Notation "[ 'setType' 'of' set ]" :=
(@pack _ _ set _ _ _ (fun=> id) _ _ id)
(at level 0, format "[ 'setType' 'of' set ]") : form_scope.
End Exports.
End set.
Import set.Exports.
Module Import setTheory.
Section setTheory.
Variable elementType : Type.
Variable eqType_of_elementType : elementType -> eqType.
Coercion eqType_of_elementType : elementType >-> eqType.
Variable disp : unit.
Variable set : setType eqType_of_elementType disp.
Section setX.
Variables X : elementType.
Implicit Types (x y : X) (A B : set X).
End setX.
End setTheory.
End setTheory.
Module Theory.
Export Semiset.Exports.
Export set.Exports.
Export SetSyntax.
Export SemisetSyntax.
Export SemisetTheory.
Export setTheory.
End Theory.
End SET.