Library Coq.micromega.QMicromega


Require Import OrderedRing.
Require Import RingMicromega.
Require Import Refl.
Require Import QArith.
Require Import Qfield.

Lemma Qsor : SOR 0 1 Qplus Qmult Qminus Qopp Qeq Qle Qlt.
Proof.
  constructor; intros ; subst ; try (intuition (subst; auto with qarith)).
  apply Q_Setoid.
  rewrite H ; rewrite H0 ; reflexivity.
  rewrite H ; rewrite H0 ; reflexivity.
  rewrite H ; auto ; reflexivity.
  rewrite <- H ; rewrite <- H0 ; auto.
  rewrite H ; rewrite H0 ; auto.
  rewrite <- H ; rewrite <- H0 ; auto.
  rewrite H ; rewrite H0 ; auto.
  apply Qsrt.
  eapply Qle_trans ; eauto.
  apply (Qlt_not_eq n m H H0) ; auto.
  destruct(Q_dec n m) as [[H1 |H1] | H1 ] ; tauto.
  apply (Qplus_le_compat p p n m (Qle_refl p) H).
  generalize (Qmult_lt_compat_r 0 n m H0 H).
  rewrite Qmult_0_l.
  auto.
  compute in H.
  discriminate.
Qed.

Lemma QSORaddon :
  SORaddon 0 1 Qplus Qmult Qminus Qopp Qeq Qle
  0 1 Qplus Qmult Qminus Qopp
  Qeq_bool Qle_bool
  (fun x => x) (fun x => x) (pow_N 1 Qmult).
Proof.
  constructor.
  constructor ; intros ; try reflexivity.
  apply Qeq_bool_eq; auto.
  constructor.
  reflexivity.
  intros x y.
  apply Qeq_bool_neq ; auto.
  apply Qle_bool_imp_le.
Qed.

Require Import EnvRing.

Fixpoint Qeval_expr (env: PolEnv Q) (e: PExpr Q) : Q :=
  match e with
    | PEc c => c
    | PEX _ j => env j
    | PEadd pe1 pe2 => (Qeval_expr env pe1) + (Qeval_expr env pe2)
    | PEsub pe1 pe2 => (Qeval_expr env pe1) - (Qeval_expr env pe2)
    | PEmul pe1 pe2 => (Qeval_expr env pe1) * (Qeval_expr env pe2)
    | PEopp pe1 => - (Qeval_expr env pe1)
    | PEpow pe1 n => Qpower (Qeval_expr env pe1) (Z.of_N n)
  end.

Lemma Qeval_expr_simpl : forall env e,
  Qeval_expr env e =
  match e with
    | PEc c => c
    | PEX _ j => env j
    | PEadd pe1 pe2 => (Qeval_expr env pe1) + (Qeval_expr env pe2)
    | PEsub pe1 pe2 => (Qeval_expr env pe1) - (Qeval_expr env pe2)
    | PEmul pe1 pe2 => (Qeval_expr env pe1) * (Qeval_expr env pe2)
    | PEopp pe1 => - (Qeval_expr env pe1)
    | PEpow pe1 n => Qpower (Qeval_expr env pe1) (Z.of_N n)
  end.
Proof.
  destruct e ; reflexivity.
Qed.

Definition Qeval_expr' := eval_pexpr Qplus Qmult Qminus Qopp (fun x => x) (fun x => x) (pow_N 1 Qmult).

Lemma QNpower : forall r n, r ^ Z.of_N n = pow_N 1 Qmult r n.
Proof.
  destruct n ; reflexivity.
Qed.

Lemma Qeval_expr_compat : forall env e, Qeval_expr env e = Qeval_expr' env e.
Proof.
  induction e ; simpl ; subst ; try congruence.
  reflexivity.
  rewrite IHe.
  apply QNpower.
Qed.

Definition Qeval_op2 (o : Op2) : Q -> Q -> Prop :=
match o with
| OpEq => Qeq
| OpNEq => fun x y => ~ x == y
| OpLe => Qle
| OpGe => fun x y => Qle y x
| OpLt => Qlt
| OpGt => fun x y => Qlt y x
end.

Definition Qeval_formula (e:PolEnv Q) (ff : Formula Q) :=
  let (lhs,o,rhs) := ff in Qeval_op2 o (Qeval_expr e lhs) (Qeval_expr e rhs).

Definition Qeval_formula' :=
  eval_formula Qplus Qmult Qminus Qopp Qeq Qle Qlt (fun x => x) (fun x => x) (pow_N 1 Qmult).

Lemma Qeval_formula_compat : forall env f, Qeval_formula env f <-> Qeval_formula' env f.
Proof.
  intros.
  unfold Qeval_formula.
  destruct f.
  repeat rewrite Qeval_expr_compat.
  unfold Qeval_formula'.
  unfold Qeval_expr'.
  split ; destruct Fop ; simpl; auto.
Qed.

Definition Qeval_nformula :=
  eval_nformula 0 Qplus Qmult Qeq Qle Qlt (fun x => x) .

Definition Qeval_op1 (o : Op1) : Q -> Prop :=
match o with
| Equal => fun x : Q => x == 0
| NonEqual => fun x : Q => ~ x == 0
| Strict => fun x : Q => 0 < x
| NonStrict => fun x : Q => 0 <= x
end.

Lemma Qeval_nformula_dec : forall env d, (Qeval_nformula env d) \/ ~ (Qeval_nformula env d).
Proof.
  exact (fun env d =>eval_nformula_dec Qsor (fun x => x) env d).
Qed.

Definition QWitness := Psatz Q.

Definition QWeakChecker := check_normalised_formulas 0 1 Qplus Qmult Qeq_bool Qle_bool.

Require Import List.

Lemma QWeakChecker_sound : forall (l : list (NFormula Q)) (cm : QWitness),
  QWeakChecker l cm = true ->
  forall env, make_impl (Qeval_nformula env) l False.
Proof.
  intros l cm H.
  intro.
  unfold Qeval_nformula.
  apply (checker_nf_sound Qsor QSORaddon l cm).
  unfold QWeakChecker in H.
  exact H.
Qed.

Require Import Coq.micromega.Tauto.

Definition Qnormalise := @cnf_normalise Q 0 1 Qplus Qmult Qminus Qopp Qeq_bool.
Definition Qnegate := @cnf_negate Q 0 1 Qplus Qmult Qminus Qopp Qeq_bool.

Definition qunsat := check_inconsistent 0 Qeq_bool Qle_bool.

Definition qdeduce := nformula_plus_nformula 0 Qplus Qeq_bool.

Definition QTautoChecker (f : BFormula (Formula Q)) (w: list QWitness) : bool :=
  @tauto_checker (Formula Q) (NFormula Q)
  qunsat qdeduce
  Qnormalise
  Qnegate QWitness QWeakChecker f w.

Lemma QTautoChecker_sound : forall f w, QTautoChecker f w = true -> forall env, eval_f (Qeval_formula env) f.
Proof.
  intros f w.
  unfold QTautoChecker.
  apply (tauto_checker_sound Qeval_formula Qeval_nformula).
  apply Qeval_nformula_dec.
  intros until env.
  unfold eval_nformula. unfold RingMicromega.eval_nformula.
  destruct t.
  apply (check_inconsistent_sound Qsor QSORaddon) ; auto.
  unfold qdeduce. apply (nformula_plus_nformula_correct Qsor QSORaddon).
  intros. rewrite Qeval_formula_compat. unfold Qeval_formula'. now apply (cnf_normalise_correct Qsor QSORaddon).
  intros. rewrite Qeval_formula_compat. unfold Qeval_formula'. now apply (cnf_negate_correct Qsor QSORaddon).
  intros t w0.
  apply QWeakChecker_sound.
Qed.