Library Flocq.Prop.Div_sqrt_error

This file is part of the Flocq formalization of floating-point arithmetic in Coq: http://flocq.gforge.inria.fr/
Copyright (C) 2010-2018 Sylvie Boldo
Copyright (C) 2010-2018 Guillaume Melquiond
This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the COPYING file for more details.

Remainder of the division and square root are in the FLX format


Require Import Psatz.
Require Import Core Operations Relative Sterbenz Mult_error.

Section Fprop_divsqrt_error.

Variable beta : radix.
Notation bpow e := (bpow beta e).

Variable prec : Z.

Lemma generic_format_plus_prec :
  forall fexp, (forall e, (fexp e <= e - prec)%Z) ->
  forall x y (fx fy: float beta),
  (x = F2R fx)%R -> (y = F2R fy)%R -> (Rabs (x+y) < bpow (prec+Fexp fx))%R ->
  (Rabs (x+y) < bpow (prec+Fexp fy))%R ->
  generic_format beta fexp (x+y)%R.
Proof.
intros fexp Hfexp x y fx fy Hx Hy H1 H2.
case (Req_dec (x+y) 0); intros H.
rewrite H; apply generic_format_0.
rewrite Hx, Hy, <- F2R_plus.
apply generic_format_F2R.
intros _.
case_eq (Fplus fx fy).
intros mz ez Hz.
rewrite <- Hz.
apply Z.le_trans with (Z.min (Fexp fx) (Fexp fy)).
rewrite F2R_plus, <- Hx, <- Hy.
unfold cexp.
apply Z.le_trans with (1:=Hfexp _).
apply Zplus_le_reg_l with prec; ring_simplify.
apply mag_le_bpow with (1 := H).
now apply Z.min_case.
rewrite <- Fexp_Fplus, Hz.
apply Z.le_refl.
Qed.

Context { prec_gt_0_ : Prec_gt_0 prec }.

Notation format := (generic_format beta (FLX_exp prec)).
Notation cexp := (cexp beta (FLX_exp prec)).

Variable choice : Z -> bool.

Remainder of the division in FLX
Theorem div_error_FLX :
  forall rnd { Zrnd : Valid_rnd rnd } x y,
  format x -> format y ->
  format (x - round beta (FLX_exp prec) rnd (x/y) * y)%R.
Proof with auto with typeclass_instances.
intros rnd Zrnd x y Hx Hy.
destruct (Req_dec y 0) as [Zy|Zy].
now rewrite Zy, Rmult_0_r, Rminus_0_r.
destruct (Req_dec (round beta (FLX_exp prec) rnd (x/y)) 0) as [Hr|Hr].
rewrite Hr; ring_simplify (x-0*y)%R; assumption.
assert (Zx: x <> R0).
contradict Hr.
rewrite Hr.
unfold Rdiv.
now rewrite Rmult_0_l, round_0.
destruct (canonical_generic_format _ _ x Hx) as (fx,(Hx1,Hx2)).
destruct (canonical_generic_format _ _ y Hy) as (fy,(Hy1,Hy2)).
destruct (canonical_generic_format beta (FLX_exp prec) (round beta (FLX_exp prec) rnd (x / y))) as (fr,(Hr1,Hr2)).
apply generic_format_round...
unfold Rminus; apply generic_format_plus_prec with fx (Fopp (Fmult fr fy)); trivial.
intros e; apply Z.le_refl.
now rewrite F2R_opp, F2R_mult, <- Hr1, <- Hy1.
destruct (relative_error_FLX_ex beta prec (prec_gt_0 prec) rnd (x / y)%R) as (eps,(Heps1,Heps2)).
rewrite Heps2.
rewrite <- Rabs_Ropp.
replace (-(x + - (x / y * (1 + eps) * y)))%R with (x * eps)%R by now field.
rewrite Rabs_mult.
apply Rlt_le_trans with (Rabs x * 1)%R.
apply Rmult_lt_compat_l.
now apply Rabs_pos_lt.
apply Rlt_le_trans with (1 := Heps1).
change 1%R with (bpow 0).
apply bpow_le.
generalize (prec_gt_0 prec).
clear ; omega.
rewrite Rmult_1_r.
rewrite Hx2, <- Hx1.
unfold cexp.
destruct (mag beta x) as (ex, Hex).
simpl.
specialize (Hex Zx).
apply Rlt_le.
apply Rlt_le_trans with (1 := proj2 Hex).
apply bpow_le.
unfold FLX_exp.
ring_simplify.
apply Z.le_refl.
replace (Fexp (Fopp (Fmult fr fy))) with (Fexp fr + Fexp fy)%Z.
2: unfold Fopp, Fmult; destruct fr; destruct fy; now simpl.
replace (x + - (round beta (FLX_exp prec) rnd (x / y) * y))%R with
  (y * (-(round beta (FLX_exp prec) rnd (x / y) - x/y)))%R.
2: field; assumption.
rewrite Rabs_mult.
apply Rlt_le_trans with (Rabs y * bpow (Fexp fr))%R.
apply Rmult_lt_compat_l.
now apply Rabs_pos_lt.
rewrite Rabs_Ropp.
replace (bpow (Fexp fr)) with (ulp beta (FLX_exp prec) (F2R fr)).
rewrite <- Hr1.
apply error_lt_ulp_round...
apply Rmult_integral_contrapositive_currified; try apply Rinv_neq_0_compat; assumption.
rewrite ulp_neq_0.
2: now rewrite <- Hr1.
apply f_equal.
now rewrite Hr2, <- Hr1.
replace (prec+(Fexp fr+Fexp fy))%Z with ((prec+Fexp fy)+Fexp fr)%Z by ring.
rewrite bpow_plus.
apply Rmult_le_compat_r.
apply bpow_ge_0.
rewrite Hy2, <- Hy1 ; unfold cexp, FLX_exp.
ring_simplify (prec + (mag beta y - prec))%Z.
destruct (mag beta y); simpl.
left; now apply a.
Qed.

Remainder of the square in FLX (with p>1) and rounding to nearest
Variable Hp1 : Z.lt 1 prec.

Theorem sqrt_error_FLX_N :
  forall x, format x ->
  format (x - Rsqr (round beta (FLX_exp prec) (Znearest choice) (sqrt x)))%R.
Proof with auto with typeclass_instances.
intros x Hx.
destruct (total_order_T x 0) as [[Hxz|Hxz]|Hxz].
unfold sqrt.
destruct (Rcase_abs x).
rewrite round_0...
unfold Rsqr.
now rewrite Rmult_0_l, Rminus_0_r.
elim (Rlt_irrefl 0).
now apply Rgt_ge_trans with x.
rewrite Hxz, sqrt_0, round_0...
unfold Rsqr.
rewrite Rmult_0_l, Rminus_0_r.
apply generic_format_0.
case (Req_dec (round beta (FLX_exp prec) (Znearest choice) (sqrt x)) 0); intros Hr.
rewrite Hr; unfold Rsqr; ring_simplify (x-0*0)%R; assumption.
destruct (canonical_generic_format _ _ x Hx) as (fx,(Hx1,Hx2)).
destruct (canonical_generic_format beta (FLX_exp prec) (round beta (FLX_exp prec) (Znearest choice) (sqrt x))) as (fr,(Hr1,Hr2)).
apply generic_format_round...
unfold Rminus; apply generic_format_plus_prec with fx (Fopp (Fmult fr fr)); trivial.
intros e; apply Z.le_refl.
unfold Rsqr; now rewrite F2R_opp,F2R_mult, <- Hr1.
apply Rle_lt_trans with x.
apply Rabs_minus_le.
apply Rle_0_sqr.
destruct (relative_error_N_FLX_ex beta prec (prec_gt_0 prec) choice (sqrt x)) as (eps,(Heps1,Heps2)).
rewrite Heps2.
rewrite Rsqr_mult, Rsqr_sqrt, Rmult_comm. 2: now apply Rlt_le.
apply Rmult_le_compat_r.
now apply Rlt_le.
apply Rle_trans with (5²/4²)%R.
rewrite <- Rsqr_div.
apply Rsqr_le_abs_1.
apply Rle_trans with (1 := Rabs_triang _ _).
rewrite Rabs_R1.
apply Rplus_le_reg_l with (-1)%R.
replace (-1 + (1 + Rabs eps))%R with (Rabs eps) by ring.
apply Rle_trans with (1 := Heps1).
rewrite Rabs_pos_eq.
apply Rmult_le_reg_l with 2%R.
now apply IZR_lt.
rewrite <- Rmult_assoc, Rinv_r, Rmult_1_l.
apply Rle_trans with (bpow (-1)).
apply bpow_le.
omega.
replace (2 * (-1 + 5 / 4))%R with (/2)%R by field.
apply Rinv_le.
now apply IZR_lt.
apply IZR_le.
unfold Zpower_pos. simpl.
rewrite Zmult_1_r.
apply Zle_bool_imp_le.
apply beta.
now apply IZR_neq.
unfold Rdiv.
apply Rmult_le_pos.
now apply IZR_le.
apply Rlt_le.
apply Rinv_0_lt_compat.
now apply IZR_lt.
now apply IZR_neq.
unfold Rsqr.
replace (5 * 5 / (4 * 4))%R with (25 * /16)%R by field.
apply Rmult_le_reg_r with 16%R.
now apply IZR_lt.
rewrite Rmult_assoc, Rinv_l, Rmult_1_r.
now apply (IZR_le _ 32).
now apply IZR_neq.
rewrite Hx2, <- Hx1; unfold cexp, FLX_exp.
ring_simplify (prec + (mag beta x - prec))%Z.
destruct (mag beta x); simpl.
rewrite <- (Rabs_right x).
apply a.
now apply Rgt_not_eq.
now apply Rgt_ge.
replace (Fexp (Fopp (Fmult fr fr))) with (Fexp fr + Fexp fr)%Z.
2: unfold Fopp, Fmult; destruct fr; now simpl.
rewrite Hr1.
replace (x + - Rsqr (F2R fr))%R with (-((F2R fr - sqrt x)*(F2R fr + sqrt x)))%R.
2: rewrite <- (sqrt_sqrt x) at 3; auto.
2: unfold Rsqr; ring.
rewrite Rabs_Ropp, Rabs_mult.
apply Rle_lt_trans with ((/2*bpow (Fexp fr))* Rabs (F2R fr + sqrt x))%R.
apply Rmult_le_compat_r.
apply Rabs_pos.
apply Rle_trans with (/2*ulp beta (FLX_exp prec) (F2R fr))%R.
rewrite <- Hr1.
apply error_le_half_ulp_round...
right; rewrite ulp_neq_0.
2: now rewrite <- Hr1.
apply f_equal.
rewrite Hr2, <- Hr1; trivial.
rewrite Rmult_assoc, Rmult_comm.
replace (prec+(Fexp fr+Fexp fr))%Z with (Fexp fr + (prec+Fexp fr))%Z by ring.
rewrite bpow_plus, Rmult_assoc.
apply Rmult_lt_compat_l.
apply bpow_gt_0.
apply Rmult_lt_reg_l with (1 := Rlt_0_2).
apply Rle_lt_trans with (Rabs (F2R fr + sqrt x)).
right; field.
apply Rle_lt_trans with (1:=Rabs_triang _ _).
assert (Rabs (F2R fr) < bpow (prec + Fexp fr))%R.
rewrite Hr2.
unfold cexp, FLX_exp.
ring_simplify (prec + (mag beta (F2R fr) - prec))%Z.
destruct (mag beta (F2R fr)); simpl.
apply a.
rewrite <- Hr1; auto.
apply Rlt_le_trans with (bpow (prec + Fexp fr)+ Rabs (sqrt x))%R.
now apply Rplus_lt_compat_r.
replace (2 * bpow (prec + Fexp fr))%R with (bpow (prec + Fexp fr) + bpow (prec + Fexp fr))%R by ring.
apply Rplus_le_compat_l.
assert (sqrt x <> 0)%R.
apply Rgt_not_eq.
now apply sqrt_lt_R0.
destruct (mag beta (sqrt x)) as (es,Es).
specialize (Es H0).
apply Rle_trans with (bpow es).
now apply Rlt_le.
apply bpow_le.
case (Zle_or_lt es (prec + Fexp fr)) ; trivial.
intros H1.
absurd (Rabs (F2R fr) < bpow (es - 1))%R.
apply Rle_not_lt.
rewrite <- Hr1.
apply abs_round_ge_generic...
apply generic_format_bpow.
unfold FLX_exp; omega.
apply Es.
apply Rlt_le_trans with (1:=H).
apply bpow_le.
omega.
now apply Rlt_le.
Qed.

Lemma sqrt_error_N_FLX_aux1 x (Fx : format x) (Px : (0 < x)%R) :
  exists (mu : R) (e : Z), (format mu /\ x = mu * bpow (2 * e) :> R
                            /\ 1 <= mu < bpow 2)%R.
Proof.
set (e := ((mag beta x - 1) / 2)%Z).
set (mu := (x * bpow (-2 * e)%Z)%R).
assert (Hbe : (bpow (-2 * e) * bpow (2 * e) = 1)%R).
{ now rewrite <- bpow_plus; case e; simpl; [reflexivity| |]; intro p;
    rewrite Z.pos_sub_diag. }
assert (Fmu : format mu); [now apply mult_bpow_exact_FLX|].
exists mu, e; split; [exact Fmu|split; [|split]].
{ set (e2 := (2 * e)%Z); simpl; unfold mu; rewrite Rmult_assoc.
  now unfold e2; rewrite Hbe, Rmult_1_r. }
{ apply (Rmult_le_reg_r (bpow (2 * e))).
  { apply bpow_gt_0. }
  rewrite Rmult_1_l; set (e2 := (2 * e)%Z); simpl; unfold mu.
  unfold e2; rewrite Rmult_assoc, Hbe, Rmult_1_r.
  apply (Rle_trans _ (bpow (mag beta x - 1))).
  { now apply bpow_le; unfold e; apply Z_mult_div_ge. }
  set (l := mag _ _); rewrite <- (Rabs_pos_eq _ (Rlt_le _ _ Px)).
  unfold l; apply bpow_mag_le.
  intro Hx; revert Px; rewrite Hx; apply Rlt_irrefl. }
simpl; unfold mu; change (IZR _) with (bpow 2).
apply (Rmult_lt_reg_r (bpow (2 * e))); [now apply bpow_gt_0|].
rewrite Rmult_assoc, Hbe, Rmult_1_r.
apply (Rlt_le_trans _ (bpow (mag beta x))).
{ rewrite <- (Rabs_pos_eq _ (Rlt_le _ _ Px)) at 1; apply bpow_mag_gt. }
rewrite <- bpow_plus; apply bpow_le; unfold e; set (mxm1 := (_ - 1)%Z).
replace (_ * _)%Z with (2 * (mxm1 / 2) + mxm1 mod 2 - mxm1 mod 2)%Z by ring.
rewrite <- Z.div_mod; [|now simpl].
apply (Zplus_le_reg_r _ _ (mxm1 mod 2 - mag beta x)%Z).
unfold mxm1; destruct (Z.mod_bound_or (mag beta x - 1) 2); omega.
Qed.

Notation u_ro := (u_ro beta prec).

Lemma sqrt_error_N_FLX_aux2 x (Fx : format x) :
  (1 <= x)%R ->
  (x = 1 :> R \/ x = 1 + 2 * u_ro :> R \/ 1 + 4 * u_ro <= x)%R.
Proof.
intro HxGe1.
assert (Pu_ro : (0 <= u_ro)%R); [apply Rmult_le_pos; [lra|apply bpow_ge_0]|].
destruct (Rle_or_lt x 1) as [HxLe1|HxGt1]; [now left; apply Rle_antisym|right].
assert (F1 : format 1); [now apply generic_format_FLX_1|].
assert (H2eps : (2 * u_ro = bpow (-prec + 1))%R).
{ unfold u_ro; rewrite bpow_plus; field. }
assert (HmuGe1p2eps : (1 + 2 * u_ro <= x)%R).
{ rewrite H2eps, <- succ_FLX_1.
  now apply succ_le_lt; [now apply FLX_exp_valid| | |]. }
destruct (Rle_or_lt x (1 + 2 * u_ro)) as [HxLe1p2eps|HxGt1p2eps];
  [now left; apply Rle_antisym|right].
assert (Hulp1p2eps : (ulp beta (FLX_exp prec) (1 + 2 * u_ro) = 2 * u_ro)%R).
{ destruct (ulp_succ_pos _ _ _ F1 Rlt_0_1) as [Hsucc|Hsucc].
  { now rewrite H2eps, <- succ_FLX_1, <- ulp_FLX_1. }
  exfalso; revert Hsucc; apply Rlt_not_eq.
  rewrite succ_FLX_1, mag_1, bpow_1, <- H2eps; simpl.
  apply (Rlt_le_trans _ 2); [apply Rplus_lt_compat_l|].
  { unfold u_ro; rewrite <-Rmult_assoc, Rinv_r, Rmult_1_l; [|lra].
    change R1 with (bpow 0); apply bpow_lt; omega. }
  apply IZR_le, Zle_bool_imp_le, radix_prop. }
assert (Hsucc1p2eps :
          (succ beta (FLX_exp prec) (1 + 2 * u_ro) = 1 + 4 * u_ro)%R).
{ unfold succ; rewrite Rle_bool_true; [rewrite Hulp1p2eps; ring|].
  apply Rplus_le_le_0_compat; lra. }
rewrite <- Hsucc1p2eps.
apply succ_le_lt; [now apply FLX_exp_valid| |exact Fx|now simpl].
rewrite H2eps, <- succ_FLX_1.
now apply generic_format_succ; [apply FLX_exp_valid|].
Qed.

Lemma sqrt_error_N_FLX_aux3 :
  (u_ro / sqrt (1 + 4 * u_ro) <= 1 - 1 / sqrt (1 + 2 * u_ro))%R.
Proof.
assert (Pu_ro : (0 <= u_ro)%R); [apply Rmult_le_pos; [lra|apply bpow_ge_0]|].
unfold Rdiv; apply (Rplus_le_reg_r (/ sqrt (1 + 2 * u_ro))); ring_simplify.
apply (Rmult_le_reg_r (sqrt (1 + 4 * u_ro) * sqrt (1 + 2 * u_ro))).
{ apply Rmult_lt_0_compat; apply sqrt_lt_R0; lra. }
field_simplify; [|split; apply Rgt_not_eq, Rlt_gt, sqrt_lt_R0; lra].
unfold Rdiv; rewrite Rinv_1, !Rmult_1_r.
apply Rsqr_incr_0_var; [|now apply Rmult_le_pos; apply sqrt_pos].
rewrite <-sqrt_mult; [|lra|lra].
rewrite Rsqr_sqrt; [|apply Rmult_le_pos; lra].
unfold Rsqr; ring_simplify; unfold pow; rewrite !Rmult_1_r.
rewrite !sqrt_def; [|lra|lra].
apply (Rplus_le_reg_r (-u_ro * u_ro - 1 -4 * u_ro - 2 * u_ro ^ 3)).
ring_simplify; apply Rsqr_incr_0_var.
{ unfold Rsqr; ring_simplify.
  unfold pow; rewrite !Rmult_1_r, !sqrt_def; [|lra|lra].
  apply (Rplus_le_reg_r (-32 * u_ro ^ 4 - 24 * u_ro ^ 3 - 4 * u_ro ^ 2)).
  ring_simplify.
  replace (_ + _)%R
    with (((4 * u_ro ^ 2 - 28 * u_ro + 9) * u_ro + 4) * u_ro ^ 3)%R by ring.
  apply Rmult_le_pos; [|now apply pow_le].
  assert (Heps_le_half : (u_ro <= 1 / 2)%R).
  { unfold u_ro, Rdiv; rewrite Rmult_comm; apply Rmult_le_compat_r; [lra|].
    change 1%R with (bpow 0); apply bpow_le; omega. }
  apply (Rle_trans _ (-8 * u_ro + 4)); [lra|].
  apply Rplus_le_compat_r, Rmult_le_compat_r; [apply Pu_ro|].
  now assert (H : (0 <= u_ro ^ 2)%R); [apply pow2_ge_0|lra]. }
assert (H : (u_ro ^ 3 <= u_ro ^ 2)%R).
{ unfold pow; rewrite <-!Rmult_assoc, Rmult_1_r.
  apply Rmult_le_compat_l; [now apply Rmult_le_pos; apply Pu_ro|].
  now apply Rlt_le, u_ro_lt_1. }
now assert (H' : (0 <= u_ro ^ 2)%R); [apply pow2_ge_0|lra].
Qed.

Lemma om1ds1p2u_ro_pos : (0 <= 1 - 1 / sqrt (1 + 2 * u_ro))%R.
Proof.
unfold Rdiv; rewrite Rmult_1_l, <-Rinv_1 at 1.
apply Rle_0_minus, Rinv_le; [lra|].
rewrite <- sqrt_1 at 1; apply sqrt_le_1_alt.
assert (H := u_ro_pos beta prec); lra.
Qed.

Lemma om1ds1p2u_ro_le_u_rod1pu_ro :
  (1 - 1 / sqrt (1 + 2 * u_ro) <= u_ro / (1 + u_ro))%R.
Proof.
assert (Pu_ro := u_ro_pos beta prec).
apply (Rmult_le_reg_r (sqrt (1 + 2 * u_ro) * (1 + u_ro))).
{ apply Rmult_lt_0_compat; [apply sqrt_lt_R0|]; lra. }
field_simplify; [|lra|intro H; apply sqrt_eq_0 in H; lra].
unfold Rdiv, Rminus; rewrite Rinv_1, !Rmult_1_r, !Rplus_assoc.
rewrite <-(Rplus_0_r (sqrt _ * _)) at 2; apply Rplus_le_compat_l.
apply (Rplus_le_reg_r (1 + u_ro)); ring_simplify.
rewrite <-(sqrt_square (_ + 1)); [|lra]; apply sqrt_le_1_alt.
assert (H : (0 <= u_ro * u_ro)%R); [apply Rmult_le_pos|]; lra.
Qed.

Lemma s1p2u_rom1_pos : (0 <= sqrt (1 + 2 * u_ro) - 1)%R.
apply (Rplus_le_reg_r 1); ring_simplify.
rewrite <-sqrt_1 at 1; apply sqrt_le_1_alt.
assert (H := u_ro_pos beta prec); lra.
Qed.

Theorem sqrt_error_N_FLX x (Fx : format x) :
  (Rabs (round beta (FLX_exp prec) (Znearest choice) (sqrt x) - sqrt x)
   <= (1 - 1 / sqrt (1 + 2 * u_ro)) * Rabs (sqrt x))%R.
Proof.
assert (Peps := u_ro_pos beta prec).
assert (Peps' : (0 < u_ro)%R).
{ unfold u_ro; apply Rmult_lt_0_compat; [lra|apply bpow_gt_0]. }
assert (Pb := om1ds1p2u_ro_pos).
assert (Pb' := s1p2u_rom1_pos).
destruct (Rle_or_lt x 0) as [Nx|Px].
{ rewrite (sqrt_neg _ Nx), round_0, Rabs_R0, Rmult_0_r; [|apply valid_rnd_N].
  now unfold Rminus; rewrite Rplus_0_l, Rabs_Ropp, Rabs_R0; right. }
destruct (sqrt_error_N_FLX_aux1 _ Fx Px)
  as (mu, (e, (Fmu, (Hmu, (HmuGe1, HmuLtsqradix))))).
pose (t := sqrt x).
set (rt := round _ _ _ _).
assert (Ht : (t = sqrt mu * bpow e)%R).
{ unfold t; rewrite Hmu, sqrt_mult_alt; [|now apply (Rle_trans _ _ _ Rle_0_1)].
  now rewrite sqrt_bpow. }
destruct (sqrt_error_N_FLX_aux2 _ Fmu HmuGe1) as [Hmu'|[Hmu'|Hmu']].
{ unfold rt; fold t; rewrite Ht, Hmu', sqrt_1, Rmult_1_l.
  rewrite round_generic; [|now apply valid_rnd_N|].
  { rewrite Rminus_diag_eq, Rabs_R0; [|now simpl].
    now apply Rmult_le_pos; [|apply Rabs_pos]. }
  apply generic_format_bpow'; [now apply FLX_exp_valid|].
  unfold FLX_exp; omega. }
{ assert (Hsqrtmu : (1 <= sqrt mu < 1 + u_ro)%R); [rewrite Hmu'; split|].
  { rewrite <- sqrt_1 at 1; apply sqrt_le_1_alt; lra. }
  { rewrite <- sqrt_square; [|lra]; apply sqrt_lt_1_alt; split; [lra|].
    ring_simplify; assert (0 < u_ro ^ 2)%R; [apply pow_lt|]; lra. }
  assert (Fbpowe : generic_format beta (FLX_exp prec) (bpow e)).
  { apply generic_format_bpow; unfold FLX_exp; omega. }
  assert (Hrt : rt = bpow e :> R).
  { unfold rt; fold t; rewrite Ht; simpl; apply Rle_antisym.
    { apply round_N_le_midp; [now apply FLX_exp_valid|exact Fbpowe|].
      apply (Rlt_le_trans _ ((1 + u_ro) * bpow e)).
      { now apply Rmult_lt_compat_r; [apply bpow_gt_0|]. }
      unfold succ; rewrite Rle_bool_true; [|now apply bpow_ge_0].
      rewrite ulp_bpow; unfold FLX_exp.
      unfold Z.sub, u_ro; rewrite !bpow_plus; right; field. }
    apply round_ge_generic;
      [now apply FLX_exp_valid|now apply valid_rnd_N|exact Fbpowe|].
    rewrite <- (Rmult_1_l (bpow _)) at 1.
    now apply Rmult_le_compat_r; [apply bpow_ge_0|]. }
  fold t; rewrite Hrt, Ht, Hmu', <-(Rabs_pos_eq _ Pb), <-Rabs_mult.
  rewrite Rabs_minus_sym; right; f_equal; field; lra. }
assert (Hsqrtmu : (1 + u_ro < sqrt mu)%R).
{ apply (Rlt_le_trans _ (sqrt (1 + 4 * u_ro))); [|now apply sqrt_le_1_alt].
  assert (P1peps : (0 <= 1 + u_ro)%R)
    by now apply Rplus_le_le_0_compat; [lra|apply Peps].
  rewrite <- (sqrt_square (1 + u_ro)); [|lra].
  apply sqrt_lt_1_alt; split; [now apply Rmult_le_pos|].
  apply (Rplus_lt_reg_r (-1 - 2 * u_ro)); ring_simplify; simpl.
  rewrite Rmult_1_r; apply Rmult_lt_compat_r; [apply Peps'|].
  now apply (Rlt_le_trans _ 1); [apply u_ro_lt_1|lra]. }
assert (Hulpt : (ulp beta (FLX_exp prec) t = 2 * u_ro * bpow e)%R).
{ unfold ulp; rewrite Req_bool_false; [|apply Rgt_not_eq, Rlt_gt].
  { unfold u_ro; rewrite <-Rmult_assoc, Rinv_r, Rmult_1_l, <-bpow_plus; [|lra].
    f_equal; unfold cexp, FLX_exp.
    assert (Hmagt : (mag beta t = 1 + e :> Z)%Z).
    { apply mag_unique.
      unfold t; rewrite (Rabs_pos_eq _ (Rlt_le _ _ (sqrt_lt_R0 _ Px))).
      fold t; split.
      { rewrite Ht; replace (_ - _)%Z with e by ring.
        rewrite <- (Rmult_1_l (bpow _)) at 1; apply Rmult_le_compat_r.
        { apply bpow_ge_0. }
        now rewrite <- sqrt_1; apply sqrt_le_1_alt. }
      rewrite bpow_plus, bpow_1, Ht; simpl.
      apply Rmult_lt_compat_r; [now apply bpow_gt_0|].
      rewrite <- sqrt_square.
      { apply sqrt_lt_1_alt; split; [lra|].
        apply (Rlt_le_trans _ _ _ HmuLtsqradix); right.
        now unfold bpow, Z.pow_pos; simpl; rewrite Zmult_1_r, mult_IZR. }
      apply IZR_le, (Z.le_trans _ 2), Zle_bool_imp_le, radix_prop; omega. }
    rewrite Hmagt; ring. }
  rewrite Ht; apply Rmult_lt_0_compat; [|now apply bpow_gt_0].
  now apply (Rlt_le_trans _ 1); [lra|rewrite <- sqrt_1; apply sqrt_le_1_alt]. }
assert (Pt : (0 < t)%R).
{ rewrite Ht; apply Rmult_lt_0_compat; [lra|apply bpow_gt_0]. }
assert (H : (Rabs ((rt - sqrt x) / sqrt x)
             <= 1 - 1 / sqrt (1 + 2 * u_ro))%R).
{ unfold Rdiv; rewrite Rabs_mult, (Rabs_pos_eq (/ _));
    [|now left; apply Rinv_0_lt_compat].
  apply (Rle_trans _ ((u_ro * bpow e) / t)).
  { unfold Rdiv; apply Rmult_le_compat_r; [now left; apply Rinv_0_lt_compat|].
    apply (Rle_trans _ _ _ (error_le_half_ulp _ _ _ _)).
    fold t; rewrite Hulpt; right; field. }
  apply (Rle_trans _ (u_ro / sqrt (1 + 4 * u_ro))).
  { apply (Rle_trans _ (u_ro * bpow e / (sqrt (1 + 4 * u_ro) * bpow e))).
    { unfold Rdiv; apply Rmult_le_compat_l;
        [now apply Rmult_le_pos; [apply Peps|apply bpow_ge_0]|].
      apply Rinv_le.
      { apply Rmult_lt_0_compat; [apply sqrt_lt_R0; lra|apply bpow_gt_0]. }
      now rewrite Ht; apply Rmult_le_compat_r;
        [apply bpow_ge_0|apply sqrt_le_1_alt]. }
    right; field; split; apply Rgt_not_eq, Rlt_gt;
      [apply sqrt_lt_R0; lra|apply bpow_gt_0]. }
  apply sqrt_error_N_FLX_aux3. }
revert H; unfold Rdiv; rewrite Rabs_mult, Rabs_Rinv; [|fold t; lra]; intro H.
apply (Rmult_le_reg_r (/ Rabs (sqrt x)));
  [apply Rinv_0_lt_compat, Rabs_pos_lt; fold t; lra|].
apply (Rle_trans _ _ _ H); right; field; split; [apply Rabs_no_R0;fold t|]; lra.
Qed.

Theorem sqrt_error_N_FLX_ex x (Fx : format x) :
  exists eps,
  (Rabs eps <= 1 - 1 / sqrt (1 + 2 * u_ro))%R /\
  round beta (FLX_exp prec) (Znearest choice) (sqrt x)
  = (sqrt x * (1 + eps))%R.
Proof.
now apply relative_error_le_conversion;
  [apply valid_rnd_N|apply om1ds1p2u_ro_pos|apply sqrt_error_N_FLX].
Qed.

Lemma sqrt_error_N_round_ex_derive :
  forall x rx,
  (exists eps,
   (Rabs eps <= 1 - 1 / sqrt (1 + 2 * u_ro))%R /\ rx = (x * (1 + eps))%R) ->
  exists eps,
  (Rabs eps <= sqrt (1 + 2 * u_ro) - 1)%R /\ x = (rx * (1 + eps))%R.
Proof.
intros x rx (d, (Bd, Hd)).
assert (H := Rabs_le_inv _ _ Bd).
assert (H' := om1ds1p2u_ro_le_u_rod1pu_ro).
assert (H'' := u_rod1pu_ro_le_u_ro beta prec).
assert (H''' := u_ro_lt_1 beta prec prec_gt_0_).
assert (Hpos := s1p2u_rom1_pos).
destruct (Req_dec rx 0) as [Zfx|Nzfx].
{ exists 0%R; split; [now rewrite Rabs_R0|].
  rewrite Rplus_0_r, Rmult_1_r, Zfx; rewrite Zfx in Hd.
  destruct (Rmult_integral _ _ (sym_eq Hd)); lra. }
destruct (Req_dec x 0) as [Zx|Nzx].
{ now exfalso; revert Hd; rewrite Zx; rewrite Rmult_0_l. }
set (d' := ((x - rx) / rx)%R).
assert (Hd' : (Rabs d' <= sqrt (1 + 2 * u_ro) - 1)%R).
{ unfold d'; rewrite Hd.
  replace (_ / _)%R with (- d / (1 + d))%R; [|now field; split; lra].
  unfold Rdiv; rewrite Rabs_mult, Rabs_Ropp.
  rewrite (Rabs_pos_eq (/ _)); [|apply Rlt_le, Rinv_0_lt_compat; lra].
  apply (Rmult_le_reg_r (1 + d)); [lra|].
  rewrite Rmult_assoc, Rinv_l, Rmult_1_r; [|lra].
  apply (Rle_trans _ _ _ Bd).
  apply (Rle_trans _ ((sqrt (1 + 2 * u_ro) - 1) * (1/sqrt (1 + 2 * u_ro))));
    [right; field|apply Rmult_le_compat_l]; lra. }
now exists d'; split; [exact Hd'|]; unfold d'; field.
Qed.

sqrt(1 + 2 u_ro) - 1 <= u_ro
Theorem sqrt_error_N_FLX_round_ex :
  forall x,
  format x ->
  exists eps,
  (Rabs eps <= sqrt (1 + 2 * u_ro) - 1)%R /\
  sqrt x = (round beta (FLX_exp prec) (Znearest choice) (sqrt x) * (1 + eps))%R.
Proof.
now intros x Fx; apply sqrt_error_N_round_ex_derive, sqrt_error_N_FLX_ex.
Qed.

Variable emin : Z.
Hypothesis Hemin : (emin <= 2 * (1 - prec))%Z.

Theorem sqrt_error_N_FLT_ex :
  forall x,
  generic_format beta (FLT_exp emin prec) x ->
  exists eps,
  (Rabs eps <= 1 - 1 / sqrt (1 + 2 * u_ro))%R /\
  round beta (FLT_exp emin prec) (Znearest choice) (sqrt x)
  = (sqrt x * (1 + eps))%R.
Proof.
intros x Fx.
assert (Heps := u_ro_pos).
assert (Pb := om1ds1p2u_ro_pos).
destruct (Rle_or_lt x 0) as [Nx|Px].
{ exists 0%R; split; [now rewrite Rabs_R0|].
  now rewrite (sqrt_neg x Nx), round_0, Rmult_0_l; [|apply valid_rnd_N]. }
assert (Fx' := generic_format_FLX_FLT _ _ _ _ Fx).
destruct (sqrt_error_N_FLX_ex _ Fx') as (d, (Bd, Hd)).
exists d; split; [exact Bd|]; rewrite <-Hd; apply round_FLT_FLX.
apply (Rle_trans _ (bpow (emin / 2)%Z)).
{ apply bpow_le, Z.div_le_lower_bound; lia. }
apply (Rle_trans _ _ _ (sqrt_bpow_ge _ _)).
rewrite Rabs_pos_eq; [|now apply sqrt_pos]; apply sqrt_le_1_alt.
revert Fx; apply generic_format_ge_bpow; [|exact Px].
intro e; unfold FLT_exp; apply Z.le_max_r.
Qed.

sqrt(1 + 2 u_ro) - 1 <= u_ro
Theorem sqrt_error_N_FLT_round_ex :
  forall x,
  generic_format beta (FLT_exp emin prec) x ->
  exists eps,
  (Rabs eps <= sqrt (1 + 2 * u_ro) - 1)%R /\
  sqrt x
  = (round beta (FLT_exp emin prec) (Znearest choice) (sqrt x) * (1 + eps))%R.
Proof.
now intros x Fx; apply sqrt_error_N_round_ex_derive, sqrt_error_N_FLT_ex.
Qed.

End Fprop_divsqrt_error.

Section format_REM_aux.

Variable beta : radix.
Notation bpow e := (bpow beta e).

Variable fexp : Z -> Z.
Context { valid_exp : Valid_exp fexp }.
Context { monotone_exp : Monotone_exp fexp }.

Variable rnd : R -> Z.
Context { valid_rnd : Valid_rnd rnd }.

Notation format := (generic_format beta fexp).

Lemma format_REM_aux:
  forall x y : R,
  format x -> format y -> (0 <= x)%R -> (0 < y)%R ->
  ((0 < x/y < /2)%R -> rnd (x/y) = 0%Z) ->
  format (x - IZR (rnd (x/y))*y).
Proof with auto with typeclass_instances.
intros x y Fx Fy Hx Hy rnd_small.
pose (n:=rnd (x / y)).
assert (Hn:(IZR n = round beta (FIX_exp 0) rnd (x/y))%R).
unfold round, FIX_exp, cexp, scaled_mantissa, F2R; simpl.
now rewrite 2!Rmult_1_r.
assert (H:(0 <= n)%Z).
apply le_IZR; rewrite Hn; simpl.
apply Rle_trans with (round beta (FIX_exp 0) rnd 0).
right; apply sym_eq, round_0...
apply round_le...
apply Fourier_util.Rle_mult_inv_pos; assumption.
case (Zle_lt_or_eq 0 n); try exact H.
clear H; intros H.
case (Zle_lt_or_eq 1 n).
omega.
clear H; intros H.
set (ex := cexp beta fexp x).
set (ey := cexp beta fexp y).
set (mx := Ztrunc (scaled_mantissa beta fexp x)).
set (my := Ztrunc (scaled_mantissa beta fexp y)).
case (Zle_or_lt ey ex); intros Hexy.
assert (H0:(x-IZR n *y = F2R (Float beta (mx*beta^(ex-ey) - n*my) ey))%R).
unfold Rminus; rewrite Rplus_comm.
replace (IZR n) with (F2R (Float beta n 0)).
rewrite Fx, Fy.
fold mx my ex ey.
rewrite <- F2R_mult.
rewrite <- F2R_opp.
rewrite <- F2R_plus.
unfold Fplus. simpl.
rewrite Zle_imp_le_bool with (1 := Hexy).
f_equal; f_equal; ring.
unfold F2R; simpl; ring.
fold n; rewrite H0.
apply generic_format_F2R.
rewrite <- H0; intros H3.
apply monotone_exp.
apply mag_le_abs.
rewrite H0; apply F2R_neq_0; easy.
apply Rmult_le_reg_l with (/Rabs y)%R.
apply Rinv_0_lt_compat.
apply Rabs_pos_lt.
now apply Rgt_not_eq.
rewrite Rinv_l.
2: apply Rgt_not_eq, Rabs_pos_lt.
2: now apply Rgt_not_eq.
rewrite <- Rabs_Rinv.
2: now apply Rgt_not_eq.
rewrite <- Rabs_mult.
replace (/y * (x - IZR n *y))%R with (-(IZR n - x/y))%R.
rewrite Rabs_Ropp.
rewrite Hn.
apply Rle_trans with (1:= error_le_ulp beta (FIX_exp 0) _ _).
rewrite ulp_FIX.
simpl; apply Rle_refl.
field.
now apply Rgt_not_eq.
absurd (1 < n)%Z; try easy.
apply Zle_not_lt.
apply le_IZR; simpl; rewrite Hn.
apply round_le_generic...
apply generic_format_FIX.
exists (Float beta 1 0); try easy.
unfold F2R; simpl; ring.
apply Rmult_le_reg_r with y; try easy.
unfold Rdiv; rewrite Rmult_assoc.
rewrite Rinv_l, Rmult_1_r, Rmult_1_l.
2: now apply Rgt_not_eq.
assert (mag beta x < mag beta y)%Z.
case (Zle_or_lt (mag beta y) (mag beta x)); try easy.
intros J; apply monotone_exp in J; clear -J Hexy.
unfold ex, ey, cexp in Hexy; omega.
left; apply lt_mag with beta; easy.
intros Hn'; fold n; rewrite <- Hn'.
rewrite Rmult_1_l.
case Hx; intros Hx'.
assert (J:(0 < x/y)%R).
apply Fourier_util.Rlt_mult_inv_pos; assumption.
apply sterbenz...
assert (H0:(Rabs (1 - x/y) < 1)%R).
rewrite Hn', Hn.
apply Rlt_le_trans with (ulp beta (FIX_exp 0) (round beta (FIX_exp 0) rnd (x / y)))%R.
apply error_lt_ulp_round...
now apply Rgt_not_eq.
rewrite ulp_FIX.
rewrite <- Hn, <- Hn'.
apply Rle_refl.
apply Rabs_lt_inv in H0.
split; apply Rmult_le_reg_l with (/y)%R; try now apply Rinv_0_lt_compat.
unfold Rdiv; rewrite <- Rmult_assoc.
rewrite Rinv_l.
2: now apply Rgt_not_eq.
rewrite Rmult_1_l, Rmult_comm; fold (x/y)%R.
case (Rle_or_lt (/2) (x/y)); try easy.
intros K.
elim Zlt_not_le with (1 := H).
apply Zeq_le.
apply rnd_small.
now split.
apply Ropp_le_cancel; apply Rplus_le_reg_l with 1%R.
apply Rle_trans with (1-x/y)%R.
2: right; unfold Rdiv; ring.
left; apply Rle_lt_trans with (2:=proj1 H0).
right; field.
now apply Rgt_not_eq.
rewrite <- Hx', Rminus_0_l.
now apply generic_format_opp.
clear H; intros H; fold n; rewrite <- H.
now rewrite Rmult_0_l, Rminus_0_r.
Qed.

End format_REM_aux.

Section format_REM.

Variable beta : radix.
Notation bpow e := (bpow beta e).

Variable fexp : Z -> Z.
Context { valid_exp : Valid_exp fexp }.
Context { monotone_exp : Monotone_exp fexp }.

Notation format := (generic_format beta fexp).

Theorem format_REM :
  forall rnd : R -> Z, Valid_rnd rnd ->
  forall x y : R,
  ((Rabs (x/y) < /2)%R -> rnd (x/y)%R = 0%Z) ->
  format x -> format y ->
  format (x - IZR (rnd (x/y)%R) * y).
Proof with auto with typeclass_instances.
assert (H: forall rnd : R -> Z, Valid_rnd rnd ->
  forall x y : R,
  ((Rabs (x/y) < /2)%R -> rnd (x/y)%R = 0%Z) ->
  format x -> format y -> (0 < y)%R ->
  format (x - IZR (rnd (x/y)%R) * y)).
intros rnd valid_rnd x y Hrnd Fx Fy Hy.
case (Rle_or_lt 0 x); intros Hx.
apply format_REM_aux; try easy.
intros K.
apply Hrnd.
rewrite Rabs_pos_eq.
apply K.
apply Rlt_le, K.
replace (x - IZR (rnd (x/y)) * y)%R with
   (- (-x - IZR (Zrnd_opp rnd (-x/y)) * y))%R.
apply generic_format_opp.
apply format_REM_aux; try easy...
now apply generic_format_opp.
apply Ropp_le_cancel; rewrite Ropp_0, Ropp_involutive; now left.
replace (- x / y)%R with (- (x/y))%R by (unfold Rdiv; ring).
intros K.
unfold Zrnd_opp.
rewrite Ropp_involutive, Hrnd.
easy.
rewrite Rabs_left.
apply K.
apply Ropp_lt_cancel.
now rewrite Ropp_0.
unfold Zrnd_opp.
replace (- (- x / y))%R with (x / y)%R by (unfold Rdiv; ring).
rewrite opp_IZR.
ring.
intros rnd valid_rnd x y Hrnd Fx Fy.
case (Rle_or_lt 0 y); intros Hy.
destruct Hy as [Hy|Hy].
now apply H.
now rewrite <- Hy, Rmult_0_r, Rminus_0_r.
replace (IZR (rnd (x/y)) * y)%R with
  (IZR ((Zrnd_opp rnd) ((x / -y))) * -y)%R.
apply H; try easy...
replace (x / - y)%R with (- (x/y))%R.
intros K.
unfold Zrnd_opp.
rewrite Ropp_involutive, Hrnd.
easy.
now rewrite <- Rabs_Ropp.
field; now apply Rlt_not_eq.
now apply generic_format_opp.
apply Ropp_lt_cancel; now rewrite Ropp_0, Ropp_involutive.
unfold Zrnd_opp.
replace (- (x / - y))%R with (x/y)%R.
rewrite opp_IZR.
ring.
field; now apply Rlt_not_eq.
Qed.

Theorem format_REM_ZR:
  forall x y : R,
  format x -> format y ->
  format (x - IZR (Ztrunc (x/y)) * y).
Proof with auto with typeclass_instances.
intros x y Fx Fy.
apply format_REM; try easy...
intros K.
apply Z.abs_0_iff.
rewrite <- Ztrunc_abs.
rewrite Ztrunc_floor by apply Rabs_pos.
apply Zle_antisym.
replace 0%Z with (Zfloor (/2)).
apply Zfloor_le.
now apply Rlt_le.
apply Zfloor_imp.
simpl ; lra.
apply Zfloor_lub.
apply Rabs_pos.
Qed.

Theorem format_REM_N :
  forall choice,
  forall x y : R,
  format x -> format y ->
  format (x - IZR (Znearest choice (x/y)) * y).
Proof with auto with typeclass_instances.
intros choice x y Fx Fy.
apply format_REM; try easy...
intros K.
apply Znearest_imp.
now rewrite Rminus_0_r.
Qed.

End format_REM.