Library Interval.coqapprox.poly_bound_quad

This file is part of the CoqApprox formalization of rigorous polynomial approximation in Coq: http://tamadi.gforge.inria.fr/CoqApprox/
Copyright (C) 2010-2012, ENS de Lyon. Copyright (C) 2010-2016, Inria. Copyright (C) 2014-2016, IRIT.
This library is governed by the CeCILL-C license under French law and abiding by the rules of distribution of free software. You can use, modify and/or redistribute the library under the terms of the CeCILL-C license as circulated by CEA, CNRS and Inria at the following URL: http://www.cecill.info/
As a counterpart to the access to the source code and rights to copy, modify and redistribute granted by the license, users are provided only with a limited warranty and the library's author, the holder of the economic rights, and the successive licensors have only limited liability. See the COPYING file for more details.

Require Import ZArith.
From Flocq Require Import Raux.
From mathcomp.ssreflect Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq fintype bigop.
Require Import Interval_xreal.
Require Import Interval_interval.
Require Import Interval_missing.
Require Import Rstruct.
Require Import seq_compl.
Require Import interval_compl.
Require Import poly_datatypes.
Require Import poly_bound.

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Module PolyBoundHornerQuad (I : IntervalOps) (Pol : PolyIntOps I)
  <: PolyBound I Pol.

Module Import Bnd := PolyBoundHorner I Pol.
Module J := IntervalExt I.

Definition ComputeBound (prec : Pol.U) (pol : Pol.T) (x : I.type) : I.type :=
  if 3 <= Pol.size pol then
    let a1 := Pol.nth pol 1 in
    let a2 := Pol.nth pol 2 in
    let a2t2 := I.add prec a2 a2 in
    let a2t4 := I.add prec a2t2 a2t2 in
    let b1 := I.div prec a1 a2t2 in
    let b2 := I.div prec (I.sqr prec a1) a2t4 in
    if I.bounded b2 then
      I.add prec
            (I.add prec (I.sub prec (Pol.nth pol 0) b2)
                   (I.mul prec a2 (I.sqr prec (I.add prec x b1))))
            (I.mul prec (I.power_int prec x 3)
                   (Pol.horner prec (Pol.tail 3 pol) x))
    else Pol.horner prec pol x
  else Pol.horner prec pol x.

Import Pol.Notations. Local Open Scope ipoly_scope.

Theorem ComputeBound_correct prec pi p :
  pi >:: p ->
  J.extension (PolR.horner tt p) (ComputeBound prec pi).
Proof.
move=> Hnth X x Hx; rewrite /ComputeBound.
case E: (2 < Pol.size pi); last by apply: Bnd.ComputeBound_correct.
case Eb: I.bounded; last by apply: Bnd.ComputeBound_correct.
simpl.
set A0 := Pol.nth pi 0.
set A1 := Pol.nth pi 1.
set A2 := Pol.nth pi 2.
set Q3 := Pol.tail 3 pi.
pose a0 := PolR.nth p 0.
pose a1 := PolR.nth p 1.
pose a2 := PolR.nth p 2.
pose q3 := PolR.tail 3 p.
have Hi3: Pol.size pi = 3 + (Pol.size pi - 3) by rewrite subnKC //.
suff->: PolR.horner tt p x =
  (Rplus (Rplus (Rminus a0 (Rdiv (Rsqr a1) (Rplus (Rplus a2 a2) (Rplus a2 a2))))
              (Rmult a2 (Rsqr (Rplus x (Rdiv a1 (Rplus a2 a2))))))
        (Rmult (powerRZ x 3) (PolR.horner tt q3 x))).
have Hnth3 : Q3 >:: q3 by apply Pol.tail_correct.
apply: J.add_correct;
  [apply: J.add_correct;
    [apply: J.sub_correct;
      [apply: Hnth
      |apply: J.div_correct;
        [apply: J.sqr_correct; apply: Hnth
        |apply: J.add_correct; apply: J.add_correct; apply: Hnth]]
|apply: J.mul_correct;
      [apply: Hnth
      |apply: J.sqr_correct; apply: J.add_correct;
       [done
       |apply: J.div_correct;
         [apply: Hnth|apply: J.add_correct; apply: Hnth ]]]]
|apply: J.mul_correct;
    [exact: J.power_int_correct|exact: Pol.horner_correct]].
rewrite 2!PolR.hornerE.
rewrite (@big_nat_leq_idx _ _ _ (3 + (PolR.size p - 3))).
rewrite big_mkord.
rewrite 3?big_ord_recl -/a0 -/a1 -/a2 ![Radd_monoid _]/= /q3 PolR.size_tail.
set x0 := powerRZ x 0.
set x1 := powerRZ x 1.
set x2 := powerRZ x 2.
set x3 := powerRZ x 3.
set s1 := bigop _ _ _.
set s2 := bigop _ _ _.
have H4 : (a2 + a2 + (a2 + a2) <> 0)%R.
  intro K.
  move: Eb.
  have Hzero : contains (I.convert
    (I.add prec (I.add prec (Pol.nth pi 2) (Pol.nth pi 2))
      (I.add prec (Pol.nth pi 2) (Pol.nth pi 2)))) (Xreal 0).
    rewrite -K.
    by apply: J.add_correct; apply: J.add_correct; apply: Hnth.
  case/(I.bounded_correct _) => _.
  case/(I.upper_bounded_correct _) => _.
  rewrite /I.bounded_prop.
  set d := I.div prec _ _.
  suff->: I.convert d = IInan by [].
  apply -> contains_Xnan.
  rewrite -(Xdiv_0_r (Xsqr (Xreal a1))).
  apply: I.div_correct =>//.
  apply: I.sqr_correct.
  by apply: Hnth; rewrite Hi3.
have H2 : (a2 + a2 <> 0)%R by intro K; rewrite K Rplus_0_r in H4.
suff->: s1 = Rmult x3 s2.
  have->: Rmult a0 x0 = a0 by simpl; rewrite /x0 powerRZ_O Rmult_1_r.
  rewrite -!Rplus_assoc /Rminus; congr Rplus.
  rewrite /x1 /x2 /Rsqr.
  field.
  split =>//.
by rewrite -Rplus_assoc in H4.
rewrite /s1 /s2 /x3; clear.
rewrite Rmult_comm.
rewrite big_mkord big_distrl.
apply: eq_bigr=> i _.
rewrite /PolR.tail /PolR.nth nth_drop.
rewrite -!(pow_powerRZ _ 3).
rewrite /= !Rmult_assoc; f_equal; ring.
by rewrite addnC leq_subnK.
move=> i /andP [Hi _].
by rewrite PolR.nth_default ?Rmult_0_l.
Qed.

Lemma ComputeBound_propagate :
  forall prec pi,
  J.propagate (ComputeBound prec pi).
Proof.
red=> *; rewrite /ComputeBound /=.
by repeat match goal with [|- context [if ?b then _ else _]] => destruct b end;
  rewrite !(I.add_propagate_r,I.mul_propagate_l,J.power_int_propagate,
            Pol.horner_propagate).
Qed.

End PolyBoundHornerQuad.