Library mathcomp.ssreflect.finset
Require Import mathcomp.ssreflect.ssreflect.
From mathcomp
Require Import ssrbool ssrfun eqtype ssrnat div seq choice fintype.
From mathcomp
Require Import finfun bigop.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Section SetType.
Variable T : finType.
Inductive set_type : predArgType := FinSet of {ffun pred T}.
Definition finfun_of_set A := let: FinSet f := A in f.
Definition set_of of phant T := set_type.
Identity Coercion type_of_set_of : set_of >-> set_type.
Canonical set_subType := Eval hnf in [newType for finfun_of_set].
Definition set_eqMixin := Eval hnf in [eqMixin of set_type by <:].
Canonical set_eqType := Eval hnf in EqType set_type set_eqMixin.
Definition set_choiceMixin := [choiceMixin of set_type by <:].
Canonical set_choiceType := Eval hnf in ChoiceType set_type set_choiceMixin.
Definition set_countMixin := [countMixin of set_type by <:].
Canonical set_countType := Eval hnf in CountType set_type set_countMixin.
Canonical set_subCountType := Eval hnf in [subCountType of set_type].
Definition set_finMixin := [finMixin of set_type by <:].
Canonical set_finType := Eval hnf in FinType set_type set_finMixin.
Canonical set_subFinType := Eval hnf in [subFinType of set_type].
End SetType.
Delimit Scope set_scope with SET.
Bind Scope set_scope with set_type.
Bind Scope set_scope with set_of.
Open Scope set_scope.
Arguments finfun_of_set _ _%SET.
Notation "{ 'set' T }" := (set_of (Phant T))
(at level 0, format "{ 'set' T }") : type_scope.
Notation "A :=: B" := (A = B :> {set _})
(at level 70, no associativity, only parsing) : set_scope.
Notation "A :<>: B" := (A <> B :> {set _})
(at level 70, no associativity, only parsing) : set_scope.
Notation "A :==: B" := (A == B :> {set _})
(at level 70, no associativity, only parsing) : set_scope.
Notation "A :!=: B" := (A != B :> {set _})
(at level 70, no associativity, only parsing) : set_scope.
Notation "A :=P: B" := (A =P B :> {set _})
(at level 70, no associativity, only parsing) : set_scope.
Local Notation finset_def := (fun T P => @FinSet T (finfun P)).
Local Notation pred_of_set_def := (fun T (A : set_type T) => val A : _ -> _).
Module Type SetDefSig.
Parameter finset : forall T : finType, pred T -> {set T}.
Parameter pred_of_set : forall T, set_type T -> fin_pred_sort (predPredType T).
Axiom finsetE : finset = finset_def.
Axiom pred_of_setE : pred_of_set = pred_of_set_def.
End SetDefSig.
Module SetDef : SetDefSig.
Definition finset := finset_def.
Definition pred_of_set := pred_of_set_def.
Lemma finsetE : finset = finset_def. Proof. by []. Qed.
Lemma pred_of_setE : pred_of_set = pred_of_set_def. Proof. by []. Qed.
End SetDef.
Notation finset := SetDef.finset.
Notation pred_of_set := SetDef.pred_of_set.
Canonical finset_unlock := Unlockable SetDef.finsetE.
Canonical pred_of_set_unlock := Unlockable SetDef.pred_of_setE.
Notation "[ 'set' x : T | P ]" := (finset (fun x : T => P%B))
(at level 0, x at level 99, only parsing) : set_scope.
Notation "[ 'set' x | P ]" := [set x : _ | P]
(at level 0, x, P at level 99, format "[ 'set' x | P ]") : set_scope.
Notation "[ 'set' x 'in' A ]" := [set x | x \in A]
(at level 0, x at level 99, format "[ 'set' x 'in' A ]") : set_scope.
Notation "[ 'set' x : T 'in' A ]" := [set x : T | x \in A]
(at level 0, x at level 99, only parsing) : set_scope.
Notation "[ 'set' x : T | P & Q ]" := [set x : T | P && Q]
(at level 0, x at level 99, only parsing) : set_scope.
Notation "[ 'set' x | P & Q ]" := [set x | P && Q ]
(at level 0, x, P at level 99, format "[ 'set' x | P & Q ]") : set_scope.
Notation "[ 'set' x : T 'in' A | P ]" := [set x : T | x \in A & P]
(at level 0, x at level 99, only parsing) : set_scope.
Notation "[ 'set' x 'in' A | P ]" := [set x | x \in A & P]
(at level 0, x at level 99, format "[ 'set' x 'in' A | P ]") : set_scope.
Notation "[ 'set' x 'in' A | P & Q ]" := [set x in A | P && Q]
(at level 0, x at level 99,
format "[ 'set' x 'in' A | P & Q ]") : set_scope.
Notation "[ 'set' x : T 'in' A | P & Q ]" := [set x : T in A | P && Q]
(at level 0, x at level 99, only parsing) : set_scope.
Coercion pred_of_set: set_type >-> fin_pred_sort.
Canonical set_predType T :=
Eval hnf in @mkPredType _ (unkeyed (set_type T)) (@pred_of_set T).
Section BasicSetTheory.
Variable T : finType.
Implicit Types (x : T) (A B : {set T}) (pA : pred T).
Canonical set_of_subType := Eval hnf in [subType of {set T}].
Canonical set_of_eqType := Eval hnf in [eqType of {set T}].
Canonical set_of_choiceType := Eval hnf in [choiceType of {set T}].
Canonical set_of_countType := Eval hnf in [countType of {set T}].
Canonical set_of_subCountType := Eval hnf in [subCountType of {set T}].
Canonical set_of_finType := Eval hnf in [finType of {set T}].
Canonical set_of_subFinType := Eval hnf in [subFinType of {set T}].
Lemma in_set pA x : x \in finset pA = pA x.
Proof. by rewrite [@finset]unlock unlock [x \in _]ffunE. Qed.
Lemma setP A B : A =i B <-> A = B.
Proof.
by split=> [eqAB|-> //]; apply/val_inj/ffunP=> x; have:= eqAB x; rewrite unlock.
Qed.
Definition set0 := [set x : T | false].
Definition setTfor (phT : phant T) := [set x : T | true].
Lemma in_setT x : x \in setTfor (Phant T).
Proof. by rewrite in_set. Qed.
Lemma eqsVneq A B : {A = B} + {A != B}.
Proof. exact: eqVneq. Qed.
End BasicSetTheory.
Definition inE := (in_set, inE).
Arguments set0 [T].
Prenex Implicits set0.
Hint Resolve in_setT.
Notation "[ 'set' : T ]" := (setTfor (Phant T))
(at level 0, format "[ 'set' : T ]") : set_scope.
Notation setT := [set: _] (only parsing).
Section setOpsDefs.
Variable T : finType.
Implicit Types (a x : T) (A B D : {set T}) (P : {set {set T}}).
Definition set1 a := [set x | x == a].
Definition setU A B := [set x | (x \in A) || (x \in B)].
Definition setI A B := [set x in A | x \in B].
Definition setC A := [set x | x \notin A].
Definition setD A B := [set x | x \notin B & x \in A].
Definition ssetI P D := [set A in P | A \subset D].
Definition powerset D := [set A : {set T} | A \subset D].
End setOpsDefs.
Notation "[ 'set' a ]" := (set1 a)
(at level 0, a at level 99, format "[ 'set' a ]") : set_scope.
Notation "[ 'set' a : T ]" := [set (a : T)]
(at level 0, a at level 99, format "[ 'set' a : T ]") : set_scope.
Notation "A :|: B" := (setU A B) : set_scope.
Notation "a |: A" := ([set a] :|: A) : set_scope.
Notation "[ 'set' a1 ; a2 ; .. ; an ]" := (setU .. (a1 |: [set a2]) .. [set an])
(at level 0, a1 at level 99,
format "[ 'set' a1 ; a2 ; .. ; an ]") : set_scope.
Notation "A :&: B" := (setI A B) : set_scope.
Notation "~: A" := (setC A) (at level 35, right associativity) : set_scope.
Notation "[ 'set' ~ a ]" := (~: [set a])
(at level 0, format "[ 'set' ~ a ]") : set_scope.
Notation "A :\: B" := (setD A B) : set_scope.
Notation "A :\ a" := (A :\: [set a]) : set_scope.
Notation "P ::&: D" := (ssetI P D) (at level 48) : set_scope.
Section setOps.
Variable T : finType.
Implicit Types (a x : T) (A B C D : {set T}) (pA pB pC : pred T).
Lemma eqEsubset A B : (A == B) = (A \subset B) && (B \subset A).
Proof. by apply/eqP/subset_eqP=> /setP. Qed.
Lemma subEproper A B : A \subset B = (A == B) || (A \proper B).
Proof. by rewrite eqEsubset -andb_orr orbN andbT. Qed.
Lemma eqVproper A B : A \subset B -> A = B \/ A \proper B.
Proof. by rewrite subEproper => /predU1P. Qed.
Lemma properEneq A B : A \proper B = (A != B) && (A \subset B).
Proof. by rewrite andbC eqEsubset negb_and andb_orr andbN. Qed.
Lemma proper_neq A B : A \proper B -> A != B.
Proof. by rewrite properEneq; case/andP. Qed.
Lemma eqEproper A B : (A == B) = (A \subset B) && ~~ (A \proper B).
Proof. by rewrite negb_and negbK andb_orr andbN eqEsubset. Qed.
Lemma eqEcard A B : (A == B) = (A \subset B) && (#|B| <= #|A|).
Proof.
rewrite eqEsubset; apply: andb_id2l => sAB.
by rewrite (geq_leqif (subset_leqif_card sAB)).
Qed.
Lemma properEcard A B : (A \proper B) = (A \subset B) && (#|A| < #|B|).
Proof. by rewrite properEneq ltnNge andbC eqEcard; case: (A \subset B). Qed.
Lemma subset_leqif_cards A B : A \subset B -> (#|A| <= #|B| ?= iff (A == B)).
Proof. by move=> sAB; rewrite eqEsubset sAB; apply: subset_leqif_card. Qed.
Lemma in_set0 x : x \in set0 = false.
Proof. by rewrite inE. Qed.
Lemma sub0set A : set0 \subset A.
Proof. by apply/subsetP=> x; rewrite inE. Qed.
Lemma subset0 A : (A \subset set0) = (A == set0).
Proof. by rewrite eqEsubset sub0set andbT. Qed.
Lemma proper0 A : (set0 \proper A) = (A != set0).
Proof. by rewrite properE sub0set subset0. Qed.
Lemma subset_neq0 A B : A \subset B -> A != set0 -> B != set0.
Proof. by rewrite -!proper0 => sAB /proper_sub_trans->. Qed.
Lemma set_0Vmem A : (A = set0) + {x : T | x \in A}.
Proof.
case: (pickP (mem A)) => [x Ax | A0]; [by right; exists x | left].
by apply/setP=> x; rewrite inE; apply: A0.
Qed.
Lemma enum_set0 : enum set0 = [::] :> seq T.
Proof. by rewrite (eq_enum (in_set _)) enum0. Qed.
Lemma subsetT A : A \subset setT.
Proof. by apply/subsetP=> x; rewrite inE. Qed.
Lemma subsetT_hint mA : subset mA (mem [set: T]).
Proof. by rewrite unlock; apply/pred0P=> x; rewrite !inE. Qed.
Hint Resolve subsetT_hint.
Lemma subTset A : (setT \subset A) = (A == setT).
Proof. by rewrite eqEsubset subsetT. Qed.
Lemma properT A : (A \proper setT) = (A != setT).
Proof. by rewrite properEneq subsetT andbT. Qed.
Lemma set1P x a : reflect (x = a) (x \in [set a]).
Proof. by rewrite inE; apply: eqP. Qed.
Lemma enum_setT : enum [set: T] = Finite.enum T.
Proof. by rewrite (eq_enum (in_set _)) enumT. Qed.
Lemma in_set1 x a : (x \in [set a]) = (x == a).
Proof. exact: in_set. Qed.
Lemma set11 x : x \in [set x].
Proof. by rewrite inE. Qed.
Lemma set1_inj : injective (@set1 T).
Proof. by move=> a b eqsab; apply/set1P; rewrite -eqsab set11. Qed.
Lemma enum_set1 a : enum [set a] = [:: a].
Proof. by rewrite (eq_enum (in_set _)) enum1. Qed.
Lemma setU1P x a B : reflect (x = a \/ x \in B) (x \in a |: B).
Proof. by rewrite !inE; apply: predU1P. Qed.
Lemma in_setU1 x a B : (x \in a |: B) = (x == a) || (x \in B).
Proof. by rewrite !inE. Qed.
Lemma set_cons a s : [set x in a :: s] = a |: [set x in s].
Proof. by apply/setP=> x; rewrite !inE. Qed.
Lemma setU11 x B : x \in x |: B.
Proof. by rewrite !inE eqxx. Qed.
Lemma setU1r x a B : x \in B -> x \in a |: B.
Proof. by move=> Bx; rewrite !inE predU1r. Qed.
Lemma set1Ul x A b : x \in A -> x \in A :|: [set b].
Proof. by move=> Ax; rewrite !inE Ax. Qed.
Lemma set1Ur A b : b \in A :|: [set b].
Proof. by rewrite !inE eqxx orbT. Qed.
Lemma in_setC1 x a : (x \in [set~ a]) = (x != a).
Proof. by rewrite !inE. Qed.
Lemma setC11 x : (x \in [set~ x]) = false.
Proof. by rewrite !inE eqxx. Qed.
Lemma setD1P x A b : reflect (x != b /\ x \in A) (x \in A :\ b).
Proof. by rewrite !inE; apply: andP. Qed.
Lemma in_setD1 x A b : (x \in A :\ b) = (x != b) && (x \in A) .
Proof. by rewrite !inE. Qed.
Lemma setD11 b A : (b \in A :\ b) = false.
Proof. by rewrite !inE eqxx. Qed.
Lemma setD1K a A : a \in A -> a |: (A :\ a) = A.
Proof. by move=> Aa; apply/setP=> x; rewrite !inE; case: eqP => // ->. Qed.
Lemma setU1K a B : a \notin B -> (a |: B) :\ a = B.
Proof.
by move/negPf=> nBa; apply/setP=> x; rewrite !inE; case: eqP => // ->.
Qed.
Lemma set2P x a b : reflect (x = a \/ x = b) (x \in [set a; b]).
Proof. by rewrite !inE; apply: pred2P. Qed.
Lemma in_set2 x a b : (x \in [set a; b]) = (x == a) || (x == b).
Proof. by rewrite !inE. Qed.
Lemma set21 a b : a \in [set a; b].
Proof. by rewrite !inE eqxx. Qed.
Lemma set22 a b : b \in [set a; b].
Proof. by rewrite !inE eqxx orbT. Qed.
Lemma setUP x A B : reflect (x \in A \/ x \in B) (x \in A :|: B).
Proof. by rewrite !inE; apply: orP. Qed.
Lemma in_setU x A B : (x \in A :|: B) = (x \in A) || (x \in B).
Proof. exact: in_set. Qed.
Lemma setUC A B : A :|: B = B :|: A.
Proof. by apply/setP => x; rewrite !inE orbC. Qed.
Lemma setUS A B C : A \subset B -> C :|: A \subset C :|: B.
Proof.
move=> sAB; apply/subsetP=> x; rewrite !inE.
by case: (x \in C) => //; apply: (subsetP sAB).
Qed.
Lemma setSU A B C : A \subset B -> A :|: C \subset B :|: C.
Proof. by move=> sAB; rewrite -!(setUC C) setUS. Qed.
Lemma setUSS A B C D : A \subset C -> B \subset D -> A :|: B \subset C :|: D.
Proof. by move=> /(setSU B) /subset_trans sAC /(setUS C)/sAC. Qed.
Lemma set0U A : set0 :|: A = A.
Proof. by apply/setP => x; rewrite !inE orFb. Qed.
Lemma setU0 A : A :|: set0 = A.
Proof. by rewrite setUC set0U. Qed.
Lemma setUA A B C : A :|: (B :|: C) = A :|: B :|: C.
Proof. by apply/setP => x; rewrite !inE orbA. Qed.
Lemma setUCA A B C : A :|: (B :|: C) = B :|: (A :|: C).
Proof. by rewrite !setUA (setUC B). Qed.
Lemma setUAC A B C : A :|: B :|: C = A :|: C :|: B.
Proof. by rewrite -!setUA (setUC B). Qed.
Lemma setUACA A B C D : (A :|: B) :|: (C :|: D) = (A :|: C) :|: (B :|: D).
Proof. by rewrite -!setUA (setUCA B). Qed.
Lemma setTU A : setT :|: A = setT.
Proof. by apply/setP => x; rewrite !inE orTb. Qed.
Lemma setUT A : A :|: setT = setT.
Proof. by rewrite setUC setTU. Qed.
Lemma setUid A : A :|: A = A.
Proof. by apply/setP=> x; rewrite inE orbb. Qed.
Lemma setUUl A B C : A :|: B :|: C = (A :|: C) :|: (B :|: C).
Proof. by rewrite setUA !(setUAC _ C) -(setUA _ C) setUid. Qed.
Lemma setUUr A B C : A :|: (B :|: C) = (A :|: B) :|: (A :|: C).
Proof. by rewrite !(setUC A) setUUl. Qed.
Lemma setIdP x pA pB : reflect (pA x /\ pB x) (x \in [set y | pA y & pB y]).
Proof. by rewrite !inE; apply: andP. Qed.
Lemma setId2P x pA pB pC :
reflect [/\ pA x, pB x & pC x] (x \in [set y | pA y & pB y && pC y]).
Proof. by rewrite !inE; apply: and3P. Qed.
Lemma setIdE A pB : [set x in A | pB x] = A :&: [set x | pB x].
Proof. by apply/setP=> x; rewrite !inE. Qed.
Lemma setIP x A B : reflect (x \in A /\ x \in B) (x \in A :&: B).
Proof. exact: (iffP (@setIdP _ _ _)). Qed.
Lemma in_setI x A B : (x \in A :&: B) = (x \in A) && (x \in B).
Proof. exact: in_set. Qed.
Lemma setIC A B : A :&: B = B :&: A.
Proof. by apply/setP => x; rewrite !inE andbC. Qed.
Lemma setIS A B C : A \subset B -> C :&: A \subset C :&: B.
Proof.
move=> sAB; apply/subsetP=> x; rewrite !inE.
by case: (x \in C) => //; apply: (subsetP sAB).
Qed.
Lemma setSI A B C : A \subset B -> A :&: C \subset B :&: C.
Proof. by move=> sAB; rewrite -!(setIC C) setIS. Qed.
Lemma setISS A B C D : A \subset C -> B \subset D -> A :&: B \subset C :&: D.
Proof. by move=> /(setSI B) /subset_trans sAC /(setIS C) /sAC. Qed.
Lemma setTI A : setT :&: A = A.
Proof. by apply/setP => x; rewrite !inE andTb. Qed.
Lemma setIT A : A :&: setT = A.
Proof. by rewrite setIC setTI. Qed.
Lemma set0I A : set0 :&: A = set0.
Proof. by apply/setP => x; rewrite !inE andFb. Qed.
Lemma setI0 A : A :&: set0 = set0.
Proof. by rewrite setIC set0I. Qed.
Lemma setIA A B C : A :&: (B :&: C) = A :&: B :&: C.
Proof. by apply/setP=> x; rewrite !inE andbA. Qed.
Lemma setICA A B C : A :&: (B :&: C) = B :&: (A :&: C).
Proof. by rewrite !setIA (setIC A). Qed.
Lemma setIAC A B C : A :&: B :&: C = A :&: C :&: B.
Proof. by rewrite -!setIA (setIC B). Qed.
Lemma setIACA A B C D : (A :&: B) :&: (C :&: D) = (A :&: C) :&: (B :&: D).
Proof. by rewrite -!setIA (setICA B). Qed.
Lemma setIid A : A :&: A = A.
Proof. by apply/setP=> x; rewrite inE andbb. Qed.
Lemma setIIl A B C : A :&: B :&: C = (A :&: C) :&: (B :&: C).
Proof. by rewrite setIA !(setIAC _ C) -(setIA _ C) setIid. Qed.
Lemma setIIr A B C : A :&: (B :&: C) = (A :&: B) :&: (A :&: C).
Proof. by rewrite !(setIC A) setIIl. Qed.
Lemma setIUr A B C : A :&: (B :|: C) = (A :&: B) :|: (A :&: C).
Proof. by apply/setP=> x; rewrite !inE andb_orr. Qed.
Lemma setIUl A B C : (A :|: B) :&: C = (A :&: C) :|: (B :&: C).
Proof. by apply/setP=> x; rewrite !inE andb_orl. Qed.
Lemma setUIr A B C : A :|: (B :&: C) = (A :|: B) :&: (A :|: C).
Proof. by apply/setP=> x; rewrite !inE orb_andr. Qed.
Lemma setUIl A B C : (A :&: B) :|: C = (A :|: C) :&: (B :|: C).
Proof. by apply/setP=> x; rewrite !inE orb_andl. Qed.
Lemma setUK A B : (A :|: B) :&: A = A.
Proof. by apply/setP=> x; rewrite !inE orbK. Qed.
Lemma setKU A B : A :&: (B :|: A) = A.
Proof. by apply/setP=> x; rewrite !inE orKb. Qed.
Lemma setIK A B : (A :&: B) :|: A = A.
Proof. by apply/setP=> x; rewrite !inE andbK. Qed.
Lemma setKI A B : A :|: (B :&: A) = A.
Proof. by apply/setP=> x; rewrite !inE andKb. Qed.
Lemma setCP x A : reflect (~ x \in A) (x \in ~: A).
Proof. by rewrite !inE; apply: negP. Qed.
Lemma in_setC x A : (x \in ~: A) = (x \notin A).
Proof. exact: in_set. Qed.
Lemma setCK : involutive (@setC T).
Proof. by move=> A; apply/setP=> x; rewrite !inE negbK. Qed.
Lemma setC_inj : injective (@setC T).
Proof. exact: can_inj setCK. Qed.
Lemma subsets_disjoint A B : (A \subset B) = [disjoint A & ~: B].
Proof. by rewrite subset_disjoint; apply: eq_disjoint_r => x; rewrite !inE. Qed.
Lemma disjoints_subset A B : [disjoint A & B] = (A \subset ~: B).
Proof. by rewrite subsets_disjoint setCK. Qed.
Lemma powersetCE A B : (A \in powerset (~: B)) = [disjoint A & B].
Proof. by rewrite inE disjoints_subset. Qed.
Lemma setCS A B : (~: A \subset ~: B) = (B \subset A).
Proof. by rewrite !subsets_disjoint setCK disjoint_sym. Qed.
Lemma setCU A B : ~: (A :|: B) = ~: A :&: ~: B.
Proof. by apply/setP=> x; rewrite !inE negb_or. Qed.
Lemma setCI A B : ~: (A :&: B) = ~: A :|: ~: B.
Proof. by apply/setP=> x; rewrite !inE negb_and. Qed.
Lemma setUCr A : A :|: ~: A = setT.
Proof. by apply/setP=> x; rewrite !inE orbN. Qed.
Lemma setICr A : A :&: ~: A = set0.
Proof. by apply/setP=> x; rewrite !inE andbN. Qed.
Lemma setC0 : ~: set0 = [set: T].
Proof. by apply/setP=> x; rewrite !inE. Qed.
Lemma setCT : ~: [set: T] = set0.
Proof. by rewrite -setC0 setCK. Qed.
Lemma setDP A B x : reflect (x \in A /\ x \notin B) (x \in A :\: B).
Proof. by rewrite inE andbC; apply: andP. Qed.
Lemma in_setD A B x : (x \in A :\: B) = (x \notin B) && (x \in A).
Proof. exact: in_set. Qed.
Lemma setDE A B : A :\: B = A :&: ~: B.
Proof. by apply/setP => x; rewrite !inE andbC. Qed.
Lemma setSD A B C : A \subset B -> A :\: C \subset B :\: C.
Proof. by rewrite !setDE; apply: setSI. Qed.
Lemma setDS A B C : A \subset B -> C :\: B \subset C :\: A.
Proof. by rewrite !setDE -setCS; apply: setIS. Qed.
Lemma setDSS A B C D : A \subset C -> D \subset B -> A :\: B \subset C :\: D.
Proof. by move=> /(setSD B) /subset_trans sAC /(setDS C) /sAC. Qed.
Lemma setD0 A : A :\: set0 = A.
Proof. by apply/setP=> x; rewrite !inE. Qed.
Lemma set0D A : set0 :\: A = set0.
Proof. by apply/setP=> x; rewrite !inE andbF. Qed.
Lemma setDT A : A :\: setT = set0.
Proof. by apply/setP=> x; rewrite !inE. Qed.
Lemma setTD A : setT :\: A = ~: A.
Proof. by apply/setP=> x; rewrite !inE andbT. Qed.
Lemma setDv A : A :\: A = set0.
Proof. by apply/setP=> x; rewrite !inE andNb. Qed.
Lemma setCD A B : ~: (A :\: B) = ~: A :|: B.
Proof. by rewrite !setDE setCI setCK. Qed.
Lemma setID A B : A :&: B :|: A :\: B = A.
Proof. by rewrite setDE -setIUr setUCr setIT. Qed.
Lemma setDUl A B C : (A :|: B) :\: C = (A :\: C) :|: (B :\: C).
Proof. by rewrite !setDE setIUl. Qed.
Lemma setDUr A B C : A :\: (B :|: C) = (A :\: B) :&: (A :\: C).
Proof. by rewrite !setDE setCU setIIr. Qed.
Lemma setDIl A B C : (A :&: B) :\: C = (A :\: C) :&: (B :\: C).
Proof. by rewrite !setDE setIIl. Qed.
Lemma setIDA A B C : A :&: (B :\: C) = (A :&: B) :\: C.
Proof. by rewrite !setDE setIA. Qed.
Lemma setIDAC A B C : (A :\: B) :&: C = (A :&: C) :\: B.
Proof. by rewrite !setDE setIAC. Qed.
Lemma setDIr A B C : A :\: (B :&: C) = (A :\: B) :|: (A :\: C).
Proof. by rewrite !setDE setCI setIUr. Qed.
Lemma setDDl A B C : (A :\: B) :\: C = A :\: (B :|: C).
Proof. by rewrite !setDE setCU setIA. Qed.
Lemma setDDr A B C : A :\: (B :\: C) = (A :\: B) :|: (A :&: C).
Proof. by rewrite !setDE setCI setIUr setCK. Qed.
Lemma powersetE A B : (A \in powerset B) = (A \subset B).
Proof. by rewrite inE. Qed.
Lemma powersetS A B : (powerset A \subset powerset B) = (A \subset B).
Proof.
apply/subsetP/idP=> [sAB | sAB C]; last by rewrite !inE => /subset_trans ->.
by rewrite -powersetE sAB // inE.
Qed.
Lemma powerset0 : powerset set0 = [set set0] :> {set {set T}}.
Proof. by apply/setP=> A; rewrite !inE subset0. Qed.
Lemma powersetT : powerset [set: T] = [set: {set T}].
Proof. by apply/setP=> A; rewrite !inE subsetT. Qed.
Lemma setI_powerset P A : P :&: powerset A = P ::&: A.
Proof. by apply/setP=> B; rewrite !inE. Qed.
Lemma cardsE pA : #|[set x in pA]| = #|pA|.
Proof. exact/eq_card/in_set. Qed.
Lemma sum1dep_card pA : \sum_(x | pA x) 1 = #|[set x | pA x]|.
Proof. by rewrite sum1_card cardsE. Qed.
Lemma sum_nat_dep_const pA n : \sum_(x | pA x) n = #|[set x | pA x]| * n.
Proof. by rewrite sum_nat_const cardsE. Qed.
Lemma cards0 : #|@set0 T| = 0.
Proof. by rewrite cardsE card0. Qed.
Lemma cards_eq0 A : (#|A| == 0) = (A == set0).
Proof. by rewrite (eq_sym A) eqEcard sub0set cards0 leqn0. Qed.
Lemma set0Pn A : reflect (exists x, x \in A) (A != set0).
Proof. by rewrite -cards_eq0; apply: existsP. Qed.
Lemma card_gt0 A : (0 < #|A|) = (A != set0).
Proof. by rewrite lt0n cards_eq0. Qed.
Lemma cards0_eq A : #|A| = 0 -> A = set0.
Proof. by move=> A_0; apply/setP=> x; rewrite inE (card0_eq A_0). Qed.
Lemma cards1 x : #|[set x]| = 1.
Proof. by rewrite cardsE card1. Qed.
Lemma cardsUI A B : #|A :|: B| + #|A :&: B| = #|A| + #|B|.
Proof. by rewrite !cardsE cardUI. Qed.
Lemma cardsU A B : #|A :|: B| = (#|A| + #|B| - #|A :&: B|)%N.
Proof. by rewrite -cardsUI addnK. Qed.
Lemma cardsI A B : #|A :&: B| = (#|A| + #|B| - #|A :|: B|)%N.
Proof. by rewrite -cardsUI addKn. Qed.
Lemma cardsT : #|[set: T]| = #|T|.
Proof. by rewrite cardsE. Qed.
Lemma cardsID B A : #|A :&: B| + #|A :\: B| = #|A|.
Proof. by rewrite !cardsE cardID. Qed.
Lemma cardsD A B : #|A :\: B| = (#|A| - #|A :&: B|)%N.
Proof. by rewrite -(cardsID B A) addKn. Qed.
Lemma cardsC A : #|A| + #|~: A| = #|T|.
Proof. by rewrite cardsE cardC. Qed.
Lemma cardsCs A : #|A| = #|T| - #|~: A|.
Proof. by rewrite -(cardsC A) addnK. Qed.
Lemma cardsU1 a A : #|a |: A| = (a \notin A) + #|A|.
Proof. by rewrite -cardU1; apply: eq_card=> x; rewrite !inE. Qed.
Lemma cards2 a b : #|[set a; b]| = (a != b).+1.
Proof. by rewrite -card2; apply: eq_card=> x; rewrite !inE. Qed.
Lemma cardsC1 a : #|[set~ a]| = #|T|.-1.
Proof. by rewrite -(cardC1 a); apply: eq_card=> x; rewrite !inE. Qed.
Lemma cardsD1 a A : #|A| = (a \in A) + #|A :\ a|.
Proof.
by rewrite (cardD1 a); congr (_ + _); apply: eq_card => x; rewrite !inE.
Qed.
Lemma subsetIl A B : A :&: B \subset A.
Proof. by apply/subsetP=> x; rewrite inE; case/andP. Qed.
Lemma subsetIr A B : A :&: B \subset B.
Proof. by apply/subsetP=> x; rewrite inE; case/andP. Qed.
Lemma subsetUl A B : A \subset A :|: B.
Proof. by apply/subsetP=> x; rewrite inE => ->. Qed.
Lemma subsetUr A B : B \subset A :|: B.
Proof. by apply/subsetP=> x; rewrite inE orbC => ->. Qed.
Lemma subsetU1 x A : A \subset x |: A.
Proof. exact: subsetUr. Qed.
Lemma subsetDl A B : A :\: B \subset A.
Proof. by rewrite setDE subsetIl. Qed.
Lemma subD1set A x : A :\ x \subset A.
Proof. by rewrite subsetDl. Qed.
Lemma subsetDr A B : A :\: B \subset ~: B.
Proof. by rewrite setDE subsetIr. Qed.
Lemma sub1set A x : ([set x] \subset A) = (x \in A).
Proof. by rewrite -subset_pred1; apply: eq_subset=> y; rewrite !inE. Qed.
Lemma cards1P A : reflect (exists x, A = [set x]) (#|A| == 1).
Proof.
apply: (iffP idP) => [|[x ->]]; last by rewrite cards1.
rewrite eq_sym eqn_leq card_gt0 => /andP[/set0Pn[x Ax] leA1].
by exists x; apply/eqP; rewrite eq_sym eqEcard sub1set Ax cards1 leA1.
Qed.
Lemma subset1 A x : (A \subset [set x]) = (A == [set x]) || (A == set0).
Proof.
rewrite eqEcard cards1 -cards_eq0 orbC andbC.
by case: posnP => // A0; rewrite (cards0_eq A0) sub0set.
Qed.
Lemma powerset1 x : powerset [set x] = [set set0; [set x]].
Proof. by apply/setP=> A; rewrite !inE subset1 orbC. Qed.
Lemma setIidPl A B : reflect (A :&: B = A) (A \subset B).
Proof.
apply: (iffP subsetP) => [sAB | <- x /setIP[] //].
by apply/setP=> x; rewrite inE; apply/andb_idr/sAB.
Qed.
Arguments setIidPl [A B].
Lemma setIidPr A B : reflect (A :&: B = B) (B \subset A).
Proof. by rewrite setIC; apply: setIidPl. Qed.
Lemma cardsDS A B : B \subset A -> #|A :\: B| = (#|A| - #|B|)%N.
Proof. by rewrite cardsD => /setIidPr->. Qed.
Lemma setUidPl A B : reflect (A :|: B = A) (B \subset A).
Proof.
by rewrite -setCS (sameP setIidPl eqP) -setCU (inj_eq setC_inj); apply: eqP.
Qed.
Lemma setUidPr A B : reflect (A :|: B = B) (A \subset B).
Proof. by rewrite setUC; apply: setUidPl. Qed.
Lemma setDidPl A B : reflect (A :\: B = A) [disjoint A & B].
Proof. by rewrite setDE disjoints_subset; apply: setIidPl. Qed.
Lemma subIset A B C : (B \subset A) || (C \subset A) -> (B :&: C \subset A).
Proof. by case/orP; apply: subset_trans; rewrite (subsetIl, subsetIr). Qed.
Lemma subsetI A B C : (A \subset B :&: C) = (A \subset B) && (A \subset C).
Proof.
rewrite !(sameP setIidPl eqP) setIA; have [-> //| ] := altP (A :&: B =P A).
by apply: contraNF => /eqP <-; rewrite -setIA -setIIl setIAC.
Qed.
Lemma subsetIP A B C : reflect (A \subset B /\ A \subset C) (A \subset B :&: C).
Proof. by rewrite subsetI; apply: andP. Qed.
Lemma subsetIidl A B : (A \subset A :&: B) = (A \subset B).
Proof. by rewrite subsetI subxx. Qed.
Lemma subsetIidr A B : (B \subset A :&: B) = (B \subset A).
Proof. by rewrite setIC subsetIidl. Qed.
Lemma powersetI A B : powerset (A :&: B) = powerset A :&: powerset B.
Proof. by apply/setP=> C; rewrite !inE subsetI. Qed.
Lemma subUset A B C : (B :|: C \subset A) = (B \subset A) && (C \subset A).
Proof. by rewrite -setCS setCU subsetI !setCS. Qed.
Lemma subsetU A B C : (A \subset B) || (A \subset C) -> A \subset B :|: C.
Proof. by rewrite -!(setCS _ A) setCU; apply: subIset. Qed.
Lemma subUsetP A B C : reflect (A \subset C /\ B \subset C) (A :|: B \subset C).
Proof. by rewrite subUset; apply: andP. Qed.
Lemma subsetC A B : (A \subset ~: B) = (B \subset ~: A).
Proof. by rewrite -setCS setCK. Qed.
Lemma subCset A B : (~: A \subset B) = (~: B \subset A).
Proof. by rewrite -setCS setCK. Qed.
Lemma subsetD A B C : (A \subset B :\: C) = (A \subset B) && [disjoint A & C].
Proof. by rewrite setDE subsetI -disjoints_subset. Qed.
Lemma subDset A B C : (A :\: B \subset C) = (A \subset B :|: C).
Proof.
apply/subsetP/subsetP=> sABC x; rewrite !inE.
by case Bx: (x \in B) => // Ax; rewrite sABC ?inE ?Bx.
by case Bx: (x \in B) => //; move/sABC; rewrite inE Bx.
Qed.
Lemma subsetDP A B C :
reflect (A \subset B /\ [disjoint A & C]) (A \subset B :\: C).
Proof. by rewrite subsetD; apply: andP. Qed.
Lemma setU_eq0 A B : (A :|: B == set0) = (A == set0) && (B == set0).
Proof. by rewrite -!subset0 subUset. Qed.
Lemma setD_eq0 A B : (A :\: B == set0) = (A \subset B).
Proof. by rewrite -subset0 subDset setU0. Qed.
Lemma setI_eq0 A B : (A :&: B == set0) = [disjoint A & B].
Proof. by rewrite disjoints_subset -setD_eq0 setDE setCK. Qed.
Lemma disjoint_setI0 A B : [disjoint A & B] -> A :&: B = set0.
Proof. by rewrite -setI_eq0; move/eqP. Qed.
Lemma subsetD1 A B x : (A \subset B :\ x) = (A \subset B) && (x \notin A).
Proof. by rewrite setDE subsetI subsetC sub1set inE. Qed.
Lemma subsetD1P A B x : reflect (A \subset B /\ x \notin A) (A \subset B :\ x).
Proof. by rewrite subsetD1; apply: andP. Qed.
Lemma properD1 A x : x \in A -> A :\ x \proper A.
Proof.
move=> Ax; rewrite properE subsetDl; apply/subsetPn; exists x=> //.
by rewrite in_setD1 Ax eqxx.
Qed.
Lemma properIr A B : ~~ (B \subset A) -> A :&: B \proper B.
Proof. by move=> nsAB; rewrite properE subsetIr subsetI negb_and nsAB. Qed.
Lemma properIl A B : ~~ (A \subset B) -> A :&: B \proper A.
Proof. by move=> nsBA; rewrite properE subsetIl subsetI negb_and nsBA orbT. Qed.
Lemma properUr A B : ~~ (A \subset B) -> B \proper A :|: B.
Proof. by rewrite properE subsetUr subUset subxx /= andbT. Qed.
Lemma properUl A B : ~~ (B \subset A) -> A \proper A :|: B.
Proof. by move=> not_sBA; rewrite setUC properUr. Qed.
Lemma proper1set A x : ([set x] \proper A) -> (x \in A).
Proof. by move/proper_sub; rewrite sub1set. Qed.
Lemma properIset A B C : (B \proper A) || (C \proper A) -> (B :&: C \proper A).
Proof. by case/orP; apply: sub_proper_trans; rewrite (subsetIl, subsetIr). Qed.
Lemma properI A B C : (A \proper B :&: C) -> (A \proper B) && (A \proper C).
Proof.
move=> pAI; apply/andP.
by split; apply: (proper_sub_trans pAI); rewrite (subsetIl, subsetIr).
Qed.
Lemma properU A B C : (B :|: C \proper A) -> (B \proper A) && (C \proper A).
Proof.
move=> pUA; apply/andP.
by split; apply: sub_proper_trans pUA; rewrite (subsetUr, subsetUl).
Qed.
Lemma properD A B C : (A \proper B :\: C) -> (A \proper B) && [disjoint A & C].
Proof. by rewrite setDE disjoints_subset => /properI/andP[-> /proper_sub]. Qed.
End setOps.
Arguments set1P [T x a].
Arguments set1_inj [T].
Arguments set2P [T x a b].
Arguments setIdP [T x pA pB].
Arguments setIP [T x A B].
Arguments setU1P [T x a B].
Arguments setD1P [T x A b].
Arguments setUP [T x A B].
Arguments setDP [T A B x].
Arguments cards1P [T A].
Arguments setCP [T x A].
Arguments setIidPl [T A B].
Arguments setIidPr [T A B].
Arguments setUidPl [T A B].
Arguments setUidPr [T A B].
Arguments setDidPl [T A B].
Arguments subsetIP [T A B C].
Arguments subUsetP [T A B C].
Arguments subsetDP [T A B C].
Arguments subsetD1P [T A B x].
Prenex Implicits set1 set1_inj.
Prenex Implicits set1P set2P setU1P setD1P setIdP setIP setUP setDP.
Prenex Implicits cards1P setCP setIidPl setIidPr setUidPl setUidPr setDidPl.
Hint Resolve subsetT_hint.
Section setOpsAlgebra.
Import Monoid.
Variable T : finType.
Canonical setI_monoid := Law (@setIA T) (@setTI T) (@setIT T).
Canonical setI_comoid := ComLaw (@setIC T).
Canonical setI_muloid := MulLaw (@set0I T) (@setI0 T).
Canonical setU_monoid := Law (@setUA T) (@set0U T) (@setU0 T).
Canonical setU_comoid := ComLaw (@setUC T).
Canonical setU_muloid := MulLaw (@setTU T) (@setUT T).
Canonical setI_addoid := AddLaw (@setUIl T) (@setUIr T).
Canonical setU_addoid := AddLaw (@setIUl T) (@setIUr T).
End setOpsAlgebra.
Section CartesianProd.
Variables fT1 fT2 : finType.
Variables (A1 : {set fT1}) (A2 : {set fT2}).
Definition setX := [set u | u.1 \in A1 & u.2 \in A2].
Lemma in_setX x1 x2 : ((x1, x2) \in setX) = (x1 \in A1) && (x2 \in A2).
Proof. by rewrite inE. Qed.
Lemma setXP x1 x2 : reflect (x1 \in A1 /\ x2 \in A2) ((x1, x2) \in setX).
Proof. by rewrite inE; apply: andP. Qed.
Lemma cardsX : #|setX| = #|A1| * #|A2|.
Proof. by rewrite cardsE cardX. Qed.
End CartesianProd.
Arguments setXP [fT1 fT2 A1 A2 x1 x2].
Prenex Implicits setXP.
Local Notation imset_def :=
(fun (aT rT : finType) f mD => [set y in @image_mem aT rT f mD]).
Local Notation imset2_def :=
(fun (aT1 aT2 rT : finType) f (D1 : mem_pred aT1) (D2 : _ -> mem_pred aT2) =>
[set y in @image_mem _ rT (prod_curry f)
(mem [pred u | D1 u.1 & D2 u.1 u.2])]).
Module Type ImsetSig.
Parameter imset : forall aT rT : finType,
(aT -> rT) -> mem_pred aT -> {set rT}.
Parameter imset2 : forall aT1 aT2 rT : finType,
(aT1 -> aT2 -> rT) -> mem_pred aT1 -> (aT1 -> mem_pred aT2) -> {set rT}.
Axiom imsetE : imset = imset_def.
Axiom imset2E : imset2 = imset2_def.
End ImsetSig.
Module Imset : ImsetSig.
Definition imset := imset_def.
Definition imset2 := imset2_def.
Lemma imsetE : imset = imset_def. Proof. by []. Qed.
Lemma imset2E : imset2 = imset2_def. Proof. by []. Qed.
End Imset.
Notation imset := Imset.imset.
Notation imset2 := Imset.imset2.
Canonical imset_unlock := Unlockable Imset.imsetE.
Canonical imset2_unlock := Unlockable Imset.imset2E.
Definition preimset (aT : finType) rT f (R : mem_pred rT) :=
[set x : aT | in_mem (f x) R].
Notation "f @^-1: A" := (preimset f (mem A)) (at level 24) : set_scope.
Notation "f @: A" := (imset f (mem A)) (at level 24) : set_scope.
Notation "f @2: ( A , B )" := (imset2 f (mem A) (fun _ => mem B))
(at level 24, format "f @2: ( A , B )") : set_scope.
Notation "[ 'set' E | x 'in' A ]" := ((fun x => E) @: A)
(at level 0, E, x at level 99,
format "[ '[hv' 'set' E '/ ' | x 'in' A ] ']'") : set_scope.
Notation "[ 'set' E | x 'in' A & P ]" := [set E | x in [set x in A | P]]
(at level 0, E, x at level 99,
format "[ '[hv' 'set' E '/ ' | x 'in' A '/ ' & P ] ']'") : set_scope.
Notation "[ 'set' E | x 'in' A , y 'in' B ]" :=
(imset2 (fun x y => E) (mem A) (fun x => (mem B)))
(at level 0, E, x, y at level 99, format
"[ '[hv' 'set' E '/ ' | x 'in' A , '/ ' y 'in' B ] ']'"
) : set_scope.
Notation "[ 'set' E | x 'in' A , y 'in' B & P ]" :=
[set E | x in A, y in [set y in B | P]]
(at level 0, E, x, y at level 99, format
"[ '[hv' 'set' E '/ ' | x 'in' A , '/ ' y 'in' B '/ ' & P ] ']'"
) : set_scope.
Notation "[ 'set' E | x : T 'in' A ]" := ((fun x : T => E) @: A)
(at level 0, E, x at level 99, only parsing) : set_scope.
Notation "[ 'set' E | x : T 'in' A & P ]" :=
[set E | x : T in [set x : T in A | P]]
(at level 0, E, x at level 99, only parsing) : set_scope.
Notation "[ 'set' E | x : T 'in' A , y : U 'in' B ]" :=
(imset2 (fun (x : T) (y : U) => E) (mem A) (fun (x : T) => (mem B)))
(at level 0, E, x, y at level 99, only parsing) : set_scope.
Notation "[ 'set' E | x : T 'in' A , y : U 'in' B & P ]" :=
[set E | x : T in A, y : U in [set y : U in B | P]]
(at level 0, E, x, y at level 99, only parsing) : set_scope.
Local Notation predOfType T := (sort_of_simpl_pred (@pred_of_argType T)).
Notation "[ 'set' E | x : T ]" := [set E | x : T in predOfType T]
(at level 0, E, x at level 99,
format "[ '[hv' 'set' E '/ ' | x : T ] ']'") : set_scope.
Notation "[ 'set' E | x : T & P ]" := [set E | x : T in [set x : T | P]]
(at level 0, E, x at level 99,
format "[ '[hv' 'set' E '/ ' | x : T '/ ' & P ] ']'") : set_scope.
Notation "[ 'set' E | x : T , y : U 'in' B ]" :=
[set E | x : T in predOfType T, y : U in B]
(at level 0, E, x, y at level 99, format
"[ '[hv' 'set' E '/ ' | x : T , '/ ' y : U 'in' B ] ']'")
: set_scope.
Notation "[ 'set' E | x : T , y : U 'in' B & P ]" :=
[set E | x : T, y : U in [set y in B | P]]
(at level 0, E, x, y at level 99, format
"[ '[hv ' 'set' E '/' | x : T , '/ ' y : U 'in' B '/' & P ] ']'"
) : set_scope.
Notation "[ 'set' E | x : T 'in' A , y : U ]" :=
[set E | x : T in A, y : U in predOfType U]
(at level 0, E, x, y at level 99, format
"[ '[hv' 'set' E '/ ' | x : T 'in' A , '/ ' y : U ] ']'")
: set_scope.
Notation "[ 'set' E | x : T 'in' A , y : U & P ]" :=
[set E | x : T in A, y : U in [set y in P]]
(at level 0, E, x, y at level 99, format
"[ '[hv' 'set' E '/ ' | x : T 'in' A , '/ ' y : U & P ] ']'")
: set_scope.
Notation "[ 'set' E | x : T , y : U ]" :=
[set E | x : T, y : U in predOfType U]
(at level 0, E, x, y at level 99, format
"[ '[hv' 'set' E '/ ' | x : T , '/ ' y : U ] ']'")
: set_scope.
Notation "[ 'set' E | x : T , y : U & P ]" :=
[set E | x : T, y : U in [set y in P]]
(at level 0, E, x, y at level 99, format
"[ '[hv' 'set' E '/ ' | x : T , '/ ' y : U & P ] ']'")
: set_scope.
Notation "[ 'set' E | x , y 'in' B ]" := [set E | x : _, y : _ in B]
(at level 0, E, x, y at level 99, only parsing) : set_scope.
Notation "[ 'set' E | x , y 'in' B & P ]" := [set E | x : _, y : _ in B & P]
(at level 0, E, x, y at level 99, only parsing) : set_scope.
Notation "[ 'set' E | x 'in' A , y ]" := [set E | x : _ in A, y : _]
(at level 0, E, x, y at level 99, only parsing) : set_scope.
Notation "[ 'set' E | x 'in' A , y & P ]" := [set E | x : _ in A, y : _ & P]
(at level 0, E, x, y at level 99, only parsing) : set_scope.
Notation "[ 'set' E | x , y ]" := [set E | x : _, y : _]
(at level 0, E, x, y at level 99, only parsing) : set_scope.
Notation "[ 'set' E | x , y & P ]" := [set E | x : _, y : _ & P ]
(at level 0, E, x, y at level 99, only parsing) : set_scope.
Notation "[ 'se' 't' E | x 'in' A , y 'in' B ]" :=
(imset2 (fun x y => E) (mem A) (fun _ => mem B))
(at level 0, E, x, y at level 99, format
"[ '[hv' 'se' 't' E '/ ' | x 'in' A , '/ ' y 'in' B ] ']'")
: set_scope.
Notation "[ 'se' 't' E | x 'in' A , y 'in' B & P ]" :=
[se t E | x in A, y in [set y in B | P]]
(at level 0, E, x, y at level 99, format
"[ '[hv ' 'se' 't' E '/' | x 'in' A , '/ ' y 'in' B '/' & P ] ']'"
) : set_scope.
Notation "[ 'se' 't' E | x : T , y : U 'in' B ]" :=
(imset2 (fun x (y : U) => E) (mem (predOfType T)) (fun _ => mem B))
(at level 0, E, x, y at level 99, format
"[ '[hv ' 'se' 't' E '/' | x : T , '/ ' y : U 'in' B ] ']'")
: set_scope.
Notation "[ 'se' 't' E | x : T , y : U 'in' B & P ]" :=
[se t E | x : T, y : U in [set y in B | P]]
(at level 0, E, x, y at level 99, format
"[ '[hv ' 'se' 't' E '/' | x : T , '/ ' y : U 'in' B '/' & P ] ']'"
) : set_scope.
Notation "[ 'se' 't' E | x : T 'in' A , y : U ]" :=
(imset2 (fun x y => E) (mem A) (fun _ : T => mem (predOfType U)))
(at level 0, E, x, y at level 99, format
"[ '[hv' 'se' 't' E '/ ' | x : T 'in' A , '/ ' y : U ] ']'")
: set_scope.
Notation "[ 'se' 't' E | x : T 'in' A , y : U & P ]" :=
(imset2 (fun x (y : U) => E) (mem A) (fun _ : T => mem [set y \in P]))
(at level 0, E, x, y at level 99, format
"[ '[hv ' 'se' 't' E '/' | x : T 'in' A , '/ ' y : U '/' & P ] ']'"
) : set_scope.
Notation "[ 'se' 't' E | x : T , y : U ]" :=
[se t E | x : T, y : U in predOfType U]
(at level 0, E, x, y at level 99, format
"[ '[hv' 'se' 't' E '/ ' | x : T , '/ ' y : U ] ']'")
: set_scope.
Notation "[ 'se' 't' E | x : T , y : U & P ]" :=
[se t E | x : T, y : U in [set y in P]]
(at level 0, E, x, y at level 99, format
"[ '[hv' 'se' 't' E '/' | x : T , '/ ' y : U '/' & P ] ']'")
: set_scope.
Section FunImage.
Variables aT aT2 : finType.
Section ImsetTheory.
Variable rT : finType.
Section ImsetProp.
Variables (f : aT -> rT) (f2 : aT -> aT2 -> rT).
Lemma imsetP D y : reflect (exists2 x, in_mem x D & y = f x) (y \in imset f D).
Proof. by rewrite [@imset]unlock inE; apply: imageP. Qed.
CoInductive imset2_spec D1 D2 y : Prop :=
Imset2spec x1 x2 of in_mem x1 D1 & in_mem x2 (D2 x1) & y = f2 x1 x2.
Lemma imset2P D1 D2 y : reflect (imset2_spec D1 D2 y) (y \in imset2 f2 D1 D2).
Proof.
rewrite [@imset2]unlock inE.
apply: (iffP imageP) => [[[x1 x2] Dx12] | [x1 x2 Dx1 Dx2]] -> {y}.
by case/andP: Dx12; exists x1 x2.
by exists (x1, x2); rewrite //= !inE Dx1.
Qed.
Lemma mem_imset (D : pred aT) x : x \in D -> f x \in f @: D.
Proof. by move=> Dx; apply/imsetP; exists x. Qed.
Lemma imset0 : f @: set0 = set0.
Proof. by apply/setP => y; rewrite inE; apply/imsetP=> [[x]]; rewrite inE. Qed.
Lemma imset_eq0 (A : {set aT}) : (f @: A == set0) = (A == set0).
Proof.
have [-> | [x Ax]] := set_0Vmem A; first by rewrite imset0 !eqxx.
by rewrite -!cards_eq0 (cardsD1 x) Ax (cardsD1 (f x)) mem_imset.
Qed.
Lemma imset_set1 x : f @: [set x] = [set f x].
Proof.
apply/setP => y.
by apply/imsetP/set1P=> [[x' /set1P-> //]| ->]; exists x; rewrite ?set11.
Qed.
Lemma mem_imset2 (D : pred aT) (D2 : aT -> pred aT2) x x2 :
x \in D -> x2 \in D2 x ->
f2 x x2 \in imset2 f2 (mem D) (fun x1 => mem (D2 x1)).
Proof. by move=> Dx Dx2; apply/imset2P; exists x x2. Qed.
Lemma sub_imset_pre (A : pred aT) (B : pred rT) :
(f @: A \subset B) = (A \subset f @^-1: B).
Proof.
apply/subsetP/subsetP=> [sfAB x Ax | sAf'B fx].
by rewrite inE sfAB ?mem_imset.
by case/imsetP=> x Ax ->; move/sAf'B: Ax; rewrite inE.
Qed.
Lemma preimsetS (A B : pred rT) :
A \subset B -> (f @^-1: A) \subset (f @^-1: B).
Proof. by move=> sAB; apply/subsetP=> y; rewrite !inE; apply: subsetP. Qed.
Lemma preimset0 : f @^-1: set0 = set0.
Proof. by apply/setP=> x; rewrite !inE. Qed.
Lemma preimsetT : f @^-1: setT = setT.
Proof. by apply/setP=> x; rewrite !inE. Qed.
Lemma preimsetI (A B : {set rT}) :
f @^-1: (A :&: B) = (f @^-1: A) :&: (f @^-1: B).
Proof. by apply/setP=> y; rewrite !inE. Qed.
Lemma preimsetU (A B : {set rT}) :
f @^-1: (A :|: B) = (f @^-1: A) :|: (f @^-1: B).
Proof. by apply/setP=> y; rewrite !inE. Qed.
Lemma preimsetD (A B : {set rT}) :
f @^-1: (A :\: B) = (f @^-1: A) :\: (f @^-1: B).
Proof. by apply/setP=> y; rewrite !inE. Qed.
Lemma preimsetC (A : {set rT}) : f @^-1: (~: A) = ~: f @^-1: A.
Proof. by apply/setP=> y; rewrite !inE. Qed.
Lemma imsetS (A B : pred aT) : A \subset B -> f @: A \subset f @: B.
Proof.
move=> sAB; apply/subsetP=> _ /imsetP[x Ax ->].
by apply/imsetP; exists x; rewrite ?(subsetP sAB).
Qed.
Lemma imset_proper (A B : {set aT}) :
{in B &, injective f} -> A \proper B -> f @: A \proper f @: B.
Proof.
move=> injf /properP[sAB [x Bx nAx]]; rewrite properE imsetS //=.
apply: contra nAx => sfBA.
have: f x \in f @: A by rewrite (subsetP sfBA) ?mem_imset.
by case/imsetP=> y Ay /injf-> //; apply: subsetP sAB y Ay.
Qed.
Lemma preimset_proper (A B : {set rT}) :
B \subset codom f -> A \proper B -> (f @^-1: A) \proper (f @^-1: B).
Proof.
move=> sBc /properP[sAB [u Bu nAu]]; rewrite properE preimsetS //=.
by apply/subsetPn; exists (iinv (subsetP sBc _ Bu)); rewrite inE /= f_iinv.
Qed.
Lemma imsetU (A B : {set aT}) : f @: (A :|: B) = (f @: A) :|: (f @: B).
Proof.
apply/eqP; rewrite eqEsubset subUset.
rewrite 2?imsetS (andbT, subsetUl, subsetUr) // andbT.
apply/subsetP=> _ /imsetP[x ABx ->]; apply/setUP.
by case/setUP: ABx => [Ax | Bx]; [left | right]; apply/imsetP; exists x.
Qed.
Lemma imsetU1 a (A : {set aT}) : f @: (a |: A) = f a |: (f @: A).
Proof. by rewrite imsetU imset_set1. Qed.
Lemma imsetI (A B : {set aT}) :
{in A & B, injective f} -> f @: (A :&: B) = f @: A :&: f @: B.
Proof.
move=> injf; apply/eqP; rewrite eqEsubset subsetI.
rewrite 2?imsetS (andTb, subsetIl, subsetIr) //=.
apply/subsetP=> _ /setIP[/imsetP[x Ax ->] /imsetP[z Bz /injf eqxz]].
by rewrite mem_imset // inE Ax eqxz.
Qed.
Lemma imset2Sl (A B : pred aT) (C : pred aT2) :
A \subset B -> f2 @2: (A, C) \subset f2 @2: (B, C).
Proof.
move=> sAB; apply/subsetP=> _ /imset2P[x y Ax Cy ->].
by apply/imset2P; exists x y; rewrite ?(subsetP sAB).
Qed.
Lemma imset2Sr (A B : pred aT2) (C : pred aT) :
A \subset B -> f2 @2: (C, A) \subset f2 @2: (C, B).
Proof.
move=> sAB; apply/subsetP=> _ /imset2P[x y Ax Cy ->].
by apply/imset2P; exists x y; rewrite ?(subsetP sAB).
Qed.
Lemma imset2S (A B : pred aT) (A2 B2 : pred aT2) :
A \subset B -> A2 \subset B2 -> f2 @2: (A, A2) \subset f2 @2: (B, B2).
Proof. by move=> /(imset2Sl B2) sBA /(imset2Sr A)/subset_trans->. Qed.
End ImsetProp.
Implicit Types (f g : aT -> rT) (D : {set aT}) (R : pred rT).
Lemma eq_preimset f g R : f =1 g -> f @^-1: R = g @^-1: R.
Proof. by move=> eqfg; apply/setP => y; rewrite !inE eqfg. Qed.
Lemma eq_imset f g D : f =1 g -> f @: D = g @: D.
Proof.
move=> eqfg; apply/setP=> y.
by apply/imsetP/imsetP=> [] [x Dx ->]; exists x; rewrite ?eqfg.
Qed.
Lemma eq_in_imset f g D : {in D, f =1 g} -> f @: D = g @: D.
Proof.
move=> eqfg; apply/setP => y.
by apply/imsetP/imsetP=> [] [x Dx ->]; exists x; rewrite ?eqfg.
Qed.
Lemma eq_in_imset2 (f g : aT -> aT2 -> rT) (D : pred aT) (D2 : pred aT2) :
{in D & D2, f =2 g} -> f @2: (D, D2) = g @2: (D, D2).
Proof.
move=> eqfg; apply/setP => y.
by apply/imset2P/imset2P=> [] [x x2 Dx Dx2 ->]; exists x x2; rewrite ?eqfg.
Qed.
End ImsetTheory.
Lemma imset2_pair (A : {set aT}) (B : {set aT2}) :
[set (x, y) | x in A, y in B] = setX A B.
Proof.
apply/setP=> [[x y]]; rewrite !inE /=.
by apply/imset2P/andP=> [[_ _ _ _ [-> ->]//]| []]; exists x y.
Qed.
Lemma setXS (A1 B1 : {set aT}) (A2 B2 : {set aT2}) :
A1 \subset B1 -> A2 \subset B2 -> setX A1 A2 \subset setX B1 B2.
Proof. by move=> sAB1 sAB2; rewrite -!imset2_pair imset2S. Qed.
End FunImage.
Arguments imsetP [aT rT f D y].
Arguments imset2P [aT aT2 rT f2 D1 D2 y].
Prenex Implicits imsetP imset2P.
Section BigOps.
Variables (R : Type) (idx : R).
Variables (op : Monoid.law idx) (aop : Monoid.com_law idx).
Variables I J : finType.
Implicit Type A B : {set I}.
Implicit Type h : I -> J.
Implicit Type P : pred I.
Implicit Type F : I -> R.
Lemma big_set0 F : \big[op/idx]_(i in set0) F i = idx.
Proof. by apply: big_pred0 => i; rewrite inE. Qed.
Lemma big_set1 a F : \big[op/idx]_(i in [set a]) F i = F a.
Proof. by apply: big_pred1 => i; rewrite !inE. Qed.
Lemma big_setIDdep A B P F :
\big[aop/idx]_(i in A | P i) F i =
aop (\big[aop/idx]_(i in A :&: B | P i) F i)
(\big[aop/idx]_(i in A :\: B | P i) F i).
Proof.
rewrite (bigID (mem B)) setDE.
by congr (aop _ _); apply: eq_bigl => i; rewrite !inE andbAC.
Qed.
Lemma big_setID A B F :
\big[aop/idx]_(i in A) F i =
aop (\big[aop/idx]_(i in A :&: B) F i)
(\big[aop/idx]_(i in A :\: B) F i).
Proof.
rewrite (bigID (mem B)) !(eq_bigl _ _ (in_set _)) //=.
by congr (aop _); apply: eq_bigl => i; rewrite andbC.
Qed.
Lemma big_setD1 a A F : a \in A ->
\big[aop/idx]_(i in A) F i = aop (F a) (\big[aop/idx]_(i in A :\ a) F i).
Proof.
move=> Aa; rewrite (bigD1 a Aa); congr (aop _).
by apply: eq_bigl => x; rewrite !inE andbC.
Qed.
Lemma big_setU1 a A F : a \notin A ->
\big[aop/idx]_(i in a |: A) F i = aop (F a) (\big[aop/idx]_(i in A) F i).
Proof. by move=> notAa; rewrite (@big_setD1 a) ?setU11 //= setU1K. Qed.
Lemma big_imset h (A : pred I) G :
{in A &, injective h} ->
\big[aop/idx]_(j in h @: A) G j = \big[aop/idx]_(i in A) G (h i).
Proof.
move=> injh; pose hA := mem (image h A).
have [x0 Ax0 | A0] := pickP A; last first.
by rewrite !big_pred0 // => x; apply/imsetP=> [[i]]; rewrite unfold_in A0.
rewrite (eq_bigl hA) => [|j]; last by apply/imsetP/imageP.
pose h' j := if insub j : {? j | hA j} is Some u then iinv (svalP u) else x0.
rewrite (reindex_onto h h') => [|j hAj]; rewrite {}/h'; last first.
by rewrite (insubT hA hAj) f_iinv.
apply: eq_bigl => i; case: insubP => [u -> /= def_u | nhAhi].
set i' := iinv _; have Ai' : i' \in A := mem_iinv (svalP u).
by apply/eqP/idP=> [<- // | Ai]; apply: injh; rewrite ?f_iinv.
symmetry; rewrite (negbTE nhAhi); apply/idP=> Ai.
by case/imageP: nhAhi; exists i.
Qed.
Lemma partition_big_imset h (A : pred I) F :
\big[aop/idx]_(i in A) F i =
\big[aop/idx]_(j in h @: A) \big[aop/idx]_(i in A | h i == j) F i.
Proof. by apply: partition_big => i Ai; apply/imsetP; exists i. Qed.
End BigOps.
Arguments big_setID [R idx aop I A].
Arguments big_setD1 [R idx aop I] a [A F].
Arguments big_setU1 [R idx aop I] a [A F].
Arguments big_imset [R idx aop I J h A].
Arguments partition_big_imset [R idx aop I J].
Section Fun2Set1.
Variables aT1 aT2 rT : finType.
Variables (f : aT1 -> aT2 -> rT).
Lemma imset2_set1l x1 (D2 : pred aT2) : f @2: ([set x1], D2) = f x1 @: D2.
Proof.
apply/setP=> y; apply/imset2P/imsetP=> [[x x2 /set1P->]| [x2 Dx2 ->]].
by exists x2.
by exists x1 x2; rewrite ?set11.
Qed.
Lemma imset2_set1r x2 (D1 : pred aT1) : f @2: (D1, [set x2]) = f^~ x2 @: D1.
Proof.
apply/setP=> y; apply/imset2P/imsetP=> [[x1 x Dx1 /set1P->]| [x1 Dx1 ->]].
by exists x1.
by exists x1 x2; rewrite ?set11.
Qed.
End Fun2Set1.
Section CardFunImage.
Variables aT aT2 rT : finType.
Variables (f : aT -> rT) (g : rT -> aT) (f2 : aT -> aT2 -> rT).
Variables (D : pred aT) (D2 : pred aT).
Lemma imset_card : #|f @: D| = #|image f D|.
Proof. by rewrite [@imset]unlock cardsE. Qed.
Lemma leq_imset_card : #|f @: D| <= #|D|.
Proof. by rewrite imset_card leq_image_card. Qed.
Lemma card_in_imset : {in D &, injective f} -> #|f @: D| = #|D|.
Proof. by move=> injf; rewrite imset_card card_in_image. Qed.
Lemma card_imset : injective f -> #|f @: D| = #|D|.
Proof. by move=> injf; rewrite imset_card card_image. Qed.
Lemma imset_injP : reflect {in D &, injective f} (#|f @: D| == #|D|).
Proof. by rewrite [@imset]unlock cardsE; apply: image_injP. Qed.
Lemma can2_in_imset_pre :
{in D, cancel f g} -> {on D, cancel g & f} -> f @: D = g @^-1: D.
Proof.
move=> fK gK; apply/setP=> y; rewrite inE.
by apply/imsetP/idP=> [[x Ax ->] | Agy]; last exists (g y); rewrite ?(fK, gK).
Qed.
Lemma can2_imset_pre : cancel f g -> cancel g f -> f @: D = g @^-1: D.
Proof. by move=> fK gK; apply: can2_in_imset_pre; apply: in1W. Qed.
End CardFunImage.
Arguments imset_injP [aT rT f D].
Lemma on_card_preimset (aT rT : finType) (f : aT -> rT) (R : pred rT) :
{on R, bijective f} -> #|f @^-1: R| = #|R|.
Proof.
case=> g fK gK; rewrite -(can2_in_imset_pre gK) // card_in_imset //.
exact: can_in_inj gK.
Qed.
Lemma can_imset_pre (T : finType) f g (A : {set T}) :
cancel f g -> f @: A = g @^-1: A :> {set T}.
Proof.
move=> fK; apply: can2_imset_pre => // x.
suffices fx: x \in codom f by rewrite -(f_iinv fx) fK.
exact/(subset_cardP (card_codom (can_inj fK)))/subsetP.
Qed.
Lemma imset_id (T : finType) (A : {set T}) : [set x | x in A] = A.
Proof. by apply/setP=> x; rewrite (@can_imset_pre _ _ id) ?inE. Qed.
Lemma card_preimset (T : finType) (f : T -> T) (A : {set T}) :
injective f -> #|f @^-1: A| = #|A|.
Proof.
move=> injf; apply: on_card_preimset; apply: onW_bij.
have ontof: _ \in codom f by apply/(subset_cardP (card_codom injf))/subsetP.
by exists (fun x => iinv (ontof x)) => x; rewrite (f_iinv, iinv_f).
Qed.
Lemma card_powerset (T : finType) (A : {set T}) : #|powerset A| = 2 ^ #|A|.
Proof.
rewrite -card_bool -(card_pffun_on false) -(card_imset _ val_inj).
apply: eq_card => f; pose sf := false.-support f; pose D := finset sf.
have sDA: (D \subset A) = (sf \subset A) by apply: eq_subset; apply: in_set.
have eq_sf x : sf x = f x by rewrite /= negb_eqb addbF.
have valD: val D = f by rewrite /D unlock; apply/ffunP=> x; rewrite ffunE eq_sf.
apply/imsetP/pffun_onP=> [[B] | [sBA _]]; last by exists D; rewrite // inE ?sDA.
by rewrite inE -sDA -valD => sBA /val_inj->.
Qed.
Section FunImageComp.
Variables T T' U : finType.
Lemma imset_comp (f : T' -> U) (g : T -> T') (H : pred T) :
(f \o g) @: H = f @: (g @: H).
Proof.
apply/setP/subset_eqP/andP.
split; apply/subsetP=> _ /imsetP[x0 Hx0 ->]; apply/imsetP.
by exists (g x0); first apply: mem_imset.
by move/imsetP: Hx0 => [x1 Hx1 ->]; exists x1.
Qed.
End FunImageComp.
Notation "\bigcup_ ( i <- r | P ) F" :=
(\big[@setU _/set0]_(i <- r | P) F%SET) : set_scope.
Notation "\bigcup_ ( i <- r ) F" :=
(\big[@setU _/set0]_(i <- r) F%SET) : set_scope.
Notation "\bigcup_ ( m <= i < n | P ) F" :=
(\big[@setU _/set0]_(m <= i < n | P%B) F%SET) : set_scope.
Notation "\bigcup_ ( m <= i < n ) F" :=
(\big[@setU _/set0]_(m <= i < n) F%SET) : set_scope.
Notation "\bigcup_ ( i | P ) F" :=
(\big[@setU _/set0]_(i | P%B) F%SET) : set_scope.
Notation "\bigcup_ i F" :=
(\big[@setU _/set0]_i F%SET) : set_scope.
Notation "\bigcup_ ( i : t | P ) F" :=
(\big[@setU _/set0]_(i : t | P%B) F%SET) (only parsing): set_scope.
Notation "\bigcup_ ( i : t ) F" :=
(\big[@setU _/set0]_(i : t) F%SET) (only parsing) : set_scope.
Notation "\bigcup_ ( i < n | P ) F" :=
(\big[@setU _/set0]_(i < n | P%B) F%SET) : set_scope.
Notation "\bigcup_ ( i < n ) F" :=
(\big[@setU _/set0]_ (i < n) F%SET) : set_scope.
Notation "\bigcup_ ( i 'in' A | P ) F" :=
(\big[@setU _/set0]_(i in A | P%B) F%SET) : set_scope.
Notation "\bigcup_ ( i 'in' A ) F" :=
(\big[@setU _/set0]_(i in A) F%SET) : set_scope.
Notation "\bigcap_ ( i <- r | P ) F" :=
(\big[@setI _/setT]_(i <- r | P%B) F%SET) : set_scope.
Notation "\bigcap_ ( i <- r ) F" :=
(\big[@setI _/setT]_(i <- r) F%SET) : set_scope.
Notation "\bigcap_ ( m <= i < n | P ) F" :=
(\big[@setI _/setT]_(m <= i < n | P%B) F%SET) : set_scope.
Notation "\bigcap_ ( m <= i < n ) F" :=
(\big[@setI _/setT]_(m <= i < n) F%SET) : set_scope.
Notation "\bigcap_ ( i | P ) F" :=
(\big[@setI _/setT]_(i | P%B) F%SET) : set_scope.
Notation "\bigcap_ i F" :=
(\big[@setI _/setT]_i F%SET) : set_scope.
Notation "\bigcap_ ( i : t | P ) F" :=
(\big[@setI _/setT]_(i : t | P%B) F%SET) (only parsing): set_scope.
Notation "\bigcap_ ( i : t ) F" :=
(\big[@setI _/setT]_(i : t) F%SET) (only parsing) : set_scope.
Notation "\bigcap_ ( i < n | P ) F" :=
(\big[@setI _/setT]_(i < n | P%B) F%SET) : set_scope.
Notation "\bigcap_ ( i < n ) F" :=
(\big[@setI _/setT]_(i < n) F%SET) : set_scope.
Notation "\bigcap_ ( i 'in' A | P ) F" :=
(\big[@setI _/setT]_(i in A | P%B) F%SET) : set_scope.
Notation "\bigcap_ ( i 'in' A ) F" :=
(\big[@setI _/setT]_(i in A) F%SET) : set_scope.
Section BigSetOps.
Variables T I : finType.
Implicit Types (U : pred T) (P : pred I) (A B : {set I}) (F : I -> {set T}).
Lemma bigcup_sup j P F : P j -> F j \subset \bigcup_(i | P i) F i.
Proof. by move=> Pj; rewrite (bigD1 j) //= subsetUl. Qed.
Lemma bigcup_max j U P F :
P j -> U \subset F j -> U \subset \bigcup_(i | P i) F i.
Proof. by move=> Pj sUF; apply: subset_trans (bigcup_sup _ Pj). Qed.
Lemma bigcupP x P F :
reflect (exists2 i, P i & x \in F i) (x \in \bigcup_(i | P i) F i).
Proof.
apply: (iffP idP) => [|[i Pi]]; last first.
by apply: subsetP x; apply: bigcup_sup.
by elim/big_rec: _ => [|i _ Pi _ /setUP[|//]]; [rewrite inE | exists i].
Qed.
Lemma bigcupsP U P F :
reflect (forall i, P i -> F i \subset U) (\bigcup_(i | P i) F i \subset U).
Proof.
apply: (iffP idP) => [sFU i Pi| sFU].
by apply: subset_trans sFU; apply: bigcup_sup.
by apply/subsetP=> x /bigcupP[i Pi]; apply: (subsetP (sFU i Pi)).
Qed.
Lemma bigcup_disjoint U P F :
(forall i, P i -> [disjoint U & F i]) -> [disjoint U & \bigcup_(i | P i) F i].
Proof.
move=> dUF; rewrite disjoint_sym disjoint_subset.
by apply/bigcupsP=> i /dUF; rewrite disjoint_sym disjoint_subset.
Qed.
Lemma bigcup_setU A B F :
\bigcup_(i in A :|: B) F i =
(\bigcup_(i in A) F i) :|: (\bigcup_ (i in B) F i).
Proof.
apply/setP=> x; apply/bigcupP/setUP=> [[i] | ].
by case/setUP; [left | right]; apply/bigcupP; exists i.
by case=> /bigcupP[i Pi]; exists i; rewrite // inE Pi ?orbT.
Qed.
Lemma bigcup_seq r F : \bigcup_(i <- r) F i = \bigcup_(i in r) F i.
Proof.
elim: r => [|i r IHr]; first by rewrite big_nil big_pred0.
rewrite big_cons {}IHr; case r_i: (i \in r).
rewrite (setUidPr _) ?bigcup_sup //.
by apply: eq_bigl => j; rewrite !inE; case: eqP => // ->.
rewrite (bigD1 i (mem_head i r)) /=; congr (_ :|: _).
by apply: eq_bigl => j /=; rewrite andbC; case: eqP => // ->.
Qed.
Lemma bigcap_inf j P F : P j -> \bigcap_(i | P i) F i \subset F j.
Proof. by move=> Pj; rewrite (bigD1 j) //= subsetIl. Qed.
Lemma bigcap_min j U P F :
P j -> F j \subset U -> \bigcap_(i | P i) F i \subset U.
Proof. by move=> Pj; apply: subset_trans (bigcap_inf _ Pj). Qed.
Lemma bigcapsP U P F :
reflect (forall i, P i -> U \subset F i) (U \subset \bigcap_(i | P i) F i).
Proof.
apply: (iffP idP) => [sUF i Pi | sUF].
by apply: subset_trans sUF _; apply: bigcap_inf.
elim/big_rec: _ => [|i V Pi sUV]; apply/subsetP=> x Ux; rewrite inE //.
by rewrite !(subsetP _ x Ux) ?sUF.
Qed.
Lemma bigcapP x P F :
reflect (forall i, P i -> x \in F i) (x \in \bigcap_(i | P i) F i).
Proof.
rewrite -sub1set.
by apply: (iffP (bigcapsP _ _ _)) => Fx i /Fx; rewrite sub1set.
Qed.
Lemma setC_bigcup J r (P : pred J) (F : J -> {set T}) :
~: (\bigcup_(j <- r | P j) F j) = \bigcap_(j <- r | P j) ~: F j.
Proof. by apply: big_morph => [A B|]; rewrite ?setC0 ?setCU. Qed.
Lemma setC_bigcap J r (P : pred J) (F : J -> {set T}) :
~: (\bigcap_(j <- r | P j) F j) = \bigcup_(j <- r | P j) ~: F j.
Proof. by apply: big_morph => [A B|]; rewrite ?setCT ?setCI. Qed.
Lemma bigcap_setU A B F :
(\bigcap_(i in A :|: B) F i) =
(\bigcap_(i in A) F i) :&: (\bigcap_(i in B) F i).
Proof. by apply: setC_inj; rewrite setCI !setC_bigcap bigcup_setU. Qed.
Lemma bigcap_seq r F : \bigcap_(i <- r) F i = \bigcap_(i in r) F i.
Proof. by apply: setC_inj; rewrite !setC_bigcap bigcup_seq. Qed.
End BigSetOps.
Arguments bigcup_sup [T I] j [P F].
Arguments bigcup_max [T I] j [U P F].
Arguments bigcupP [T I x P F].
Arguments bigcupsP [T I U P F].
Arguments bigcap_inf [T I] j [P F].
Arguments bigcap_min [T I] j [U P F].
Arguments bigcapP [T I x P F].
Arguments bigcapsP [T I U P F].
Prenex Implicits bigcupP bigcupsP bigcapP bigcapsP.
Section ImsetCurry.
Variables (aT1 aT2 rT : finType) (f : aT1 -> aT2 -> rT).
Section Curry.
Variables (A1 : {set aT1}) (A2 : {set aT2}).
Variables (D1 : pred aT1) (D2 : pred aT2).
Lemma curry_imset2X : f @2: (A1, A2) = prod_curry f @: (setX A1 A2).
Proof.
rewrite [@imset]unlock unlock; apply/setP=> x; rewrite !in_set; congr (x \in _).
by apply: eq_image => u //=; rewrite !inE.
Qed.
Lemma curry_imset2l : f @2: (D1, D2) = \bigcup_(x1 in D1) f x1 @: D2.
Proof.
apply/setP=> y; apply/imset2P/bigcupP => [[x1 x2 Dx1 Dx2 ->{y}] | [x1 Dx1]].
by exists x1; rewrite // mem_imset.
by case/imsetP=> x2 Dx2 ->{y}; exists x1 x2.
Qed.
Lemma curry_imset2r : f @2: (D1, D2) = \bigcup_(x2 in D2) f^~ x2 @: D1.
Proof.
apply/setP=> y; apply/imset2P/bigcupP => [[x1 x2 Dx1 Dx2 ->{y}] | [x2 Dx2]].
by exists x2; rewrite // (mem_imset (f^~ x2)).
by case/imsetP=> x1 Dx1 ->{y}; exists x1 x2.
Qed.
End Curry.
Lemma imset2Ul (A B : {set aT1}) (C : {set aT2}) :
f @2: (A :|: B, C) = f @2: (A, C) :|: f @2: (B, C).
Proof. by rewrite !curry_imset2l bigcup_setU. Qed.
Lemma imset2Ur (A : {set aT1}) (B C : {set aT2}) :
f @2: (A, B :|: C) = f @2: (A, B) :|: f @2: (A, C).
Proof. by rewrite !curry_imset2r bigcup_setU. Qed.
End ImsetCurry.
Section Partitions.
Variables T I : finType.
Implicit Types (x y z : T) (A B D X : {set T}) (P Q : {set {set T}}).
Implicit Types (J : pred I) (F : I -> {set T}).
Definition cover P := \bigcup_(B in P) B.
Definition pblock P x := odflt set0 (pick [pred B in P | x \in B]).
Definition trivIset P := \sum_(B in P) #|B| == #|cover P|.
Definition partition P D := [&& cover P == D, trivIset P & set0 \notin P].
Definition is_transversal X P D :=
[&& partition P D, X \subset D & [forall B in P, #|X :&: B| == 1]].
Definition transversal P D := [set odflt x [pick y in pblock P x] | x in D].
Definition transversal_repr x0 X B := odflt x0 [pick x in X :&: B].
Lemma leq_card_setU A B : #|A :|: B| <= #|A| + #|B| ?= iff [disjoint A & B].
Proof.
rewrite -(addn0 #|_|) -setI_eq0 -cards_eq0 -cardsUI eq_sym.
by rewrite (mono_leqif (leq_add2l _)).
Qed.
Lemma leq_card_cover P : #|cover P| <= \sum_(A in P) #|A| ?= iff trivIset P.
Proof.
split; last exact: eq_sym.
rewrite /cover; elim/big_rec2: _ => [|A n U _ leUn]; first by rewrite cards0.
by rewrite (leq_trans (leq_card_setU A U).1) ?leq_add2l.
Qed.
Lemma trivIsetP P :
reflect {in P &, forall A B, A != B -> [disjoint A & B]} (trivIset P).
Proof.
have->: P = [set x in enum (mem P)] by apply/setP=> x; rewrite inE mem_enum.
elim: {P}(enum _) (enum_uniq (mem P)) => [_ | A e IHe] /=.
by rewrite /trivIset /cover !big_set0 cards0; left=> A; rewrite inE.
case/andP; rewrite set_cons -(in_set (fun B => B \in e)) => PA {IHe}/IHe.
move: {e}[set x in e] PA => P PA IHP.
rewrite /trivIset /cover !big_setU1 //= eq_sym.
have:= leq_card_cover P; rewrite -(mono_leqif (leq_add2l #|A|)).
move/(leqif_trans (leq_card_setU _ _))->; rewrite disjoints_subset setC_bigcup.
case: bigcapsP => [disjA | meetA]; last first.
right=> [tI]; case: meetA => B PB; rewrite -disjoints_subset.
by rewrite tI ?setU11 ?setU1r //; apply: contraNneq PA => ->.
apply: (iffP IHP) => [] tI B C PB PC; last by apply: tI; apply: setU1r.
by case/setU1P: PC PB => [->|PC] /setU1P[->|PB]; try by [apply: tI | case/eqP];
first rewrite disjoint_sym; rewrite disjoints_subset disjA.
Qed.
Lemma trivIsetS P Q : P \subset Q -> trivIset Q -> trivIset P.
Proof. by move/subsetP/sub_in2=> sPQ /trivIsetP/sPQ/trivIsetP. Qed.
Lemma trivIsetI P D : trivIset P -> trivIset (P ::&: D).
Proof. by apply: trivIsetS; rewrite -setI_powerset subsetIl. Qed.
Lemma cover_setI P D : cover (P ::&: D) \subset cover P :&: D.
Proof.
by apply/bigcupsP=> A /setIdP[PA sAD]; rewrite subsetI sAD andbT (bigcup_max A).
Qed.
Lemma mem_pblock P x : (x \in pblock P x) = (x \in cover P).
Proof.
rewrite /pblock; apply/esym/bigcupP.
case: pickP => /= [A /andP[PA Ax]| noA]; first by rewrite Ax; exists A.
by rewrite inE => [[A PA Ax]]; case/andP: (noA A).
Qed.
Lemma pblock_mem P x : x \in cover P -> pblock P x \in P.
Proof.
by rewrite -mem_pblock /pblock; case: pickP => [A /andP[]| _] //=; rewrite inE.
Qed.
Lemma def_pblock P B x : trivIset P -> B \in P -> x \in B -> pblock P x = B.
Proof.
move/trivIsetP=> tiP PB Bx; have Px: x \in cover P by apply/bigcupP; exists B.
apply: (contraNeq (tiP _ _ _ PB)); first by rewrite pblock_mem.
by apply/pred0Pn; exists x; rewrite /= mem_pblock Px.
Qed.
Lemma same_pblock P x y :
trivIset P -> x \in pblock P y -> pblock P x = pblock P y.
Proof.
rewrite {1 3}/pblock => tI; case: pickP => [A|]; last by rewrite inE.
by case/andP=> PA _{y} /= Ax; apply: def_pblock.
Qed.
Lemma eq_pblock P x y :
trivIset P -> x \in cover P ->
(pblock P x == pblock P y) = (y \in pblock P x).
Proof.
move=> tiP Px; apply/eqP/idP=> [eq_xy | /same_pblock-> //].
move: Px; rewrite -mem_pblock eq_xy /pblock.
by case: pickP => [B /andP[] // | _]; rewrite inE.
Qed.
Lemma trivIsetU1 A P :
{in P, forall B, [disjoint A & B]} -> trivIset P -> set0 \notin P ->
trivIset (A |: P) /\ A \notin P.
Proof.
move=> tiAP tiP notPset0; split; last first.
apply: contra notPset0 => P_A.
by have:= tiAP A P_A; rewrite -setI_eq0 setIid => /eqP <-.
apply/trivIsetP=> B1 B2 /setU1P[->|PB1] /setU1P[->|PB2];
by [apply: (trivIsetP _ tiP) | rewrite ?eqxx // ?(tiAP, disjoint_sym)].
Qed.
Lemma cover_imset J F : cover (F @: J) = \bigcup_(i in J) F i.
Proof.
apply/setP=> x.
apply/bigcupP/bigcupP=> [[_ /imsetP[i Ji ->]] | [i]]; first by exists i.
by exists (F i); first apply: mem_imset.
Qed.
Lemma trivIimset J F (P := F @: J) :
{in J &, forall i j, j != i -> [disjoint F i & F j]} -> set0 \notin P ->
trivIset P /\ {in J &, injective F}.
Proof.
move=> tiF notPset0; split=> [|i j Ji Jj /= eqFij].
apply/trivIsetP=> _ _ /imsetP[i Ji ->] /imsetP[j Jj ->] neqFij.
by rewrite tiF // (contraNneq _ neqFij) // => ->.
apply: contraNeq notPset0 => neq_ij; apply/imsetP; exists i => //; apply/eqP.
by rewrite eq_sym -[F i]setIid setI_eq0 {1}eqFij tiF.
Qed.
Lemma cover_partition P D : partition P D -> cover P = D.
Proof. by case/and3P=> /eqP. Qed.
Lemma card_partition P D : partition P D -> #|D| = \sum_(A in P) #|A|.
Proof. by case/and3P=> /eqP <- /eqnP. Qed.
Lemma card_uniform_partition n P D :
{in P, forall A, #|A| = n} -> partition P D -> #|D| = #|P| * n.
Proof.
by move=> uniP /card_partition->; rewrite -sum_nat_const; apply: eq_bigr.
Qed.
Section BigOps.
Variables (R : Type) (idx : R) (op : Monoid.com_law idx).
Let rhs_cond P K E := \big[op/idx]_(A in P) \big[op/idx]_(x in A | K x) E x.
Let rhs P E := \big[op/idx]_(A in P) \big[op/idx]_(x in A) E x.
Lemma big_trivIset_cond P (K : pred T) (E : T -> R) :
trivIset P -> \big[op/idx]_(x in cover P | K x) E x = rhs_cond P K E.
Proof.
move=> tiP; rewrite (partition_big (pblock P) (mem P)) -/op => /= [|x].
apply: eq_bigr => A PA; apply: eq_bigl => x; rewrite andbAC; congr (_ && _).
rewrite -mem_pblock; apply/andP/idP=> [[Px /eqP <- //] | Ax].
by rewrite (def_pblock tiP PA Ax).
by case/andP=> Px _; apply: pblock_mem.
Qed.
Lemma big_trivIset P (E : T -> R) :
trivIset P -> \big[op/idx]_(x in cover P) E x = rhs P E.
Proof.
have biginT := eq_bigl _ _ (fun _ => andbT _) => tiP.
by rewrite -biginT big_trivIset_cond //; apply: eq_bigr => A _; apply: biginT.
Qed.
Lemma set_partition_big_cond P D (K : pred T) (E : T -> R) :
partition P D -> \big[op/idx]_(x in D | K x) E x = rhs_cond P K E.
Proof. by case/and3P=> /eqP <- tI_P _; apply: big_trivIset_cond. Qed.
Lemma set_partition_big P D (E : T -> R) :
partition P D -> \big[op/idx]_(x in D) E x = rhs P E.
Proof. by case/and3P=> /eqP <- tI_P _; apply: big_trivIset. Qed.
Lemma partition_disjoint_bigcup (F : I -> {set T}) E :
(forall i j, i != j -> [disjoint F i & F j]) ->
\big[op/idx]_(x in \bigcup_i F i) E x =
\big[op/idx]_i \big[op/idx]_(x in F i) E x.
Proof.
move=> disjF; pose P := [set F i | i in I & F i != set0].
have trivP: trivIset P.
apply/trivIsetP=> _ _ /imsetP[i _ ->] /imsetP[j _ ->] neqFij.
by apply: disjF; apply: contraNneq neqFij => ->.
have ->: \bigcup_i F i = cover P.
apply/esym; rewrite cover_imset big_mkcond; apply: eq_bigr => i _.
by rewrite inE; case: eqP.
rewrite big_trivIset // /rhs big_imset => [|i j _ /setIdP[_ notFj0] eqFij].
rewrite big_mkcond; apply: eq_bigr => i _; rewrite inE.
by case: eqP => //= ->; rewrite big_set0.
by apply: contraNeq (disjF _ _) _; rewrite -setI_eq0 eqFij setIid.
Qed.
End BigOps.
Section Equivalence.
Variables (R : rel T) (D : {set T}).
Let Px x := [set y in D | R x y].
Definition equivalence_partition := [set Px x | x in D].
Local Notation P := equivalence_partition.
Hypothesis eqiR : {in D & &, equivalence_rel R}.
Let Pxx x : x \in D -> x \in Px x.
Proof. by move=> Dx; rewrite !inE Dx (eqiR Dx Dx). Qed.
Let PPx x : x \in D -> Px x \in P := fun Dx => mem_imset _ Dx.
Lemma equivalence_partitionP : partition P D.
Proof.
have defD: cover P == D.
rewrite eqEsubset; apply/andP; split.
by apply/bigcupsP=> _ /imsetP[x Dx ->]; rewrite /Px setIdE subsetIl.
by apply/subsetP=> x Dx; apply/bigcupP; exists (Px x); rewrite (Pxx, PPx).
have tiP: trivIset P.
apply/trivIsetP=> _ _ /imsetP[x Dx ->] /imsetP[y Dy ->]; apply: contraR.
case/pred0Pn=> z /andP[]; rewrite !inE => /andP[Dz Rxz] /andP[_ Ryz].
apply/eqP/setP=> t; rewrite !inE; apply: andb_id2l => Dt.
by rewrite (eqiR Dx Dz Dt) // (eqiR Dy Dz Dt).
rewrite /partition tiP defD /=.
by apply/imsetP=> [[x /Pxx Px_x Px0]]; rewrite -Px0 inE in Px_x.
Qed.
Lemma pblock_equivalence_partition :
{in D &, forall x y, (y \in pblock P x) = R x y}.
Proof.
have [_ tiP _] := and3P equivalence_partitionP.
by move=> x y Dx Dy; rewrite /= (def_pblock tiP (PPx Dx) (Pxx Dx)) inE Dy.
Qed.
End Equivalence.
Lemma pblock_equivalence P D :
partition P D -> {in D & &, equivalence_rel (fun x y => y \in pblock P x)}.
Proof.
case/and3P=> /eqP <- tiP _ x y z Px Py Pz.
by rewrite mem_pblock; split=> // /same_pblock->.
Qed.
Lemma equivalence_partition_pblock P D :
partition P D -> equivalence_partition (fun x y => y \in pblock P x) D = P.
Proof.
case/and3P=> /eqP <-{D} tiP notP0; apply/setP=> B /=; set D := cover P.
have defP x: x \in D -> [set y in D | y \in pblock P x] = pblock P x.
by move=> Dx; apply/setIidPr; rewrite (bigcup_max (pblock P x)) ?pblock_mem.
apply/imsetP/idP=> [[x Px ->{B}] | PB]; first by rewrite defP ?pblock_mem.
have /set0Pn[x Bx]: B != set0 := memPn notP0 B PB.
have Px: x \in cover P by apply/bigcupP; exists B.
by exists x; rewrite // defP // (def_pblock tiP PB Bx).
Qed.
Section Preim.
Variables (rT : eqType) (f : T -> rT).
Definition preim_partition := equivalence_partition (fun x y => f x == f y).
Lemma preim_partitionP D : partition (preim_partition D) D.
Proof. by apply/equivalence_partitionP; split=> // /eqP->. Qed.
End Preim.
Lemma preim_partition_pblock P D :
partition P D -> preim_partition (pblock P) D = P.
Proof.
move=> partP; have [/eqP defD tiP _] := and3P partP.
rewrite -{2}(equivalence_partition_pblock partP); apply: eq_in_imset => x Dx.
by apply/setP=> y; rewrite !inE eq_pblock ?defD.
Qed.
Lemma transversalP P D : partition P D -> is_transversal (transversal P D) P D.
Proof.
case/and3P=> /eqP <- tiP notP0; apply/and3P; split; first exact/and3P.
apply/subsetP=> _ /imsetP[x Px ->]; case: pickP => //= y Pxy.
by apply/bigcupP; exists (pblock P x); rewrite ?pblock_mem //.
apply/forall_inP=> B PB; have /set0Pn[x Bx]: B != set0 := memPn notP0 B PB.
apply/cards1P; exists (odflt x [pick y in pblock P x]); apply/esym/eqP.
rewrite eqEsubset sub1set inE -andbA; apply/andP; split.
by apply/mem_imset/bigcupP; exists B.
rewrite (def_pblock tiP PB Bx); case def_y: _ / pickP => [y By | /(_ x)/idP//].
rewrite By /=; apply/subsetP=> _ /setIP[/imsetP[z Pz ->]].
case: {1}_ / pickP => [t zPt Bt | /(_ z)/idP[]]; last by rewrite mem_pblock.
by rewrite -(same_pblock tiP zPt) (def_pblock tiP PB Bt) def_y set11.
Qed.
Section Transversals.
Variables (X : {set T}) (P : {set {set T}}) (D : {set T}).
Hypothesis trPX : is_transversal X P D.
Lemma transversal_sub : X \subset D. Proof. by case/and3P: trPX. Qed.
Let tiP : trivIset P. Proof. by case/andP: trPX => /and3P[]. Qed.
Let sXP : {subset X <= cover P}.
Proof. by case/and3P: trPX => /andP[/eqP-> _] /subsetP. Qed.
Let trX : {in P, forall B, #|X :&: B| == 1}.
Proof. by case/and3P: trPX => _ _ /forall_inP. Qed.
Lemma setI_transversal_pblock x0 B :
B \in P -> X :&: B = [set transversal_repr x0 X B].
Proof.
by case/trX/cards1P=> x defXB; rewrite /transversal_repr defXB /pick enum_set1.
Qed.
Lemma repr_mem_pblock x0 B : B \in P -> transversal_repr x0 X B \in B.
Proof. by move=> PB; rewrite -sub1set -setI_transversal_pblock ?subsetIr. Qed.
Lemma repr_mem_transversal x0 B : B \in P -> transversal_repr x0 X B \in X.
Proof. by move=> PB; rewrite -sub1set -setI_transversal_pblock ?subsetIl. Qed.
Lemma transversal_reprK x0 : {in P, cancel (transversal_repr x0 X) (pblock P)}.
Proof. by move=> B PB; rewrite /= (def_pblock tiP PB) ?repr_mem_pblock. Qed.
Lemma pblockK x0 : {in X, cancel (pblock P) (transversal_repr x0 X)}.
Proof.
move=> x Xx; have /bigcupP[B PB Bx] := sXP Xx; rewrite (def_pblock tiP PB Bx).
by apply/esym/set1P; rewrite -setI_transversal_pblock // inE Xx.
Qed.
Lemma pblock_inj : {in X &, injective (pblock P)}.
Proof. by move=> x0; apply: (can_in_inj (pblockK x0)). Qed.
Lemma pblock_transversal : pblock P @: X = P.
Proof.
apply/setP=> B; apply/imsetP/idP=> [[x Xx ->] | PB].
by rewrite pblock_mem ?sXP.
have /cards1P[x0 _] := trX PB; set x := transversal_repr x0 X B.
by exists x; rewrite ?transversal_reprK ?repr_mem_transversal.
Qed.
Lemma card_transversal : #|X| = #|P|.
Proof. by rewrite -pblock_transversal card_in_imset //; apply: pblock_inj. Qed.
Lemma im_transversal_repr x0 : transversal_repr x0 X @: P = X.
Proof.
rewrite -{2}[X]imset_id -pblock_transversal -imset_comp.
by apply: eq_in_imset; apply: pblockK.
Qed.
End Transversals.
End Partitions.
Arguments trivIsetP [T P].
Arguments big_trivIset_cond [T R idx op] P [K E].
Arguments set_partition_big_cond [T R idx op] P [D K E].
Arguments big_trivIset [T R idx op] P [E].
Arguments set_partition_big [T R idx op] P [D E].
Prenex Implicits cover trivIset partition pblock trivIsetP.
Lemma partition_partition (T : finType) (D : {set T}) P Q :
partition P D -> partition Q P ->
partition (cover @: Q) D /\ {in Q &, injective cover}.
Proof.
move=> /and3P[/eqP defG tiP notP0] /and3P[/eqP defP tiQ notQ0].
have sQP E: E \in Q -> {subset E <= P}.
by move=> Q_E; apply/subsetP; rewrite -defP (bigcup_max E).
rewrite /partition cover_imset -(big_trivIset _ tiQ) defP -defG eqxx /= andbC.
have{notQ0} notQ0: set0 \notin cover @: Q.
apply: contra notP0 => /imsetP[E Q_E E0].
have /set0Pn[/= A E_A] := memPn notQ0 E Q_E.
congr (_ \in P): (sQP E Q_E A E_A).
by apply/eqP; rewrite -subset0 E0 (bigcup_max A).
rewrite notQ0; apply: trivIimset => // E F Q_E Q_F.
apply: contraR => /pred0Pn[x /andP[/bigcupP[A E_A Ax] /bigcupP[B F_B Bx]]].
rewrite -(def_pblock tiQ Q_E E_A) -(def_pblock tiP _ Ax) ?(sQP E) //.
by rewrite -(def_pblock tiQ Q_F F_B) -(def_pblock tiP _ Bx) ?(sQP F).
Qed.
Section MaxSetMinSet.
Variable T : finType.
Notation sT := {set T}.
Implicit Types A B C : sT.
Implicit Type P : pred sT.
Definition minset P A := [forall (B : sT | B \subset A), (B == A) == P B].
Lemma minset_eq P1 P2 A : P1 =1 P2 -> minset P1 A = minset P2 A.
Proof. by move=> eP12; apply: eq_forallb => B; rewrite eP12. Qed.
Lemma minsetP P A :
reflect ((P A) /\ (forall B, P B -> B \subset A -> B = A)) (minset P A).
Proof.
apply: (iffP forallP) => [minA | [PA minA] B].
split; first by have:= minA A; rewrite subxx eqxx /= => /eqP.
by move=> B PB sBA; have:= minA B; rewrite PB sBA /= eqb_id => /eqP.
by apply/implyP=> sBA; apply/eqP; apply/eqP/idP=> [-> // | /minA]; apply.
Qed.
Arguments minsetP [P A].
Lemma minsetp P A : minset P A -> P A.
Proof. by case/minsetP. Qed.
Lemma minsetinf P A B : minset P A -> P B -> B \subset A -> B = A.
Proof. by case/minsetP=> _; apply. Qed.
Lemma ex_minset P : (exists A, P A) -> {A | minset P A}.
Proof.
move=> exP; pose pS n := [pred B | P B & #|B| == n].
pose p n := ~~ pred0b (pS n); have{exP}: exists n, p n.
by case: exP => A PA; exists #|A|; apply/existsP; exists A; rewrite /= PA /=.
case/ex_minnP=> n /pred0P; case: (pickP (pS n)) => // A /andP[PA] /eqP <-{n} _.
move=> minA; exists A => //; apply/minsetP; split=> // B PB sBA; apply/eqP.
by rewrite eqEcard sBA minA //; apply/pred0Pn; exists B; rewrite /= PB /=.
Qed.
Lemma minset_exists P C : P C -> {A | minset P A & A \subset C}.
Proof.
move=> PC; have{PC}: exists A, P A && (A \subset C) by exists C; rewrite PC /=.
case/ex_minset=> A /minsetP[/andP[PA sAC] minA]; exists A => //; apply/minsetP.
by split=> // B PB sBA; rewrite (minA B) // PB (subset_trans sBA).
Qed.
Fact maxset_key : unit. Proof. by []. Qed.
Definition maxset P A :=
minset (fun B => locked_with maxset_key P (~: B)) (~: A).
Lemma maxset_eq P1 P2 A : P1 =1 P2 -> maxset P1 A = maxset P2 A.
Proof. by move=> eP12; apply: minset_eq => x /=; rewrite !unlock_with eP12. Qed.
Lemma maxminset P A : maxset P A = minset [pred B | P (~: B)] (~: A).
Proof. by rewrite /maxset unlock. Qed.
Lemma minmaxset P A : minset P A = maxset [pred B | P (~: B)] (~: A).
Proof.
by rewrite /maxset unlock setCK; apply: minset_eq => B /=; rewrite setCK.
Qed.
Lemma maxsetP P A :
reflect ((P A) /\ (forall B, P B -> A \subset B -> B = A)) (maxset P A).
Proof.
apply: (iffP minsetP); rewrite ?setCK unlock_with => [] [PA minA].
by split=> // B PB sAB; rewrite -[B]setCK [~: B]minA (setCK, setCS).
by split=> // B PB' sBA'; rewrite -(minA _ PB') -1?setCS setCK.
Qed.
Lemma maxsetp P A : maxset P A -> P A.
Proof. by case/maxsetP. Qed.
Lemma maxsetsup P A B : maxset P A -> P B -> A \subset B -> B = A.
Proof. by case/maxsetP=> _; apply. Qed.
Lemma ex_maxset P : (exists A, P A) -> {A | maxset P A}.
Proof.
move=> exP; have{exP}: exists A, P (~: A).
by case: exP => A PA; exists (~: A); rewrite setCK.
by case/ex_minset=> A minA; exists (~: A); rewrite /maxset unlock setCK.
Qed.
Lemma maxset_exists P C : P C -> {A : sT | maxset P A & C \subset A}.
Proof.
move=> PC; pose P' B := P (~: B); have: P' (~: C) by rewrite /P' setCK.
case/minset_exists=> B; rewrite -[B]setCK setCS.
by exists (~: B); rewrite // /maxset unlock.
Qed.
End MaxSetMinSet.
Arguments minsetP [T P A].
Arguments maxsetP [T P A].
Prenex Implicits minset maxset minsetP maxsetP.
From mathcomp
Require Import ssrbool ssrfun eqtype ssrnat div seq choice fintype.
From mathcomp
Require Import finfun bigop.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Section SetType.
Variable T : finType.
Inductive set_type : predArgType := FinSet of {ffun pred T}.
Definition finfun_of_set A := let: FinSet f := A in f.
Definition set_of of phant T := set_type.
Identity Coercion type_of_set_of : set_of >-> set_type.
Canonical set_subType := Eval hnf in [newType for finfun_of_set].
Definition set_eqMixin := Eval hnf in [eqMixin of set_type by <:].
Canonical set_eqType := Eval hnf in EqType set_type set_eqMixin.
Definition set_choiceMixin := [choiceMixin of set_type by <:].
Canonical set_choiceType := Eval hnf in ChoiceType set_type set_choiceMixin.
Definition set_countMixin := [countMixin of set_type by <:].
Canonical set_countType := Eval hnf in CountType set_type set_countMixin.
Canonical set_subCountType := Eval hnf in [subCountType of set_type].
Definition set_finMixin := [finMixin of set_type by <:].
Canonical set_finType := Eval hnf in FinType set_type set_finMixin.
Canonical set_subFinType := Eval hnf in [subFinType of set_type].
End SetType.
Delimit Scope set_scope with SET.
Bind Scope set_scope with set_type.
Bind Scope set_scope with set_of.
Open Scope set_scope.
Arguments finfun_of_set _ _%SET.
Notation "{ 'set' T }" := (set_of (Phant T))
(at level 0, format "{ 'set' T }") : type_scope.
Notation "A :=: B" := (A = B :> {set _})
(at level 70, no associativity, only parsing) : set_scope.
Notation "A :<>: B" := (A <> B :> {set _})
(at level 70, no associativity, only parsing) : set_scope.
Notation "A :==: B" := (A == B :> {set _})
(at level 70, no associativity, only parsing) : set_scope.
Notation "A :!=: B" := (A != B :> {set _})
(at level 70, no associativity, only parsing) : set_scope.
Notation "A :=P: B" := (A =P B :> {set _})
(at level 70, no associativity, only parsing) : set_scope.
Local Notation finset_def := (fun T P => @FinSet T (finfun P)).
Local Notation pred_of_set_def := (fun T (A : set_type T) => val A : _ -> _).
Module Type SetDefSig.
Parameter finset : forall T : finType, pred T -> {set T}.
Parameter pred_of_set : forall T, set_type T -> fin_pred_sort (predPredType T).
Axiom finsetE : finset = finset_def.
Axiom pred_of_setE : pred_of_set = pred_of_set_def.
End SetDefSig.
Module SetDef : SetDefSig.
Definition finset := finset_def.
Definition pred_of_set := pred_of_set_def.
Lemma finsetE : finset = finset_def. Proof. by []. Qed.
Lemma pred_of_setE : pred_of_set = pred_of_set_def. Proof. by []. Qed.
End SetDef.
Notation finset := SetDef.finset.
Notation pred_of_set := SetDef.pred_of_set.
Canonical finset_unlock := Unlockable SetDef.finsetE.
Canonical pred_of_set_unlock := Unlockable SetDef.pred_of_setE.
Notation "[ 'set' x : T | P ]" := (finset (fun x : T => P%B))
(at level 0, x at level 99, only parsing) : set_scope.
Notation "[ 'set' x | P ]" := [set x : _ | P]
(at level 0, x, P at level 99, format "[ 'set' x | P ]") : set_scope.
Notation "[ 'set' x 'in' A ]" := [set x | x \in A]
(at level 0, x at level 99, format "[ 'set' x 'in' A ]") : set_scope.
Notation "[ 'set' x : T 'in' A ]" := [set x : T | x \in A]
(at level 0, x at level 99, only parsing) : set_scope.
Notation "[ 'set' x : T | P & Q ]" := [set x : T | P && Q]
(at level 0, x at level 99, only parsing) : set_scope.
Notation "[ 'set' x | P & Q ]" := [set x | P && Q ]
(at level 0, x, P at level 99, format "[ 'set' x | P & Q ]") : set_scope.
Notation "[ 'set' x : T 'in' A | P ]" := [set x : T | x \in A & P]
(at level 0, x at level 99, only parsing) : set_scope.
Notation "[ 'set' x 'in' A | P ]" := [set x | x \in A & P]
(at level 0, x at level 99, format "[ 'set' x 'in' A | P ]") : set_scope.
Notation "[ 'set' x 'in' A | P & Q ]" := [set x in A | P && Q]
(at level 0, x at level 99,
format "[ 'set' x 'in' A | P & Q ]") : set_scope.
Notation "[ 'set' x : T 'in' A | P & Q ]" := [set x : T in A | P && Q]
(at level 0, x at level 99, only parsing) : set_scope.
Coercion pred_of_set: set_type >-> fin_pred_sort.
Canonical set_predType T :=
Eval hnf in @mkPredType _ (unkeyed (set_type T)) (@pred_of_set T).
Section BasicSetTheory.
Variable T : finType.
Implicit Types (x : T) (A B : {set T}) (pA : pred T).
Canonical set_of_subType := Eval hnf in [subType of {set T}].
Canonical set_of_eqType := Eval hnf in [eqType of {set T}].
Canonical set_of_choiceType := Eval hnf in [choiceType of {set T}].
Canonical set_of_countType := Eval hnf in [countType of {set T}].
Canonical set_of_subCountType := Eval hnf in [subCountType of {set T}].
Canonical set_of_finType := Eval hnf in [finType of {set T}].
Canonical set_of_subFinType := Eval hnf in [subFinType of {set T}].
Lemma in_set pA x : x \in finset pA = pA x.
Proof. by rewrite [@finset]unlock unlock [x \in _]ffunE. Qed.
Lemma setP A B : A =i B <-> A = B.
Proof.
by split=> [eqAB|-> //]; apply/val_inj/ffunP=> x; have:= eqAB x; rewrite unlock.
Qed.
Definition set0 := [set x : T | false].
Definition setTfor (phT : phant T) := [set x : T | true].
Lemma in_setT x : x \in setTfor (Phant T).
Proof. by rewrite in_set. Qed.
Lemma eqsVneq A B : {A = B} + {A != B}.
Proof. exact: eqVneq. Qed.
End BasicSetTheory.
Definition inE := (in_set, inE).
Arguments set0 [T].
Prenex Implicits set0.
Hint Resolve in_setT.
Notation "[ 'set' : T ]" := (setTfor (Phant T))
(at level 0, format "[ 'set' : T ]") : set_scope.
Notation setT := [set: _] (only parsing).
Section setOpsDefs.
Variable T : finType.
Implicit Types (a x : T) (A B D : {set T}) (P : {set {set T}}).
Definition set1 a := [set x | x == a].
Definition setU A B := [set x | (x \in A) || (x \in B)].
Definition setI A B := [set x in A | x \in B].
Definition setC A := [set x | x \notin A].
Definition setD A B := [set x | x \notin B & x \in A].
Definition ssetI P D := [set A in P | A \subset D].
Definition powerset D := [set A : {set T} | A \subset D].
End setOpsDefs.
Notation "[ 'set' a ]" := (set1 a)
(at level 0, a at level 99, format "[ 'set' a ]") : set_scope.
Notation "[ 'set' a : T ]" := [set (a : T)]
(at level 0, a at level 99, format "[ 'set' a : T ]") : set_scope.
Notation "A :|: B" := (setU A B) : set_scope.
Notation "a |: A" := ([set a] :|: A) : set_scope.
Notation "[ 'set' a1 ; a2 ; .. ; an ]" := (setU .. (a1 |: [set a2]) .. [set an])
(at level 0, a1 at level 99,
format "[ 'set' a1 ; a2 ; .. ; an ]") : set_scope.
Notation "A :&: B" := (setI A B) : set_scope.
Notation "~: A" := (setC A) (at level 35, right associativity) : set_scope.
Notation "[ 'set' ~ a ]" := (~: [set a])
(at level 0, format "[ 'set' ~ a ]") : set_scope.
Notation "A :\: B" := (setD A B) : set_scope.
Notation "A :\ a" := (A :\: [set a]) : set_scope.
Notation "P ::&: D" := (ssetI P D) (at level 48) : set_scope.
Section setOps.
Variable T : finType.
Implicit Types (a x : T) (A B C D : {set T}) (pA pB pC : pred T).
Lemma eqEsubset A B : (A == B) = (A \subset B) && (B \subset A).
Proof. by apply/eqP/subset_eqP=> /setP. Qed.
Lemma subEproper A B : A \subset B = (A == B) || (A \proper B).
Proof. by rewrite eqEsubset -andb_orr orbN andbT. Qed.
Lemma eqVproper A B : A \subset B -> A = B \/ A \proper B.
Proof. by rewrite subEproper => /predU1P. Qed.
Lemma properEneq A B : A \proper B = (A != B) && (A \subset B).
Proof. by rewrite andbC eqEsubset negb_and andb_orr andbN. Qed.
Lemma proper_neq A B : A \proper B -> A != B.
Proof. by rewrite properEneq; case/andP. Qed.
Lemma eqEproper A B : (A == B) = (A \subset B) && ~~ (A \proper B).
Proof. by rewrite negb_and negbK andb_orr andbN eqEsubset. Qed.
Lemma eqEcard A B : (A == B) = (A \subset B) && (#|B| <= #|A|).
Proof.
rewrite eqEsubset; apply: andb_id2l => sAB.
by rewrite (geq_leqif (subset_leqif_card sAB)).
Qed.
Lemma properEcard A B : (A \proper B) = (A \subset B) && (#|A| < #|B|).
Proof. by rewrite properEneq ltnNge andbC eqEcard; case: (A \subset B). Qed.
Lemma subset_leqif_cards A B : A \subset B -> (#|A| <= #|B| ?= iff (A == B)).
Proof. by move=> sAB; rewrite eqEsubset sAB; apply: subset_leqif_card. Qed.
Lemma in_set0 x : x \in set0 = false.
Proof. by rewrite inE. Qed.
Lemma sub0set A : set0 \subset A.
Proof. by apply/subsetP=> x; rewrite inE. Qed.
Lemma subset0 A : (A \subset set0) = (A == set0).
Proof. by rewrite eqEsubset sub0set andbT. Qed.
Lemma proper0 A : (set0 \proper A) = (A != set0).
Proof. by rewrite properE sub0set subset0. Qed.
Lemma subset_neq0 A B : A \subset B -> A != set0 -> B != set0.
Proof. by rewrite -!proper0 => sAB /proper_sub_trans->. Qed.
Lemma set_0Vmem A : (A = set0) + {x : T | x \in A}.
Proof.
case: (pickP (mem A)) => [x Ax | A0]; [by right; exists x | left].
by apply/setP=> x; rewrite inE; apply: A0.
Qed.
Lemma enum_set0 : enum set0 = [::] :> seq T.
Proof. by rewrite (eq_enum (in_set _)) enum0. Qed.
Lemma subsetT A : A \subset setT.
Proof. by apply/subsetP=> x; rewrite inE. Qed.
Lemma subsetT_hint mA : subset mA (mem [set: T]).
Proof. by rewrite unlock; apply/pred0P=> x; rewrite !inE. Qed.
Hint Resolve subsetT_hint.
Lemma subTset A : (setT \subset A) = (A == setT).
Proof. by rewrite eqEsubset subsetT. Qed.
Lemma properT A : (A \proper setT) = (A != setT).
Proof. by rewrite properEneq subsetT andbT. Qed.
Lemma set1P x a : reflect (x = a) (x \in [set a]).
Proof. by rewrite inE; apply: eqP. Qed.
Lemma enum_setT : enum [set: T] = Finite.enum T.
Proof. by rewrite (eq_enum (in_set _)) enumT. Qed.
Lemma in_set1 x a : (x \in [set a]) = (x == a).
Proof. exact: in_set. Qed.
Lemma set11 x : x \in [set x].
Proof. by rewrite inE. Qed.
Lemma set1_inj : injective (@set1 T).
Proof. by move=> a b eqsab; apply/set1P; rewrite -eqsab set11. Qed.
Lemma enum_set1 a : enum [set a] = [:: a].
Proof. by rewrite (eq_enum (in_set _)) enum1. Qed.
Lemma setU1P x a B : reflect (x = a \/ x \in B) (x \in a |: B).
Proof. by rewrite !inE; apply: predU1P. Qed.
Lemma in_setU1 x a B : (x \in a |: B) = (x == a) || (x \in B).
Proof. by rewrite !inE. Qed.
Lemma set_cons a s : [set x in a :: s] = a |: [set x in s].
Proof. by apply/setP=> x; rewrite !inE. Qed.
Lemma setU11 x B : x \in x |: B.
Proof. by rewrite !inE eqxx. Qed.
Lemma setU1r x a B : x \in B -> x \in a |: B.
Proof. by move=> Bx; rewrite !inE predU1r. Qed.
Lemma set1Ul x A b : x \in A -> x \in A :|: [set b].
Proof. by move=> Ax; rewrite !inE Ax. Qed.
Lemma set1Ur A b : b \in A :|: [set b].
Proof. by rewrite !inE eqxx orbT. Qed.
Lemma in_setC1 x a : (x \in [set~ a]) = (x != a).
Proof. by rewrite !inE. Qed.
Lemma setC11 x : (x \in [set~ x]) = false.
Proof. by rewrite !inE eqxx. Qed.
Lemma setD1P x A b : reflect (x != b /\ x \in A) (x \in A :\ b).
Proof. by rewrite !inE; apply: andP. Qed.
Lemma in_setD1 x A b : (x \in A :\ b) = (x != b) && (x \in A) .
Proof. by rewrite !inE. Qed.
Lemma setD11 b A : (b \in A :\ b) = false.
Proof. by rewrite !inE eqxx. Qed.
Lemma setD1K a A : a \in A -> a |: (A :\ a) = A.
Proof. by move=> Aa; apply/setP=> x; rewrite !inE; case: eqP => // ->. Qed.
Lemma setU1K a B : a \notin B -> (a |: B) :\ a = B.
Proof.
by move/negPf=> nBa; apply/setP=> x; rewrite !inE; case: eqP => // ->.
Qed.
Lemma set2P x a b : reflect (x = a \/ x = b) (x \in [set a; b]).
Proof. by rewrite !inE; apply: pred2P. Qed.
Lemma in_set2 x a b : (x \in [set a; b]) = (x == a) || (x == b).
Proof. by rewrite !inE. Qed.
Lemma set21 a b : a \in [set a; b].
Proof. by rewrite !inE eqxx. Qed.
Lemma set22 a b : b \in [set a; b].
Proof. by rewrite !inE eqxx orbT. Qed.
Lemma setUP x A B : reflect (x \in A \/ x \in B) (x \in A :|: B).
Proof. by rewrite !inE; apply: orP. Qed.
Lemma in_setU x A B : (x \in A :|: B) = (x \in A) || (x \in B).
Proof. exact: in_set. Qed.
Lemma setUC A B : A :|: B = B :|: A.
Proof. by apply/setP => x; rewrite !inE orbC. Qed.
Lemma setUS A B C : A \subset B -> C :|: A \subset C :|: B.
Proof.
move=> sAB; apply/subsetP=> x; rewrite !inE.
by case: (x \in C) => //; apply: (subsetP sAB).
Qed.
Lemma setSU A B C : A \subset B -> A :|: C \subset B :|: C.
Proof. by move=> sAB; rewrite -!(setUC C) setUS. Qed.
Lemma setUSS A B C D : A \subset C -> B \subset D -> A :|: B \subset C :|: D.
Proof. by move=> /(setSU B) /subset_trans sAC /(setUS C)/sAC. Qed.
Lemma set0U A : set0 :|: A = A.
Proof. by apply/setP => x; rewrite !inE orFb. Qed.
Lemma setU0 A : A :|: set0 = A.
Proof. by rewrite setUC set0U. Qed.
Lemma setUA A B C : A :|: (B :|: C) = A :|: B :|: C.
Proof. by apply/setP => x; rewrite !inE orbA. Qed.
Lemma setUCA A B C : A :|: (B :|: C) = B :|: (A :|: C).
Proof. by rewrite !setUA (setUC B). Qed.
Lemma setUAC A B C : A :|: B :|: C = A :|: C :|: B.
Proof. by rewrite -!setUA (setUC B). Qed.
Lemma setUACA A B C D : (A :|: B) :|: (C :|: D) = (A :|: C) :|: (B :|: D).
Proof. by rewrite -!setUA (setUCA B). Qed.
Lemma setTU A : setT :|: A = setT.
Proof. by apply/setP => x; rewrite !inE orTb. Qed.
Lemma setUT A : A :|: setT = setT.
Proof. by rewrite setUC setTU. Qed.
Lemma setUid A : A :|: A = A.
Proof. by apply/setP=> x; rewrite inE orbb. Qed.
Lemma setUUl A B C : A :|: B :|: C = (A :|: C) :|: (B :|: C).
Proof. by rewrite setUA !(setUAC _ C) -(setUA _ C) setUid. Qed.
Lemma setUUr A B C : A :|: (B :|: C) = (A :|: B) :|: (A :|: C).
Proof. by rewrite !(setUC A) setUUl. Qed.
Lemma setIdP x pA pB : reflect (pA x /\ pB x) (x \in [set y | pA y & pB y]).
Proof. by rewrite !inE; apply: andP. Qed.
Lemma setId2P x pA pB pC :
reflect [/\ pA x, pB x & pC x] (x \in [set y | pA y & pB y && pC y]).
Proof. by rewrite !inE; apply: and3P. Qed.
Lemma setIdE A pB : [set x in A | pB x] = A :&: [set x | pB x].
Proof. by apply/setP=> x; rewrite !inE. Qed.
Lemma setIP x A B : reflect (x \in A /\ x \in B) (x \in A :&: B).
Proof. exact: (iffP (@setIdP _ _ _)). Qed.
Lemma in_setI x A B : (x \in A :&: B) = (x \in A) && (x \in B).
Proof. exact: in_set. Qed.
Lemma setIC A B : A :&: B = B :&: A.
Proof. by apply/setP => x; rewrite !inE andbC. Qed.
Lemma setIS A B C : A \subset B -> C :&: A \subset C :&: B.
Proof.
move=> sAB; apply/subsetP=> x; rewrite !inE.
by case: (x \in C) => //; apply: (subsetP sAB).
Qed.
Lemma setSI A B C : A \subset B -> A :&: C \subset B :&: C.
Proof. by move=> sAB; rewrite -!(setIC C) setIS. Qed.
Lemma setISS A B C D : A \subset C -> B \subset D -> A :&: B \subset C :&: D.
Proof. by move=> /(setSI B) /subset_trans sAC /(setIS C) /sAC. Qed.
Lemma setTI A : setT :&: A = A.
Proof. by apply/setP => x; rewrite !inE andTb. Qed.
Lemma setIT A : A :&: setT = A.
Proof. by rewrite setIC setTI. Qed.
Lemma set0I A : set0 :&: A = set0.
Proof. by apply/setP => x; rewrite !inE andFb. Qed.
Lemma setI0 A : A :&: set0 = set0.
Proof. by rewrite setIC set0I. Qed.
Lemma setIA A B C : A :&: (B :&: C) = A :&: B :&: C.
Proof. by apply/setP=> x; rewrite !inE andbA. Qed.
Lemma setICA A B C : A :&: (B :&: C) = B :&: (A :&: C).
Proof. by rewrite !setIA (setIC A). Qed.
Lemma setIAC A B C : A :&: B :&: C = A :&: C :&: B.
Proof. by rewrite -!setIA (setIC B). Qed.
Lemma setIACA A B C D : (A :&: B) :&: (C :&: D) = (A :&: C) :&: (B :&: D).
Proof. by rewrite -!setIA (setICA B). Qed.
Lemma setIid A : A :&: A = A.
Proof. by apply/setP=> x; rewrite inE andbb. Qed.
Lemma setIIl A B C : A :&: B :&: C = (A :&: C) :&: (B :&: C).
Proof. by rewrite setIA !(setIAC _ C) -(setIA _ C) setIid. Qed.
Lemma setIIr A B C : A :&: (B :&: C) = (A :&: B) :&: (A :&: C).
Proof. by rewrite !(setIC A) setIIl. Qed.
Lemma setIUr A B C : A :&: (B :|: C) = (A :&: B) :|: (A :&: C).
Proof. by apply/setP=> x; rewrite !inE andb_orr. Qed.
Lemma setIUl A B C : (A :|: B) :&: C = (A :&: C) :|: (B :&: C).
Proof. by apply/setP=> x; rewrite !inE andb_orl. Qed.
Lemma setUIr A B C : A :|: (B :&: C) = (A :|: B) :&: (A :|: C).
Proof. by apply/setP=> x; rewrite !inE orb_andr. Qed.
Lemma setUIl A B C : (A :&: B) :|: C = (A :|: C) :&: (B :|: C).
Proof. by apply/setP=> x; rewrite !inE orb_andl. Qed.
Lemma setUK A B : (A :|: B) :&: A = A.
Proof. by apply/setP=> x; rewrite !inE orbK. Qed.
Lemma setKU A B : A :&: (B :|: A) = A.
Proof. by apply/setP=> x; rewrite !inE orKb. Qed.
Lemma setIK A B : (A :&: B) :|: A = A.
Proof. by apply/setP=> x; rewrite !inE andbK. Qed.
Lemma setKI A B : A :|: (B :&: A) = A.
Proof. by apply/setP=> x; rewrite !inE andKb. Qed.
Lemma setCP x A : reflect (~ x \in A) (x \in ~: A).
Proof. by rewrite !inE; apply: negP. Qed.
Lemma in_setC x A : (x \in ~: A) = (x \notin A).
Proof. exact: in_set. Qed.
Lemma setCK : involutive (@setC T).
Proof. by move=> A; apply/setP=> x; rewrite !inE negbK. Qed.
Lemma setC_inj : injective (@setC T).
Proof. exact: can_inj setCK. Qed.
Lemma subsets_disjoint A B : (A \subset B) = [disjoint A & ~: B].
Proof. by rewrite subset_disjoint; apply: eq_disjoint_r => x; rewrite !inE. Qed.
Lemma disjoints_subset A B : [disjoint A & B] = (A \subset ~: B).
Proof. by rewrite subsets_disjoint setCK. Qed.
Lemma powersetCE A B : (A \in powerset (~: B)) = [disjoint A & B].
Proof. by rewrite inE disjoints_subset. Qed.
Lemma setCS A B : (~: A \subset ~: B) = (B \subset A).
Proof. by rewrite !subsets_disjoint setCK disjoint_sym. Qed.
Lemma setCU A B : ~: (A :|: B) = ~: A :&: ~: B.
Proof. by apply/setP=> x; rewrite !inE negb_or. Qed.
Lemma setCI A B : ~: (A :&: B) = ~: A :|: ~: B.
Proof. by apply/setP=> x; rewrite !inE negb_and. Qed.
Lemma setUCr A : A :|: ~: A = setT.
Proof. by apply/setP=> x; rewrite !inE orbN. Qed.
Lemma setICr A : A :&: ~: A = set0.
Proof. by apply/setP=> x; rewrite !inE andbN. Qed.
Lemma setC0 : ~: set0 = [set: T].
Proof. by apply/setP=> x; rewrite !inE. Qed.
Lemma setCT : ~: [set: T] = set0.
Proof. by rewrite -setC0 setCK. Qed.
Lemma setDP A B x : reflect (x \in A /\ x \notin B) (x \in A :\: B).
Proof. by rewrite inE andbC; apply: andP. Qed.
Lemma in_setD A B x : (x \in A :\: B) = (x \notin B) && (x \in A).
Proof. exact: in_set. Qed.
Lemma setDE A B : A :\: B = A :&: ~: B.
Proof. by apply/setP => x; rewrite !inE andbC. Qed.
Lemma setSD A B C : A \subset B -> A :\: C \subset B :\: C.
Proof. by rewrite !setDE; apply: setSI. Qed.
Lemma setDS A B C : A \subset B -> C :\: B \subset C :\: A.
Proof. by rewrite !setDE -setCS; apply: setIS. Qed.
Lemma setDSS A B C D : A \subset C -> D \subset B -> A :\: B \subset C :\: D.
Proof. by move=> /(setSD B) /subset_trans sAC /(setDS C) /sAC. Qed.
Lemma setD0 A : A :\: set0 = A.
Proof. by apply/setP=> x; rewrite !inE. Qed.
Lemma set0D A : set0 :\: A = set0.
Proof. by apply/setP=> x; rewrite !inE andbF. Qed.
Lemma setDT A : A :\: setT = set0.
Proof. by apply/setP=> x; rewrite !inE. Qed.
Lemma setTD A : setT :\: A = ~: A.
Proof. by apply/setP=> x; rewrite !inE andbT. Qed.
Lemma setDv A : A :\: A = set0.
Proof. by apply/setP=> x; rewrite !inE andNb. Qed.
Lemma setCD A B : ~: (A :\: B) = ~: A :|: B.
Proof. by rewrite !setDE setCI setCK. Qed.
Lemma setID A B : A :&: B :|: A :\: B = A.
Proof. by rewrite setDE -setIUr setUCr setIT. Qed.
Lemma setDUl A B C : (A :|: B) :\: C = (A :\: C) :|: (B :\: C).
Proof. by rewrite !setDE setIUl. Qed.
Lemma setDUr A B C : A :\: (B :|: C) = (A :\: B) :&: (A :\: C).
Proof. by rewrite !setDE setCU setIIr. Qed.
Lemma setDIl A B C : (A :&: B) :\: C = (A :\: C) :&: (B :\: C).
Proof. by rewrite !setDE setIIl. Qed.
Lemma setIDA A B C : A :&: (B :\: C) = (A :&: B) :\: C.
Proof. by rewrite !setDE setIA. Qed.
Lemma setIDAC A B C : (A :\: B) :&: C = (A :&: C) :\: B.
Proof. by rewrite !setDE setIAC. Qed.
Lemma setDIr A B C : A :\: (B :&: C) = (A :\: B) :|: (A :\: C).
Proof. by rewrite !setDE setCI setIUr. Qed.
Lemma setDDl A B C : (A :\: B) :\: C = A :\: (B :|: C).
Proof. by rewrite !setDE setCU setIA. Qed.
Lemma setDDr A B C : A :\: (B :\: C) = (A :\: B) :|: (A :&: C).
Proof. by rewrite !setDE setCI setIUr setCK. Qed.
Lemma powersetE A B : (A \in powerset B) = (A \subset B).
Proof. by rewrite inE. Qed.
Lemma powersetS A B : (powerset A \subset powerset B) = (A \subset B).
Proof.
apply/subsetP/idP=> [sAB | sAB C]; last by rewrite !inE => /subset_trans ->.
by rewrite -powersetE sAB // inE.
Qed.
Lemma powerset0 : powerset set0 = [set set0] :> {set {set T}}.
Proof. by apply/setP=> A; rewrite !inE subset0. Qed.
Lemma powersetT : powerset [set: T] = [set: {set T}].
Proof. by apply/setP=> A; rewrite !inE subsetT. Qed.
Lemma setI_powerset P A : P :&: powerset A = P ::&: A.
Proof. by apply/setP=> B; rewrite !inE. Qed.
Lemma cardsE pA : #|[set x in pA]| = #|pA|.
Proof. exact/eq_card/in_set. Qed.
Lemma sum1dep_card pA : \sum_(x | pA x) 1 = #|[set x | pA x]|.
Proof. by rewrite sum1_card cardsE. Qed.
Lemma sum_nat_dep_const pA n : \sum_(x | pA x) n = #|[set x | pA x]| * n.
Proof. by rewrite sum_nat_const cardsE. Qed.
Lemma cards0 : #|@set0 T| = 0.
Proof. by rewrite cardsE card0. Qed.
Lemma cards_eq0 A : (#|A| == 0) = (A == set0).
Proof. by rewrite (eq_sym A) eqEcard sub0set cards0 leqn0. Qed.
Lemma set0Pn A : reflect (exists x, x \in A) (A != set0).
Proof. by rewrite -cards_eq0; apply: existsP. Qed.
Lemma card_gt0 A : (0 < #|A|) = (A != set0).
Proof. by rewrite lt0n cards_eq0. Qed.
Lemma cards0_eq A : #|A| = 0 -> A = set0.
Proof. by move=> A_0; apply/setP=> x; rewrite inE (card0_eq A_0). Qed.
Lemma cards1 x : #|[set x]| = 1.
Proof. by rewrite cardsE card1. Qed.
Lemma cardsUI A B : #|A :|: B| + #|A :&: B| = #|A| + #|B|.
Proof. by rewrite !cardsE cardUI. Qed.
Lemma cardsU A B : #|A :|: B| = (#|A| + #|B| - #|A :&: B|)%N.
Proof. by rewrite -cardsUI addnK. Qed.
Lemma cardsI A B : #|A :&: B| = (#|A| + #|B| - #|A :|: B|)%N.
Proof. by rewrite -cardsUI addKn. Qed.
Lemma cardsT : #|[set: T]| = #|T|.
Proof. by rewrite cardsE. Qed.
Lemma cardsID B A : #|A :&: B| + #|A :\: B| = #|A|.
Proof. by rewrite !cardsE cardID. Qed.
Lemma cardsD A B : #|A :\: B| = (#|A| - #|A :&: B|)%N.
Proof. by rewrite -(cardsID B A) addKn. Qed.
Lemma cardsC A : #|A| + #|~: A| = #|T|.
Proof. by rewrite cardsE cardC. Qed.
Lemma cardsCs A : #|A| = #|T| - #|~: A|.
Proof. by rewrite -(cardsC A) addnK. Qed.
Lemma cardsU1 a A : #|a |: A| = (a \notin A) + #|A|.
Proof. by rewrite -cardU1; apply: eq_card=> x; rewrite !inE. Qed.
Lemma cards2 a b : #|[set a; b]| = (a != b).+1.
Proof. by rewrite -card2; apply: eq_card=> x; rewrite !inE. Qed.
Lemma cardsC1 a : #|[set~ a]| = #|T|.-1.
Proof. by rewrite -(cardC1 a); apply: eq_card=> x; rewrite !inE. Qed.
Lemma cardsD1 a A : #|A| = (a \in A) + #|A :\ a|.
Proof.
by rewrite (cardD1 a); congr (_ + _); apply: eq_card => x; rewrite !inE.
Qed.
Lemma subsetIl A B : A :&: B \subset A.
Proof. by apply/subsetP=> x; rewrite inE; case/andP. Qed.
Lemma subsetIr A B : A :&: B \subset B.
Proof. by apply/subsetP=> x; rewrite inE; case/andP. Qed.
Lemma subsetUl A B : A \subset A :|: B.
Proof. by apply/subsetP=> x; rewrite inE => ->. Qed.
Lemma subsetUr A B : B \subset A :|: B.
Proof. by apply/subsetP=> x; rewrite inE orbC => ->. Qed.
Lemma subsetU1 x A : A \subset x |: A.
Proof. exact: subsetUr. Qed.
Lemma subsetDl A B : A :\: B \subset A.
Proof. by rewrite setDE subsetIl. Qed.
Lemma subD1set A x : A :\ x \subset A.
Proof. by rewrite subsetDl. Qed.
Lemma subsetDr A B : A :\: B \subset ~: B.
Proof. by rewrite setDE subsetIr. Qed.
Lemma sub1set A x : ([set x] \subset A) = (x \in A).
Proof. by rewrite -subset_pred1; apply: eq_subset=> y; rewrite !inE. Qed.
Lemma cards1P A : reflect (exists x, A = [set x]) (#|A| == 1).
Proof.
apply: (iffP idP) => [|[x ->]]; last by rewrite cards1.
rewrite eq_sym eqn_leq card_gt0 => /andP[/set0Pn[x Ax] leA1].
by exists x; apply/eqP; rewrite eq_sym eqEcard sub1set Ax cards1 leA1.
Qed.
Lemma subset1 A x : (A \subset [set x]) = (A == [set x]) || (A == set0).
Proof.
rewrite eqEcard cards1 -cards_eq0 orbC andbC.
by case: posnP => // A0; rewrite (cards0_eq A0) sub0set.
Qed.
Lemma powerset1 x : powerset [set x] = [set set0; [set x]].
Proof. by apply/setP=> A; rewrite !inE subset1 orbC. Qed.
Lemma setIidPl A B : reflect (A :&: B = A) (A \subset B).
Proof.
apply: (iffP subsetP) => [sAB | <- x /setIP[] //].
by apply/setP=> x; rewrite inE; apply/andb_idr/sAB.
Qed.
Arguments setIidPl [A B].
Lemma setIidPr A B : reflect (A :&: B = B) (B \subset A).
Proof. by rewrite setIC; apply: setIidPl. Qed.
Lemma cardsDS A B : B \subset A -> #|A :\: B| = (#|A| - #|B|)%N.
Proof. by rewrite cardsD => /setIidPr->. Qed.
Lemma setUidPl A B : reflect (A :|: B = A) (B \subset A).
Proof.
by rewrite -setCS (sameP setIidPl eqP) -setCU (inj_eq setC_inj); apply: eqP.
Qed.
Lemma setUidPr A B : reflect (A :|: B = B) (A \subset B).
Proof. by rewrite setUC; apply: setUidPl. Qed.
Lemma setDidPl A B : reflect (A :\: B = A) [disjoint A & B].
Proof. by rewrite setDE disjoints_subset; apply: setIidPl. Qed.
Lemma subIset A B C : (B \subset A) || (C \subset A) -> (B :&: C \subset A).
Proof. by case/orP; apply: subset_trans; rewrite (subsetIl, subsetIr). Qed.
Lemma subsetI A B C : (A \subset B :&: C) = (A \subset B) && (A \subset C).
Proof.
rewrite !(sameP setIidPl eqP) setIA; have [-> //| ] := altP (A :&: B =P A).
by apply: contraNF => /eqP <-; rewrite -setIA -setIIl setIAC.
Qed.
Lemma subsetIP A B C : reflect (A \subset B /\ A \subset C) (A \subset B :&: C).
Proof. by rewrite subsetI; apply: andP. Qed.
Lemma subsetIidl A B : (A \subset A :&: B) = (A \subset B).
Proof. by rewrite subsetI subxx. Qed.
Lemma subsetIidr A B : (B \subset A :&: B) = (B \subset A).
Proof. by rewrite setIC subsetIidl. Qed.
Lemma powersetI A B : powerset (A :&: B) = powerset A :&: powerset B.
Proof. by apply/setP=> C; rewrite !inE subsetI. Qed.
Lemma subUset A B C : (B :|: C \subset A) = (B \subset A) && (C \subset A).
Proof. by rewrite -setCS setCU subsetI !setCS. Qed.
Lemma subsetU A B C : (A \subset B) || (A \subset C) -> A \subset B :|: C.
Proof. by rewrite -!(setCS _ A) setCU; apply: subIset. Qed.
Lemma subUsetP A B C : reflect (A \subset C /\ B \subset C) (A :|: B \subset C).
Proof. by rewrite subUset; apply: andP. Qed.
Lemma subsetC A B : (A \subset ~: B) = (B \subset ~: A).
Proof. by rewrite -setCS setCK. Qed.
Lemma subCset A B : (~: A \subset B) = (~: B \subset A).
Proof. by rewrite -setCS setCK. Qed.
Lemma subsetD A B C : (A \subset B :\: C) = (A \subset B) && [disjoint A & C].
Proof. by rewrite setDE subsetI -disjoints_subset. Qed.
Lemma subDset A B C : (A :\: B \subset C) = (A \subset B :|: C).
Proof.
apply/subsetP/subsetP=> sABC x; rewrite !inE.
by case Bx: (x \in B) => // Ax; rewrite sABC ?inE ?Bx.
by case Bx: (x \in B) => //; move/sABC; rewrite inE Bx.
Qed.
Lemma subsetDP A B C :
reflect (A \subset B /\ [disjoint A & C]) (A \subset B :\: C).
Proof. by rewrite subsetD; apply: andP. Qed.
Lemma setU_eq0 A B : (A :|: B == set0) = (A == set0) && (B == set0).
Proof. by rewrite -!subset0 subUset. Qed.
Lemma setD_eq0 A B : (A :\: B == set0) = (A \subset B).
Proof. by rewrite -subset0 subDset setU0. Qed.
Lemma setI_eq0 A B : (A :&: B == set0) = [disjoint A & B].
Proof. by rewrite disjoints_subset -setD_eq0 setDE setCK. Qed.
Lemma disjoint_setI0 A B : [disjoint A & B] -> A :&: B = set0.
Proof. by rewrite -setI_eq0; move/eqP. Qed.
Lemma subsetD1 A B x : (A \subset B :\ x) = (A \subset B) && (x \notin A).
Proof. by rewrite setDE subsetI subsetC sub1set inE. Qed.
Lemma subsetD1P A B x : reflect (A \subset B /\ x \notin A) (A \subset B :\ x).
Proof. by rewrite subsetD1; apply: andP. Qed.
Lemma properD1 A x : x \in A -> A :\ x \proper A.
Proof.
move=> Ax; rewrite properE subsetDl; apply/subsetPn; exists x=> //.
by rewrite in_setD1 Ax eqxx.
Qed.
Lemma properIr A B : ~~ (B \subset A) -> A :&: B \proper B.
Proof. by move=> nsAB; rewrite properE subsetIr subsetI negb_and nsAB. Qed.
Lemma properIl A B : ~~ (A \subset B) -> A :&: B \proper A.
Proof. by move=> nsBA; rewrite properE subsetIl subsetI negb_and nsBA orbT. Qed.
Lemma properUr A B : ~~ (A \subset B) -> B \proper A :|: B.
Proof. by rewrite properE subsetUr subUset subxx /= andbT. Qed.
Lemma properUl A B : ~~ (B \subset A) -> A \proper A :|: B.
Proof. by move=> not_sBA; rewrite setUC properUr. Qed.
Lemma proper1set A x : ([set x] \proper A) -> (x \in A).
Proof. by move/proper_sub; rewrite sub1set. Qed.
Lemma properIset A B C : (B \proper A) || (C \proper A) -> (B :&: C \proper A).
Proof. by case/orP; apply: sub_proper_trans; rewrite (subsetIl, subsetIr). Qed.
Lemma properI A B C : (A \proper B :&: C) -> (A \proper B) && (A \proper C).
Proof.
move=> pAI; apply/andP.
by split; apply: (proper_sub_trans pAI); rewrite (subsetIl, subsetIr).
Qed.
Lemma properU A B C : (B :|: C \proper A) -> (B \proper A) && (C \proper A).
Proof.
move=> pUA; apply/andP.
by split; apply: sub_proper_trans pUA; rewrite (subsetUr, subsetUl).
Qed.
Lemma properD A B C : (A \proper B :\: C) -> (A \proper B) && [disjoint A & C].
Proof. by rewrite setDE disjoints_subset => /properI/andP[-> /proper_sub]. Qed.
End setOps.
Arguments set1P [T x a].
Arguments set1_inj [T].
Arguments set2P [T x a b].
Arguments setIdP [T x pA pB].
Arguments setIP [T x A B].
Arguments setU1P [T x a B].
Arguments setD1P [T x A b].
Arguments setUP [T x A B].
Arguments setDP [T A B x].
Arguments cards1P [T A].
Arguments setCP [T x A].
Arguments setIidPl [T A B].
Arguments setIidPr [T A B].
Arguments setUidPl [T A B].
Arguments setUidPr [T A B].
Arguments setDidPl [T A B].
Arguments subsetIP [T A B C].
Arguments subUsetP [T A B C].
Arguments subsetDP [T A B C].
Arguments subsetD1P [T A B x].
Prenex Implicits set1 set1_inj.
Prenex Implicits set1P set2P setU1P setD1P setIdP setIP setUP setDP.
Prenex Implicits cards1P setCP setIidPl setIidPr setUidPl setUidPr setDidPl.
Hint Resolve subsetT_hint.
Section setOpsAlgebra.
Import Monoid.
Variable T : finType.
Canonical setI_monoid := Law (@setIA T) (@setTI T) (@setIT T).
Canonical setI_comoid := ComLaw (@setIC T).
Canonical setI_muloid := MulLaw (@set0I T) (@setI0 T).
Canonical setU_monoid := Law (@setUA T) (@set0U T) (@setU0 T).
Canonical setU_comoid := ComLaw (@setUC T).
Canonical setU_muloid := MulLaw (@setTU T) (@setUT T).
Canonical setI_addoid := AddLaw (@setUIl T) (@setUIr T).
Canonical setU_addoid := AddLaw (@setIUl T) (@setIUr T).
End setOpsAlgebra.
Section CartesianProd.
Variables fT1 fT2 : finType.
Variables (A1 : {set fT1}) (A2 : {set fT2}).
Definition setX := [set u | u.1 \in A1 & u.2 \in A2].
Lemma in_setX x1 x2 : ((x1, x2) \in setX) = (x1 \in A1) && (x2 \in A2).
Proof. by rewrite inE. Qed.
Lemma setXP x1 x2 : reflect (x1 \in A1 /\ x2 \in A2) ((x1, x2) \in setX).
Proof. by rewrite inE; apply: andP. Qed.
Lemma cardsX : #|setX| = #|A1| * #|A2|.
Proof. by rewrite cardsE cardX. Qed.
End CartesianProd.
Arguments setXP [fT1 fT2 A1 A2 x1 x2].
Prenex Implicits setXP.
Local Notation imset_def :=
(fun (aT rT : finType) f mD => [set y in @image_mem aT rT f mD]).
Local Notation imset2_def :=
(fun (aT1 aT2 rT : finType) f (D1 : mem_pred aT1) (D2 : _ -> mem_pred aT2) =>
[set y in @image_mem _ rT (prod_curry f)
(mem [pred u | D1 u.1 & D2 u.1 u.2])]).
Module Type ImsetSig.
Parameter imset : forall aT rT : finType,
(aT -> rT) -> mem_pred aT -> {set rT}.
Parameter imset2 : forall aT1 aT2 rT : finType,
(aT1 -> aT2 -> rT) -> mem_pred aT1 -> (aT1 -> mem_pred aT2) -> {set rT}.
Axiom imsetE : imset = imset_def.
Axiom imset2E : imset2 = imset2_def.
End ImsetSig.
Module Imset : ImsetSig.
Definition imset := imset_def.
Definition imset2 := imset2_def.
Lemma imsetE : imset = imset_def. Proof. by []. Qed.
Lemma imset2E : imset2 = imset2_def. Proof. by []. Qed.
End Imset.
Notation imset := Imset.imset.
Notation imset2 := Imset.imset2.
Canonical imset_unlock := Unlockable Imset.imsetE.
Canonical imset2_unlock := Unlockable Imset.imset2E.
Definition preimset (aT : finType) rT f (R : mem_pred rT) :=
[set x : aT | in_mem (f x) R].
Notation "f @^-1: A" := (preimset f (mem A)) (at level 24) : set_scope.
Notation "f @: A" := (imset f (mem A)) (at level 24) : set_scope.
Notation "f @2: ( A , B )" := (imset2 f (mem A) (fun _ => mem B))
(at level 24, format "f @2: ( A , B )") : set_scope.
Notation "[ 'set' E | x 'in' A ]" := ((fun x => E) @: A)
(at level 0, E, x at level 99,
format "[ '[hv' 'set' E '/ ' | x 'in' A ] ']'") : set_scope.
Notation "[ 'set' E | x 'in' A & P ]" := [set E | x in [set x in A | P]]
(at level 0, E, x at level 99,
format "[ '[hv' 'set' E '/ ' | x 'in' A '/ ' & P ] ']'") : set_scope.
Notation "[ 'set' E | x 'in' A , y 'in' B ]" :=
(imset2 (fun x y => E) (mem A) (fun x => (mem B)))
(at level 0, E, x, y at level 99, format
"[ '[hv' 'set' E '/ ' | x 'in' A , '/ ' y 'in' B ] ']'"
) : set_scope.
Notation "[ 'set' E | x 'in' A , y 'in' B & P ]" :=
[set E | x in A, y in [set y in B | P]]
(at level 0, E, x, y at level 99, format
"[ '[hv' 'set' E '/ ' | x 'in' A , '/ ' y 'in' B '/ ' & P ] ']'"
) : set_scope.
Notation "[ 'set' E | x : T 'in' A ]" := ((fun x : T => E) @: A)
(at level 0, E, x at level 99, only parsing) : set_scope.
Notation "[ 'set' E | x : T 'in' A & P ]" :=
[set E | x : T in [set x : T in A | P]]
(at level 0, E, x at level 99, only parsing) : set_scope.
Notation "[ 'set' E | x : T 'in' A , y : U 'in' B ]" :=
(imset2 (fun (x : T) (y : U) => E) (mem A) (fun (x : T) => (mem B)))
(at level 0, E, x, y at level 99, only parsing) : set_scope.
Notation "[ 'set' E | x : T 'in' A , y : U 'in' B & P ]" :=
[set E | x : T in A, y : U in [set y : U in B | P]]
(at level 0, E, x, y at level 99, only parsing) : set_scope.
Local Notation predOfType T := (sort_of_simpl_pred (@pred_of_argType T)).
Notation "[ 'set' E | x : T ]" := [set E | x : T in predOfType T]
(at level 0, E, x at level 99,
format "[ '[hv' 'set' E '/ ' | x : T ] ']'") : set_scope.
Notation "[ 'set' E | x : T & P ]" := [set E | x : T in [set x : T | P]]
(at level 0, E, x at level 99,
format "[ '[hv' 'set' E '/ ' | x : T '/ ' & P ] ']'") : set_scope.
Notation "[ 'set' E | x : T , y : U 'in' B ]" :=
[set E | x : T in predOfType T, y : U in B]
(at level 0, E, x, y at level 99, format
"[ '[hv' 'set' E '/ ' | x : T , '/ ' y : U 'in' B ] ']'")
: set_scope.
Notation "[ 'set' E | x : T , y : U 'in' B & P ]" :=
[set E | x : T, y : U in [set y in B | P]]
(at level 0, E, x, y at level 99, format
"[ '[hv ' 'set' E '/' | x : T , '/ ' y : U 'in' B '/' & P ] ']'"
) : set_scope.
Notation "[ 'set' E | x : T 'in' A , y : U ]" :=
[set E | x : T in A, y : U in predOfType U]
(at level 0, E, x, y at level 99, format
"[ '[hv' 'set' E '/ ' | x : T 'in' A , '/ ' y : U ] ']'")
: set_scope.
Notation "[ 'set' E | x : T 'in' A , y : U & P ]" :=
[set E | x : T in A, y : U in [set y in P]]
(at level 0, E, x, y at level 99, format
"[ '[hv' 'set' E '/ ' | x : T 'in' A , '/ ' y : U & P ] ']'")
: set_scope.
Notation "[ 'set' E | x : T , y : U ]" :=
[set E | x : T, y : U in predOfType U]
(at level 0, E, x, y at level 99, format
"[ '[hv' 'set' E '/ ' | x : T , '/ ' y : U ] ']'")
: set_scope.
Notation "[ 'set' E | x : T , y : U & P ]" :=
[set E | x : T, y : U in [set y in P]]
(at level 0, E, x, y at level 99, format
"[ '[hv' 'set' E '/ ' | x : T , '/ ' y : U & P ] ']'")
: set_scope.
Notation "[ 'set' E | x , y 'in' B ]" := [set E | x : _, y : _ in B]
(at level 0, E, x, y at level 99, only parsing) : set_scope.
Notation "[ 'set' E | x , y 'in' B & P ]" := [set E | x : _, y : _ in B & P]
(at level 0, E, x, y at level 99, only parsing) : set_scope.
Notation "[ 'set' E | x 'in' A , y ]" := [set E | x : _ in A, y : _]
(at level 0, E, x, y at level 99, only parsing) : set_scope.
Notation "[ 'set' E | x 'in' A , y & P ]" := [set E | x : _ in A, y : _ & P]
(at level 0, E, x, y at level 99, only parsing) : set_scope.
Notation "[ 'set' E | x , y ]" := [set E | x : _, y : _]
(at level 0, E, x, y at level 99, only parsing) : set_scope.
Notation "[ 'set' E | x , y & P ]" := [set E | x : _, y : _ & P ]
(at level 0, E, x, y at level 99, only parsing) : set_scope.
Notation "[ 'se' 't' E | x 'in' A , y 'in' B ]" :=
(imset2 (fun x y => E) (mem A) (fun _ => mem B))
(at level 0, E, x, y at level 99, format
"[ '[hv' 'se' 't' E '/ ' | x 'in' A , '/ ' y 'in' B ] ']'")
: set_scope.
Notation "[ 'se' 't' E | x 'in' A , y 'in' B & P ]" :=
[se t E | x in A, y in [set y in B | P]]
(at level 0, E, x, y at level 99, format
"[ '[hv ' 'se' 't' E '/' | x 'in' A , '/ ' y 'in' B '/' & P ] ']'"
) : set_scope.
Notation "[ 'se' 't' E | x : T , y : U 'in' B ]" :=
(imset2 (fun x (y : U) => E) (mem (predOfType T)) (fun _ => mem B))
(at level 0, E, x, y at level 99, format
"[ '[hv ' 'se' 't' E '/' | x : T , '/ ' y : U 'in' B ] ']'")
: set_scope.
Notation "[ 'se' 't' E | x : T , y : U 'in' B & P ]" :=
[se t E | x : T, y : U in [set y in B | P]]
(at level 0, E, x, y at level 99, format
"[ '[hv ' 'se' 't' E '/' | x : T , '/ ' y : U 'in' B '/' & P ] ']'"
) : set_scope.
Notation "[ 'se' 't' E | x : T 'in' A , y : U ]" :=
(imset2 (fun x y => E) (mem A) (fun _ : T => mem (predOfType U)))
(at level 0, E, x, y at level 99, format
"[ '[hv' 'se' 't' E '/ ' | x : T 'in' A , '/ ' y : U ] ']'")
: set_scope.
Notation "[ 'se' 't' E | x : T 'in' A , y : U & P ]" :=
(imset2 (fun x (y : U) => E) (mem A) (fun _ : T => mem [set y \in P]))
(at level 0, E, x, y at level 99, format
"[ '[hv ' 'se' 't' E '/' | x : T 'in' A , '/ ' y : U '/' & P ] ']'"
) : set_scope.
Notation "[ 'se' 't' E | x : T , y : U ]" :=
[se t E | x : T, y : U in predOfType U]
(at level 0, E, x, y at level 99, format
"[ '[hv' 'se' 't' E '/ ' | x : T , '/ ' y : U ] ']'")
: set_scope.
Notation "[ 'se' 't' E | x : T , y : U & P ]" :=
[se t E | x : T, y : U in [set y in P]]
(at level 0, E, x, y at level 99, format
"[ '[hv' 'se' 't' E '/' | x : T , '/ ' y : U '/' & P ] ']'")
: set_scope.
Section FunImage.
Variables aT aT2 : finType.
Section ImsetTheory.
Variable rT : finType.
Section ImsetProp.
Variables (f : aT -> rT) (f2 : aT -> aT2 -> rT).
Lemma imsetP D y : reflect (exists2 x, in_mem x D & y = f x) (y \in imset f D).
Proof. by rewrite [@imset]unlock inE; apply: imageP. Qed.
CoInductive imset2_spec D1 D2 y : Prop :=
Imset2spec x1 x2 of in_mem x1 D1 & in_mem x2 (D2 x1) & y = f2 x1 x2.
Lemma imset2P D1 D2 y : reflect (imset2_spec D1 D2 y) (y \in imset2 f2 D1 D2).
Proof.
rewrite [@imset2]unlock inE.
apply: (iffP imageP) => [[[x1 x2] Dx12] | [x1 x2 Dx1 Dx2]] -> {y}.
by case/andP: Dx12; exists x1 x2.
by exists (x1, x2); rewrite //= !inE Dx1.
Qed.
Lemma mem_imset (D : pred aT) x : x \in D -> f x \in f @: D.
Proof. by move=> Dx; apply/imsetP; exists x. Qed.
Lemma imset0 : f @: set0 = set0.
Proof. by apply/setP => y; rewrite inE; apply/imsetP=> [[x]]; rewrite inE. Qed.
Lemma imset_eq0 (A : {set aT}) : (f @: A == set0) = (A == set0).
Proof.
have [-> | [x Ax]] := set_0Vmem A; first by rewrite imset0 !eqxx.
by rewrite -!cards_eq0 (cardsD1 x) Ax (cardsD1 (f x)) mem_imset.
Qed.
Lemma imset_set1 x : f @: [set x] = [set f x].
Proof.
apply/setP => y.
by apply/imsetP/set1P=> [[x' /set1P-> //]| ->]; exists x; rewrite ?set11.
Qed.
Lemma mem_imset2 (D : pred aT) (D2 : aT -> pred aT2) x x2 :
x \in D -> x2 \in D2 x ->
f2 x x2 \in imset2 f2 (mem D) (fun x1 => mem (D2 x1)).
Proof. by move=> Dx Dx2; apply/imset2P; exists x x2. Qed.
Lemma sub_imset_pre (A : pred aT) (B : pred rT) :
(f @: A \subset B) = (A \subset f @^-1: B).
Proof.
apply/subsetP/subsetP=> [sfAB x Ax | sAf'B fx].
by rewrite inE sfAB ?mem_imset.
by case/imsetP=> x Ax ->; move/sAf'B: Ax; rewrite inE.
Qed.
Lemma preimsetS (A B : pred rT) :
A \subset B -> (f @^-1: A) \subset (f @^-1: B).
Proof. by move=> sAB; apply/subsetP=> y; rewrite !inE; apply: subsetP. Qed.
Lemma preimset0 : f @^-1: set0 = set0.
Proof. by apply/setP=> x; rewrite !inE. Qed.
Lemma preimsetT : f @^-1: setT = setT.
Proof. by apply/setP=> x; rewrite !inE. Qed.
Lemma preimsetI (A B : {set rT}) :
f @^-1: (A :&: B) = (f @^-1: A) :&: (f @^-1: B).
Proof. by apply/setP=> y; rewrite !inE. Qed.
Lemma preimsetU (A B : {set rT}) :
f @^-1: (A :|: B) = (f @^-1: A) :|: (f @^-1: B).
Proof. by apply/setP=> y; rewrite !inE. Qed.
Lemma preimsetD (A B : {set rT}) :
f @^-1: (A :\: B) = (f @^-1: A) :\: (f @^-1: B).
Proof. by apply/setP=> y; rewrite !inE. Qed.
Lemma preimsetC (A : {set rT}) : f @^-1: (~: A) = ~: f @^-1: A.
Proof. by apply/setP=> y; rewrite !inE. Qed.
Lemma imsetS (A B : pred aT) : A \subset B -> f @: A \subset f @: B.
Proof.
move=> sAB; apply/subsetP=> _ /imsetP[x Ax ->].
by apply/imsetP; exists x; rewrite ?(subsetP sAB).
Qed.
Lemma imset_proper (A B : {set aT}) :
{in B &, injective f} -> A \proper B -> f @: A \proper f @: B.
Proof.
move=> injf /properP[sAB [x Bx nAx]]; rewrite properE imsetS //=.
apply: contra nAx => sfBA.
have: f x \in f @: A by rewrite (subsetP sfBA) ?mem_imset.
by case/imsetP=> y Ay /injf-> //; apply: subsetP sAB y Ay.
Qed.
Lemma preimset_proper (A B : {set rT}) :
B \subset codom f -> A \proper B -> (f @^-1: A) \proper (f @^-1: B).
Proof.
move=> sBc /properP[sAB [u Bu nAu]]; rewrite properE preimsetS //=.
by apply/subsetPn; exists (iinv (subsetP sBc _ Bu)); rewrite inE /= f_iinv.
Qed.
Lemma imsetU (A B : {set aT}) : f @: (A :|: B) = (f @: A) :|: (f @: B).
Proof.
apply/eqP; rewrite eqEsubset subUset.
rewrite 2?imsetS (andbT, subsetUl, subsetUr) // andbT.
apply/subsetP=> _ /imsetP[x ABx ->]; apply/setUP.
by case/setUP: ABx => [Ax | Bx]; [left | right]; apply/imsetP; exists x.
Qed.
Lemma imsetU1 a (A : {set aT}) : f @: (a |: A) = f a |: (f @: A).
Proof. by rewrite imsetU imset_set1. Qed.
Lemma imsetI (A B : {set aT}) :
{in A & B, injective f} -> f @: (A :&: B) = f @: A :&: f @: B.
Proof.
move=> injf; apply/eqP; rewrite eqEsubset subsetI.
rewrite 2?imsetS (andTb, subsetIl, subsetIr) //=.
apply/subsetP=> _ /setIP[/imsetP[x Ax ->] /imsetP[z Bz /injf eqxz]].
by rewrite mem_imset // inE Ax eqxz.
Qed.
Lemma imset2Sl (A B : pred aT) (C : pred aT2) :
A \subset B -> f2 @2: (A, C) \subset f2 @2: (B, C).
Proof.
move=> sAB; apply/subsetP=> _ /imset2P[x y Ax Cy ->].
by apply/imset2P; exists x y; rewrite ?(subsetP sAB).
Qed.
Lemma imset2Sr (A B : pred aT2) (C : pred aT) :
A \subset B -> f2 @2: (C, A) \subset f2 @2: (C, B).
Proof.
move=> sAB; apply/subsetP=> _ /imset2P[x y Ax Cy ->].
by apply/imset2P; exists x y; rewrite ?(subsetP sAB).
Qed.
Lemma imset2S (A B : pred aT) (A2 B2 : pred aT2) :
A \subset B -> A2 \subset B2 -> f2 @2: (A, A2) \subset f2 @2: (B, B2).
Proof. by move=> /(imset2Sl B2) sBA /(imset2Sr A)/subset_trans->. Qed.
End ImsetProp.
Implicit Types (f g : aT -> rT) (D : {set aT}) (R : pred rT).
Lemma eq_preimset f g R : f =1 g -> f @^-1: R = g @^-1: R.
Proof. by move=> eqfg; apply/setP => y; rewrite !inE eqfg. Qed.
Lemma eq_imset f g D : f =1 g -> f @: D = g @: D.
Proof.
move=> eqfg; apply/setP=> y.
by apply/imsetP/imsetP=> [] [x Dx ->]; exists x; rewrite ?eqfg.
Qed.
Lemma eq_in_imset f g D : {in D, f =1 g} -> f @: D = g @: D.
Proof.
move=> eqfg; apply/setP => y.
by apply/imsetP/imsetP=> [] [x Dx ->]; exists x; rewrite ?eqfg.
Qed.
Lemma eq_in_imset2 (f g : aT -> aT2 -> rT) (D : pred aT) (D2 : pred aT2) :
{in D & D2, f =2 g} -> f @2: (D, D2) = g @2: (D, D2).
Proof.
move=> eqfg; apply/setP => y.
by apply/imset2P/imset2P=> [] [x x2 Dx Dx2 ->]; exists x x2; rewrite ?eqfg.
Qed.
End ImsetTheory.
Lemma imset2_pair (A : {set aT}) (B : {set aT2}) :
[set (x, y) | x in A, y in B] = setX A B.
Proof.
apply/setP=> [[x y]]; rewrite !inE /=.
by apply/imset2P/andP=> [[_ _ _ _ [-> ->]//]| []]; exists x y.
Qed.
Lemma setXS (A1 B1 : {set aT}) (A2 B2 : {set aT2}) :
A1 \subset B1 -> A2 \subset B2 -> setX A1 A2 \subset setX B1 B2.
Proof. by move=> sAB1 sAB2; rewrite -!imset2_pair imset2S. Qed.
End FunImage.
Arguments imsetP [aT rT f D y].
Arguments imset2P [aT aT2 rT f2 D1 D2 y].
Prenex Implicits imsetP imset2P.
Section BigOps.
Variables (R : Type) (idx : R).
Variables (op : Monoid.law idx) (aop : Monoid.com_law idx).
Variables I J : finType.
Implicit Type A B : {set I}.
Implicit Type h : I -> J.
Implicit Type P : pred I.
Implicit Type F : I -> R.
Lemma big_set0 F : \big[op/idx]_(i in set0) F i = idx.
Proof. by apply: big_pred0 => i; rewrite inE. Qed.
Lemma big_set1 a F : \big[op/idx]_(i in [set a]) F i = F a.
Proof. by apply: big_pred1 => i; rewrite !inE. Qed.
Lemma big_setIDdep A B P F :
\big[aop/idx]_(i in A | P i) F i =
aop (\big[aop/idx]_(i in A :&: B | P i) F i)
(\big[aop/idx]_(i in A :\: B | P i) F i).
Proof.
rewrite (bigID (mem B)) setDE.
by congr (aop _ _); apply: eq_bigl => i; rewrite !inE andbAC.
Qed.
Lemma big_setID A B F :
\big[aop/idx]_(i in A) F i =
aop (\big[aop/idx]_(i in A :&: B) F i)
(\big[aop/idx]_(i in A :\: B) F i).
Proof.
rewrite (bigID (mem B)) !(eq_bigl _ _ (in_set _)) //=.
by congr (aop _); apply: eq_bigl => i; rewrite andbC.
Qed.
Lemma big_setD1 a A F : a \in A ->
\big[aop/idx]_(i in A) F i = aop (F a) (\big[aop/idx]_(i in A :\ a) F i).
Proof.
move=> Aa; rewrite (bigD1 a Aa); congr (aop _).
by apply: eq_bigl => x; rewrite !inE andbC.
Qed.
Lemma big_setU1 a A F : a \notin A ->
\big[aop/idx]_(i in a |: A) F i = aop (F a) (\big[aop/idx]_(i in A) F i).
Proof. by move=> notAa; rewrite (@big_setD1 a) ?setU11 //= setU1K. Qed.
Lemma big_imset h (A : pred I) G :
{in A &, injective h} ->
\big[aop/idx]_(j in h @: A) G j = \big[aop/idx]_(i in A) G (h i).
Proof.
move=> injh; pose hA := mem (image h A).
have [x0 Ax0 | A0] := pickP A; last first.
by rewrite !big_pred0 // => x; apply/imsetP=> [[i]]; rewrite unfold_in A0.
rewrite (eq_bigl hA) => [|j]; last by apply/imsetP/imageP.
pose h' j := if insub j : {? j | hA j} is Some u then iinv (svalP u) else x0.
rewrite (reindex_onto h h') => [|j hAj]; rewrite {}/h'; last first.
by rewrite (insubT hA hAj) f_iinv.
apply: eq_bigl => i; case: insubP => [u -> /= def_u | nhAhi].
set i' := iinv _; have Ai' : i' \in A := mem_iinv (svalP u).
by apply/eqP/idP=> [<- // | Ai]; apply: injh; rewrite ?f_iinv.
symmetry; rewrite (negbTE nhAhi); apply/idP=> Ai.
by case/imageP: nhAhi; exists i.
Qed.
Lemma partition_big_imset h (A : pred I) F :
\big[aop/idx]_(i in A) F i =
\big[aop/idx]_(j in h @: A) \big[aop/idx]_(i in A | h i == j) F i.
Proof. by apply: partition_big => i Ai; apply/imsetP; exists i. Qed.
End BigOps.
Arguments big_setID [R idx aop I A].
Arguments big_setD1 [R idx aop I] a [A F].
Arguments big_setU1 [R idx aop I] a [A F].
Arguments big_imset [R idx aop I J h A].
Arguments partition_big_imset [R idx aop I J].
Section Fun2Set1.
Variables aT1 aT2 rT : finType.
Variables (f : aT1 -> aT2 -> rT).
Lemma imset2_set1l x1 (D2 : pred aT2) : f @2: ([set x1], D2) = f x1 @: D2.
Proof.
apply/setP=> y; apply/imset2P/imsetP=> [[x x2 /set1P->]| [x2 Dx2 ->]].
by exists x2.
by exists x1 x2; rewrite ?set11.
Qed.
Lemma imset2_set1r x2 (D1 : pred aT1) : f @2: (D1, [set x2]) = f^~ x2 @: D1.
Proof.
apply/setP=> y; apply/imset2P/imsetP=> [[x1 x Dx1 /set1P->]| [x1 Dx1 ->]].
by exists x1.
by exists x1 x2; rewrite ?set11.
Qed.
End Fun2Set1.
Section CardFunImage.
Variables aT aT2 rT : finType.
Variables (f : aT -> rT) (g : rT -> aT) (f2 : aT -> aT2 -> rT).
Variables (D : pred aT) (D2 : pred aT).
Lemma imset_card : #|f @: D| = #|image f D|.
Proof. by rewrite [@imset]unlock cardsE. Qed.
Lemma leq_imset_card : #|f @: D| <= #|D|.
Proof. by rewrite imset_card leq_image_card. Qed.
Lemma card_in_imset : {in D &, injective f} -> #|f @: D| = #|D|.
Proof. by move=> injf; rewrite imset_card card_in_image. Qed.
Lemma card_imset : injective f -> #|f @: D| = #|D|.
Proof. by move=> injf; rewrite imset_card card_image. Qed.
Lemma imset_injP : reflect {in D &, injective f} (#|f @: D| == #|D|).
Proof. by rewrite [@imset]unlock cardsE; apply: image_injP. Qed.
Lemma can2_in_imset_pre :
{in D, cancel f g} -> {on D, cancel g & f} -> f @: D = g @^-1: D.
Proof.
move=> fK gK; apply/setP=> y; rewrite inE.
by apply/imsetP/idP=> [[x Ax ->] | Agy]; last exists (g y); rewrite ?(fK, gK).
Qed.
Lemma can2_imset_pre : cancel f g -> cancel g f -> f @: D = g @^-1: D.
Proof. by move=> fK gK; apply: can2_in_imset_pre; apply: in1W. Qed.
End CardFunImage.
Arguments imset_injP [aT rT f D].
Lemma on_card_preimset (aT rT : finType) (f : aT -> rT) (R : pred rT) :
{on R, bijective f} -> #|f @^-1: R| = #|R|.
Proof.
case=> g fK gK; rewrite -(can2_in_imset_pre gK) // card_in_imset //.
exact: can_in_inj gK.
Qed.
Lemma can_imset_pre (T : finType) f g (A : {set T}) :
cancel f g -> f @: A = g @^-1: A :> {set T}.
Proof.
move=> fK; apply: can2_imset_pre => // x.
suffices fx: x \in codom f by rewrite -(f_iinv fx) fK.
exact/(subset_cardP (card_codom (can_inj fK)))/subsetP.
Qed.
Lemma imset_id (T : finType) (A : {set T}) : [set x | x in A] = A.
Proof. by apply/setP=> x; rewrite (@can_imset_pre _ _ id) ?inE. Qed.
Lemma card_preimset (T : finType) (f : T -> T) (A : {set T}) :
injective f -> #|f @^-1: A| = #|A|.
Proof.
move=> injf; apply: on_card_preimset; apply: onW_bij.
have ontof: _ \in codom f by apply/(subset_cardP (card_codom injf))/subsetP.
by exists (fun x => iinv (ontof x)) => x; rewrite (f_iinv, iinv_f).
Qed.
Lemma card_powerset (T : finType) (A : {set T}) : #|powerset A| = 2 ^ #|A|.
Proof.
rewrite -card_bool -(card_pffun_on false) -(card_imset _ val_inj).
apply: eq_card => f; pose sf := false.-support f; pose D := finset sf.
have sDA: (D \subset A) = (sf \subset A) by apply: eq_subset; apply: in_set.
have eq_sf x : sf x = f x by rewrite /= negb_eqb addbF.
have valD: val D = f by rewrite /D unlock; apply/ffunP=> x; rewrite ffunE eq_sf.
apply/imsetP/pffun_onP=> [[B] | [sBA _]]; last by exists D; rewrite // inE ?sDA.
by rewrite inE -sDA -valD => sBA /val_inj->.
Qed.
Section FunImageComp.
Variables T T' U : finType.
Lemma imset_comp (f : T' -> U) (g : T -> T') (H : pred T) :
(f \o g) @: H = f @: (g @: H).
Proof.
apply/setP/subset_eqP/andP.
split; apply/subsetP=> _ /imsetP[x0 Hx0 ->]; apply/imsetP.
by exists (g x0); first apply: mem_imset.
by move/imsetP: Hx0 => [x1 Hx1 ->]; exists x1.
Qed.
End FunImageComp.
Notation "\bigcup_ ( i <- r | P ) F" :=
(\big[@setU _/set0]_(i <- r | P) F%SET) : set_scope.
Notation "\bigcup_ ( i <- r ) F" :=
(\big[@setU _/set0]_(i <- r) F%SET) : set_scope.
Notation "\bigcup_ ( m <= i < n | P ) F" :=
(\big[@setU _/set0]_(m <= i < n | P%B) F%SET) : set_scope.
Notation "\bigcup_ ( m <= i < n ) F" :=
(\big[@setU _/set0]_(m <= i < n) F%SET) : set_scope.
Notation "\bigcup_ ( i | P ) F" :=
(\big[@setU _/set0]_(i | P%B) F%SET) : set_scope.
Notation "\bigcup_ i F" :=
(\big[@setU _/set0]_i F%SET) : set_scope.
Notation "\bigcup_ ( i : t | P ) F" :=
(\big[@setU _/set0]_(i : t | P%B) F%SET) (only parsing): set_scope.
Notation "\bigcup_ ( i : t ) F" :=
(\big[@setU _/set0]_(i : t) F%SET) (only parsing) : set_scope.
Notation "\bigcup_ ( i < n | P ) F" :=
(\big[@setU _/set0]_(i < n | P%B) F%SET) : set_scope.
Notation "\bigcup_ ( i < n ) F" :=
(\big[@setU _/set0]_ (i < n) F%SET) : set_scope.
Notation "\bigcup_ ( i 'in' A | P ) F" :=
(\big[@setU _/set0]_(i in A | P%B) F%SET) : set_scope.
Notation "\bigcup_ ( i 'in' A ) F" :=
(\big[@setU _/set0]_(i in A) F%SET) : set_scope.
Notation "\bigcap_ ( i <- r | P ) F" :=
(\big[@setI _/setT]_(i <- r | P%B) F%SET) : set_scope.
Notation "\bigcap_ ( i <- r ) F" :=
(\big[@setI _/setT]_(i <- r) F%SET) : set_scope.
Notation "\bigcap_ ( m <= i < n | P ) F" :=
(\big[@setI _/setT]_(m <= i < n | P%B) F%SET) : set_scope.
Notation "\bigcap_ ( m <= i < n ) F" :=
(\big[@setI _/setT]_(m <= i < n) F%SET) : set_scope.
Notation "\bigcap_ ( i | P ) F" :=
(\big[@setI _/setT]_(i | P%B) F%SET) : set_scope.
Notation "\bigcap_ i F" :=
(\big[@setI _/setT]_i F%SET) : set_scope.
Notation "\bigcap_ ( i : t | P ) F" :=
(\big[@setI _/setT]_(i : t | P%B) F%SET) (only parsing): set_scope.
Notation "\bigcap_ ( i : t ) F" :=
(\big[@setI _/setT]_(i : t) F%SET) (only parsing) : set_scope.
Notation "\bigcap_ ( i < n | P ) F" :=
(\big[@setI _/setT]_(i < n | P%B) F%SET) : set_scope.
Notation "\bigcap_ ( i < n ) F" :=
(\big[@setI _/setT]_(i < n) F%SET) : set_scope.
Notation "\bigcap_ ( i 'in' A | P ) F" :=
(\big[@setI _/setT]_(i in A | P%B) F%SET) : set_scope.
Notation "\bigcap_ ( i 'in' A ) F" :=
(\big[@setI _/setT]_(i in A) F%SET) : set_scope.
Section BigSetOps.
Variables T I : finType.
Implicit Types (U : pred T) (P : pred I) (A B : {set I}) (F : I -> {set T}).
Lemma bigcup_sup j P F : P j -> F j \subset \bigcup_(i | P i) F i.
Proof. by move=> Pj; rewrite (bigD1 j) //= subsetUl. Qed.
Lemma bigcup_max j U P F :
P j -> U \subset F j -> U \subset \bigcup_(i | P i) F i.
Proof. by move=> Pj sUF; apply: subset_trans (bigcup_sup _ Pj). Qed.
Lemma bigcupP x P F :
reflect (exists2 i, P i & x \in F i) (x \in \bigcup_(i | P i) F i).
Proof.
apply: (iffP idP) => [|[i Pi]]; last first.
by apply: subsetP x; apply: bigcup_sup.
by elim/big_rec: _ => [|i _ Pi _ /setUP[|//]]; [rewrite inE | exists i].
Qed.
Lemma bigcupsP U P F :
reflect (forall i, P i -> F i \subset U) (\bigcup_(i | P i) F i \subset U).
Proof.
apply: (iffP idP) => [sFU i Pi| sFU].
by apply: subset_trans sFU; apply: bigcup_sup.
by apply/subsetP=> x /bigcupP[i Pi]; apply: (subsetP (sFU i Pi)).
Qed.
Lemma bigcup_disjoint U P F :
(forall i, P i -> [disjoint U & F i]) -> [disjoint U & \bigcup_(i | P i) F i].
Proof.
move=> dUF; rewrite disjoint_sym disjoint_subset.
by apply/bigcupsP=> i /dUF; rewrite disjoint_sym disjoint_subset.
Qed.
Lemma bigcup_setU A B F :
\bigcup_(i in A :|: B) F i =
(\bigcup_(i in A) F i) :|: (\bigcup_ (i in B) F i).
Proof.
apply/setP=> x; apply/bigcupP/setUP=> [[i] | ].
by case/setUP; [left | right]; apply/bigcupP; exists i.
by case=> /bigcupP[i Pi]; exists i; rewrite // inE Pi ?orbT.
Qed.
Lemma bigcup_seq r F : \bigcup_(i <- r) F i = \bigcup_(i in r) F i.
Proof.
elim: r => [|i r IHr]; first by rewrite big_nil big_pred0.
rewrite big_cons {}IHr; case r_i: (i \in r).
rewrite (setUidPr _) ?bigcup_sup //.
by apply: eq_bigl => j; rewrite !inE; case: eqP => // ->.
rewrite (bigD1 i (mem_head i r)) /=; congr (_ :|: _).
by apply: eq_bigl => j /=; rewrite andbC; case: eqP => // ->.
Qed.
Lemma bigcap_inf j P F : P j -> \bigcap_(i | P i) F i \subset F j.
Proof. by move=> Pj; rewrite (bigD1 j) //= subsetIl. Qed.
Lemma bigcap_min j U P F :
P j -> F j \subset U -> \bigcap_(i | P i) F i \subset U.
Proof. by move=> Pj; apply: subset_trans (bigcap_inf _ Pj). Qed.
Lemma bigcapsP U P F :
reflect (forall i, P i -> U \subset F i) (U \subset \bigcap_(i | P i) F i).
Proof.
apply: (iffP idP) => [sUF i Pi | sUF].
by apply: subset_trans sUF _; apply: bigcap_inf.
elim/big_rec: _ => [|i V Pi sUV]; apply/subsetP=> x Ux; rewrite inE //.
by rewrite !(subsetP _ x Ux) ?sUF.
Qed.
Lemma bigcapP x P F :
reflect (forall i, P i -> x \in F i) (x \in \bigcap_(i | P i) F i).
Proof.
rewrite -sub1set.
by apply: (iffP (bigcapsP _ _ _)) => Fx i /Fx; rewrite sub1set.
Qed.
Lemma setC_bigcup J r (P : pred J) (F : J -> {set T}) :
~: (\bigcup_(j <- r | P j) F j) = \bigcap_(j <- r | P j) ~: F j.
Proof. by apply: big_morph => [A B|]; rewrite ?setC0 ?setCU. Qed.
Lemma setC_bigcap J r (P : pred J) (F : J -> {set T}) :
~: (\bigcap_(j <- r | P j) F j) = \bigcup_(j <- r | P j) ~: F j.
Proof. by apply: big_morph => [A B|]; rewrite ?setCT ?setCI. Qed.
Lemma bigcap_setU A B F :
(\bigcap_(i in A :|: B) F i) =
(\bigcap_(i in A) F i) :&: (\bigcap_(i in B) F i).
Proof. by apply: setC_inj; rewrite setCI !setC_bigcap bigcup_setU. Qed.
Lemma bigcap_seq r F : \bigcap_(i <- r) F i = \bigcap_(i in r) F i.
Proof. by apply: setC_inj; rewrite !setC_bigcap bigcup_seq. Qed.
End BigSetOps.
Arguments bigcup_sup [T I] j [P F].
Arguments bigcup_max [T I] j [U P F].
Arguments bigcupP [T I x P F].
Arguments bigcupsP [T I U P F].
Arguments bigcap_inf [T I] j [P F].
Arguments bigcap_min [T I] j [U P F].
Arguments bigcapP [T I x P F].
Arguments bigcapsP [T I U P F].
Prenex Implicits bigcupP bigcupsP bigcapP bigcapsP.
Section ImsetCurry.
Variables (aT1 aT2 rT : finType) (f : aT1 -> aT2 -> rT).
Section Curry.
Variables (A1 : {set aT1}) (A2 : {set aT2}).
Variables (D1 : pred aT1) (D2 : pred aT2).
Lemma curry_imset2X : f @2: (A1, A2) = prod_curry f @: (setX A1 A2).
Proof.
rewrite [@imset]unlock unlock; apply/setP=> x; rewrite !in_set; congr (x \in _).
by apply: eq_image => u //=; rewrite !inE.
Qed.
Lemma curry_imset2l : f @2: (D1, D2) = \bigcup_(x1 in D1) f x1 @: D2.
Proof.
apply/setP=> y; apply/imset2P/bigcupP => [[x1 x2 Dx1 Dx2 ->{y}] | [x1 Dx1]].
by exists x1; rewrite // mem_imset.
by case/imsetP=> x2 Dx2 ->{y}; exists x1 x2.
Qed.
Lemma curry_imset2r : f @2: (D1, D2) = \bigcup_(x2 in D2) f^~ x2 @: D1.
Proof.
apply/setP=> y; apply/imset2P/bigcupP => [[x1 x2 Dx1 Dx2 ->{y}] | [x2 Dx2]].
by exists x2; rewrite // (mem_imset (f^~ x2)).
by case/imsetP=> x1 Dx1 ->{y}; exists x1 x2.
Qed.
End Curry.
Lemma imset2Ul (A B : {set aT1}) (C : {set aT2}) :
f @2: (A :|: B, C) = f @2: (A, C) :|: f @2: (B, C).
Proof. by rewrite !curry_imset2l bigcup_setU. Qed.
Lemma imset2Ur (A : {set aT1}) (B C : {set aT2}) :
f @2: (A, B :|: C) = f @2: (A, B) :|: f @2: (A, C).
Proof. by rewrite !curry_imset2r bigcup_setU. Qed.
End ImsetCurry.
Section Partitions.
Variables T I : finType.
Implicit Types (x y z : T) (A B D X : {set T}) (P Q : {set {set T}}).
Implicit Types (J : pred I) (F : I -> {set T}).
Definition cover P := \bigcup_(B in P) B.
Definition pblock P x := odflt set0 (pick [pred B in P | x \in B]).
Definition trivIset P := \sum_(B in P) #|B| == #|cover P|.
Definition partition P D := [&& cover P == D, trivIset P & set0 \notin P].
Definition is_transversal X P D :=
[&& partition P D, X \subset D & [forall B in P, #|X :&: B| == 1]].
Definition transversal P D := [set odflt x [pick y in pblock P x] | x in D].
Definition transversal_repr x0 X B := odflt x0 [pick x in X :&: B].
Lemma leq_card_setU A B : #|A :|: B| <= #|A| + #|B| ?= iff [disjoint A & B].
Proof.
rewrite -(addn0 #|_|) -setI_eq0 -cards_eq0 -cardsUI eq_sym.
by rewrite (mono_leqif (leq_add2l _)).
Qed.
Lemma leq_card_cover P : #|cover P| <= \sum_(A in P) #|A| ?= iff trivIset P.
Proof.
split; last exact: eq_sym.
rewrite /cover; elim/big_rec2: _ => [|A n U _ leUn]; first by rewrite cards0.
by rewrite (leq_trans (leq_card_setU A U).1) ?leq_add2l.
Qed.
Lemma trivIsetP P :
reflect {in P &, forall A B, A != B -> [disjoint A & B]} (trivIset P).
Proof.
have->: P = [set x in enum (mem P)] by apply/setP=> x; rewrite inE mem_enum.
elim: {P}(enum _) (enum_uniq (mem P)) => [_ | A e IHe] /=.
by rewrite /trivIset /cover !big_set0 cards0; left=> A; rewrite inE.
case/andP; rewrite set_cons -(in_set (fun B => B \in e)) => PA {IHe}/IHe.
move: {e}[set x in e] PA => P PA IHP.
rewrite /trivIset /cover !big_setU1 //= eq_sym.
have:= leq_card_cover P; rewrite -(mono_leqif (leq_add2l #|A|)).
move/(leqif_trans (leq_card_setU _ _))->; rewrite disjoints_subset setC_bigcup.
case: bigcapsP => [disjA | meetA]; last first.
right=> [tI]; case: meetA => B PB; rewrite -disjoints_subset.
by rewrite tI ?setU11 ?setU1r //; apply: contraNneq PA => ->.
apply: (iffP IHP) => [] tI B C PB PC; last by apply: tI; apply: setU1r.
by case/setU1P: PC PB => [->|PC] /setU1P[->|PB]; try by [apply: tI | case/eqP];
first rewrite disjoint_sym; rewrite disjoints_subset disjA.
Qed.
Lemma trivIsetS P Q : P \subset Q -> trivIset Q -> trivIset P.
Proof. by move/subsetP/sub_in2=> sPQ /trivIsetP/sPQ/trivIsetP. Qed.
Lemma trivIsetI P D : trivIset P -> trivIset (P ::&: D).
Proof. by apply: trivIsetS; rewrite -setI_powerset subsetIl. Qed.
Lemma cover_setI P D : cover (P ::&: D) \subset cover P :&: D.
Proof.
by apply/bigcupsP=> A /setIdP[PA sAD]; rewrite subsetI sAD andbT (bigcup_max A).
Qed.
Lemma mem_pblock P x : (x \in pblock P x) = (x \in cover P).
Proof.
rewrite /pblock; apply/esym/bigcupP.
case: pickP => /= [A /andP[PA Ax]| noA]; first by rewrite Ax; exists A.
by rewrite inE => [[A PA Ax]]; case/andP: (noA A).
Qed.
Lemma pblock_mem P x : x \in cover P -> pblock P x \in P.
Proof.
by rewrite -mem_pblock /pblock; case: pickP => [A /andP[]| _] //=; rewrite inE.
Qed.
Lemma def_pblock P B x : trivIset P -> B \in P -> x \in B -> pblock P x = B.
Proof.
move/trivIsetP=> tiP PB Bx; have Px: x \in cover P by apply/bigcupP; exists B.
apply: (contraNeq (tiP _ _ _ PB)); first by rewrite pblock_mem.
by apply/pred0Pn; exists x; rewrite /= mem_pblock Px.
Qed.
Lemma same_pblock P x y :
trivIset P -> x \in pblock P y -> pblock P x = pblock P y.
Proof.
rewrite {1 3}/pblock => tI; case: pickP => [A|]; last by rewrite inE.
by case/andP=> PA _{y} /= Ax; apply: def_pblock.
Qed.
Lemma eq_pblock P x y :
trivIset P -> x \in cover P ->
(pblock P x == pblock P y) = (y \in pblock P x).
Proof.
move=> tiP Px; apply/eqP/idP=> [eq_xy | /same_pblock-> //].
move: Px; rewrite -mem_pblock eq_xy /pblock.
by case: pickP => [B /andP[] // | _]; rewrite inE.
Qed.
Lemma trivIsetU1 A P :
{in P, forall B, [disjoint A & B]} -> trivIset P -> set0 \notin P ->
trivIset (A |: P) /\ A \notin P.
Proof.
move=> tiAP tiP notPset0; split; last first.
apply: contra notPset0 => P_A.
by have:= tiAP A P_A; rewrite -setI_eq0 setIid => /eqP <-.
apply/trivIsetP=> B1 B2 /setU1P[->|PB1] /setU1P[->|PB2];
by [apply: (trivIsetP _ tiP) | rewrite ?eqxx // ?(tiAP, disjoint_sym)].
Qed.
Lemma cover_imset J F : cover (F @: J) = \bigcup_(i in J) F i.
Proof.
apply/setP=> x.
apply/bigcupP/bigcupP=> [[_ /imsetP[i Ji ->]] | [i]]; first by exists i.
by exists (F i); first apply: mem_imset.
Qed.
Lemma trivIimset J F (P := F @: J) :
{in J &, forall i j, j != i -> [disjoint F i & F j]} -> set0 \notin P ->
trivIset P /\ {in J &, injective F}.
Proof.
move=> tiF notPset0; split=> [|i j Ji Jj /= eqFij].
apply/trivIsetP=> _ _ /imsetP[i Ji ->] /imsetP[j Jj ->] neqFij.
by rewrite tiF // (contraNneq _ neqFij) // => ->.
apply: contraNeq notPset0 => neq_ij; apply/imsetP; exists i => //; apply/eqP.
by rewrite eq_sym -[F i]setIid setI_eq0 {1}eqFij tiF.
Qed.
Lemma cover_partition P D : partition P D -> cover P = D.
Proof. by case/and3P=> /eqP. Qed.
Lemma card_partition P D : partition P D -> #|D| = \sum_(A in P) #|A|.
Proof. by case/and3P=> /eqP <- /eqnP. Qed.
Lemma card_uniform_partition n P D :
{in P, forall A, #|A| = n} -> partition P D -> #|D| = #|P| * n.
Proof.
by move=> uniP /card_partition->; rewrite -sum_nat_const; apply: eq_bigr.
Qed.
Section BigOps.
Variables (R : Type) (idx : R) (op : Monoid.com_law idx).
Let rhs_cond P K E := \big[op/idx]_(A in P) \big[op/idx]_(x in A | K x) E x.
Let rhs P E := \big[op/idx]_(A in P) \big[op/idx]_(x in A) E x.
Lemma big_trivIset_cond P (K : pred T) (E : T -> R) :
trivIset P -> \big[op/idx]_(x in cover P | K x) E x = rhs_cond P K E.
Proof.
move=> tiP; rewrite (partition_big (pblock P) (mem P)) -/op => /= [|x].
apply: eq_bigr => A PA; apply: eq_bigl => x; rewrite andbAC; congr (_ && _).
rewrite -mem_pblock; apply/andP/idP=> [[Px /eqP <- //] | Ax].
by rewrite (def_pblock tiP PA Ax).
by case/andP=> Px _; apply: pblock_mem.
Qed.
Lemma big_trivIset P (E : T -> R) :
trivIset P -> \big[op/idx]_(x in cover P) E x = rhs P E.
Proof.
have biginT := eq_bigl _ _ (fun _ => andbT _) => tiP.
by rewrite -biginT big_trivIset_cond //; apply: eq_bigr => A _; apply: biginT.
Qed.
Lemma set_partition_big_cond P D (K : pred T) (E : T -> R) :
partition P D -> \big[op/idx]_(x in D | K x) E x = rhs_cond P K E.
Proof. by case/and3P=> /eqP <- tI_P _; apply: big_trivIset_cond. Qed.
Lemma set_partition_big P D (E : T -> R) :
partition P D -> \big[op/idx]_(x in D) E x = rhs P E.
Proof. by case/and3P=> /eqP <- tI_P _; apply: big_trivIset. Qed.
Lemma partition_disjoint_bigcup (F : I -> {set T}) E :
(forall i j, i != j -> [disjoint F i & F j]) ->
\big[op/idx]_(x in \bigcup_i F i) E x =
\big[op/idx]_i \big[op/idx]_(x in F i) E x.
Proof.
move=> disjF; pose P := [set F i | i in I & F i != set0].
have trivP: trivIset P.
apply/trivIsetP=> _ _ /imsetP[i _ ->] /imsetP[j _ ->] neqFij.
by apply: disjF; apply: contraNneq neqFij => ->.
have ->: \bigcup_i F i = cover P.
apply/esym; rewrite cover_imset big_mkcond; apply: eq_bigr => i _.
by rewrite inE; case: eqP.
rewrite big_trivIset // /rhs big_imset => [|i j _ /setIdP[_ notFj0] eqFij].
rewrite big_mkcond; apply: eq_bigr => i _; rewrite inE.
by case: eqP => //= ->; rewrite big_set0.
by apply: contraNeq (disjF _ _) _; rewrite -setI_eq0 eqFij setIid.
Qed.
End BigOps.
Section Equivalence.
Variables (R : rel T) (D : {set T}).
Let Px x := [set y in D | R x y].
Definition equivalence_partition := [set Px x | x in D].
Local Notation P := equivalence_partition.
Hypothesis eqiR : {in D & &, equivalence_rel R}.
Let Pxx x : x \in D -> x \in Px x.
Proof. by move=> Dx; rewrite !inE Dx (eqiR Dx Dx). Qed.
Let PPx x : x \in D -> Px x \in P := fun Dx => mem_imset _ Dx.
Lemma equivalence_partitionP : partition P D.
Proof.
have defD: cover P == D.
rewrite eqEsubset; apply/andP; split.
by apply/bigcupsP=> _ /imsetP[x Dx ->]; rewrite /Px setIdE subsetIl.
by apply/subsetP=> x Dx; apply/bigcupP; exists (Px x); rewrite (Pxx, PPx).
have tiP: trivIset P.
apply/trivIsetP=> _ _ /imsetP[x Dx ->] /imsetP[y Dy ->]; apply: contraR.
case/pred0Pn=> z /andP[]; rewrite !inE => /andP[Dz Rxz] /andP[_ Ryz].
apply/eqP/setP=> t; rewrite !inE; apply: andb_id2l => Dt.
by rewrite (eqiR Dx Dz Dt) // (eqiR Dy Dz Dt).
rewrite /partition tiP defD /=.
by apply/imsetP=> [[x /Pxx Px_x Px0]]; rewrite -Px0 inE in Px_x.
Qed.
Lemma pblock_equivalence_partition :
{in D &, forall x y, (y \in pblock P x) = R x y}.
Proof.
have [_ tiP _] := and3P equivalence_partitionP.
by move=> x y Dx Dy; rewrite /= (def_pblock tiP (PPx Dx) (Pxx Dx)) inE Dy.
Qed.
End Equivalence.
Lemma pblock_equivalence P D :
partition P D -> {in D & &, equivalence_rel (fun x y => y \in pblock P x)}.
Proof.
case/and3P=> /eqP <- tiP _ x y z Px Py Pz.
by rewrite mem_pblock; split=> // /same_pblock->.
Qed.
Lemma equivalence_partition_pblock P D :
partition P D -> equivalence_partition (fun x y => y \in pblock P x) D = P.
Proof.
case/and3P=> /eqP <-{D} tiP notP0; apply/setP=> B /=; set D := cover P.
have defP x: x \in D -> [set y in D | y \in pblock P x] = pblock P x.
by move=> Dx; apply/setIidPr; rewrite (bigcup_max (pblock P x)) ?pblock_mem.
apply/imsetP/idP=> [[x Px ->{B}] | PB]; first by rewrite defP ?pblock_mem.
have /set0Pn[x Bx]: B != set0 := memPn notP0 B PB.
have Px: x \in cover P by apply/bigcupP; exists B.
by exists x; rewrite // defP // (def_pblock tiP PB Bx).
Qed.
Section Preim.
Variables (rT : eqType) (f : T -> rT).
Definition preim_partition := equivalence_partition (fun x y => f x == f y).
Lemma preim_partitionP D : partition (preim_partition D) D.
Proof. by apply/equivalence_partitionP; split=> // /eqP->. Qed.
End Preim.
Lemma preim_partition_pblock P D :
partition P D -> preim_partition (pblock P) D = P.
Proof.
move=> partP; have [/eqP defD tiP _] := and3P partP.
rewrite -{2}(equivalence_partition_pblock partP); apply: eq_in_imset => x Dx.
by apply/setP=> y; rewrite !inE eq_pblock ?defD.
Qed.
Lemma transversalP P D : partition P D -> is_transversal (transversal P D) P D.
Proof.
case/and3P=> /eqP <- tiP notP0; apply/and3P; split; first exact/and3P.
apply/subsetP=> _ /imsetP[x Px ->]; case: pickP => //= y Pxy.
by apply/bigcupP; exists (pblock P x); rewrite ?pblock_mem //.
apply/forall_inP=> B PB; have /set0Pn[x Bx]: B != set0 := memPn notP0 B PB.
apply/cards1P; exists (odflt x [pick y in pblock P x]); apply/esym/eqP.
rewrite eqEsubset sub1set inE -andbA; apply/andP; split.
by apply/mem_imset/bigcupP; exists B.
rewrite (def_pblock tiP PB Bx); case def_y: _ / pickP => [y By | /(_ x)/idP//].
rewrite By /=; apply/subsetP=> _ /setIP[/imsetP[z Pz ->]].
case: {1}_ / pickP => [t zPt Bt | /(_ z)/idP[]]; last by rewrite mem_pblock.
by rewrite -(same_pblock tiP zPt) (def_pblock tiP PB Bt) def_y set11.
Qed.
Section Transversals.
Variables (X : {set T}) (P : {set {set T}}) (D : {set T}).
Hypothesis trPX : is_transversal X P D.
Lemma transversal_sub : X \subset D. Proof. by case/and3P: trPX. Qed.
Let tiP : trivIset P. Proof. by case/andP: trPX => /and3P[]. Qed.
Let sXP : {subset X <= cover P}.
Proof. by case/and3P: trPX => /andP[/eqP-> _] /subsetP. Qed.
Let trX : {in P, forall B, #|X :&: B| == 1}.
Proof. by case/and3P: trPX => _ _ /forall_inP. Qed.
Lemma setI_transversal_pblock x0 B :
B \in P -> X :&: B = [set transversal_repr x0 X B].
Proof.
by case/trX/cards1P=> x defXB; rewrite /transversal_repr defXB /pick enum_set1.
Qed.
Lemma repr_mem_pblock x0 B : B \in P -> transversal_repr x0 X B \in B.
Proof. by move=> PB; rewrite -sub1set -setI_transversal_pblock ?subsetIr. Qed.
Lemma repr_mem_transversal x0 B : B \in P -> transversal_repr x0 X B \in X.
Proof. by move=> PB; rewrite -sub1set -setI_transversal_pblock ?subsetIl. Qed.
Lemma transversal_reprK x0 : {in P, cancel (transversal_repr x0 X) (pblock P)}.
Proof. by move=> B PB; rewrite /= (def_pblock tiP PB) ?repr_mem_pblock. Qed.
Lemma pblockK x0 : {in X, cancel (pblock P) (transversal_repr x0 X)}.
Proof.
move=> x Xx; have /bigcupP[B PB Bx] := sXP Xx; rewrite (def_pblock tiP PB Bx).
by apply/esym/set1P; rewrite -setI_transversal_pblock // inE Xx.
Qed.
Lemma pblock_inj : {in X &, injective (pblock P)}.
Proof. by move=> x0; apply: (can_in_inj (pblockK x0)). Qed.
Lemma pblock_transversal : pblock P @: X = P.
Proof.
apply/setP=> B; apply/imsetP/idP=> [[x Xx ->] | PB].
by rewrite pblock_mem ?sXP.
have /cards1P[x0 _] := trX PB; set x := transversal_repr x0 X B.
by exists x; rewrite ?transversal_reprK ?repr_mem_transversal.
Qed.
Lemma card_transversal : #|X| = #|P|.
Proof. by rewrite -pblock_transversal card_in_imset //; apply: pblock_inj. Qed.
Lemma im_transversal_repr x0 : transversal_repr x0 X @: P = X.
Proof.
rewrite -{2}[X]imset_id -pblock_transversal -imset_comp.
by apply: eq_in_imset; apply: pblockK.
Qed.
End Transversals.
End Partitions.
Arguments trivIsetP [T P].
Arguments big_trivIset_cond [T R idx op] P [K E].
Arguments set_partition_big_cond [T R idx op] P [D K E].
Arguments big_trivIset [T R idx op] P [E].
Arguments set_partition_big [T R idx op] P [D E].
Prenex Implicits cover trivIset partition pblock trivIsetP.
Lemma partition_partition (T : finType) (D : {set T}) P Q :
partition P D -> partition Q P ->
partition (cover @: Q) D /\ {in Q &, injective cover}.
Proof.
move=> /and3P[/eqP defG tiP notP0] /and3P[/eqP defP tiQ notQ0].
have sQP E: E \in Q -> {subset E <= P}.
by move=> Q_E; apply/subsetP; rewrite -defP (bigcup_max E).
rewrite /partition cover_imset -(big_trivIset _ tiQ) defP -defG eqxx /= andbC.
have{notQ0} notQ0: set0 \notin cover @: Q.
apply: contra notP0 => /imsetP[E Q_E E0].
have /set0Pn[/= A E_A] := memPn notQ0 E Q_E.
congr (_ \in P): (sQP E Q_E A E_A).
by apply/eqP; rewrite -subset0 E0 (bigcup_max A).
rewrite notQ0; apply: trivIimset => // E F Q_E Q_F.
apply: contraR => /pred0Pn[x /andP[/bigcupP[A E_A Ax] /bigcupP[B F_B Bx]]].
rewrite -(def_pblock tiQ Q_E E_A) -(def_pblock tiP _ Ax) ?(sQP E) //.
by rewrite -(def_pblock tiQ Q_F F_B) -(def_pblock tiP _ Bx) ?(sQP F).
Qed.
Section MaxSetMinSet.
Variable T : finType.
Notation sT := {set T}.
Implicit Types A B C : sT.
Implicit Type P : pred sT.
Definition minset P A := [forall (B : sT | B \subset A), (B == A) == P B].
Lemma minset_eq P1 P2 A : P1 =1 P2 -> minset P1 A = minset P2 A.
Proof. by move=> eP12; apply: eq_forallb => B; rewrite eP12. Qed.
Lemma minsetP P A :
reflect ((P A) /\ (forall B, P B -> B \subset A -> B = A)) (minset P A).
Proof.
apply: (iffP forallP) => [minA | [PA minA] B].
split; first by have:= minA A; rewrite subxx eqxx /= => /eqP.
by move=> B PB sBA; have:= minA B; rewrite PB sBA /= eqb_id => /eqP.
by apply/implyP=> sBA; apply/eqP; apply/eqP/idP=> [-> // | /minA]; apply.
Qed.
Arguments minsetP [P A].
Lemma minsetp P A : minset P A -> P A.
Proof. by case/minsetP. Qed.
Lemma minsetinf P A B : minset P A -> P B -> B \subset A -> B = A.
Proof. by case/minsetP=> _; apply. Qed.
Lemma ex_minset P : (exists A, P A) -> {A | minset P A}.
Proof.
move=> exP; pose pS n := [pred B | P B & #|B| == n].
pose p n := ~~ pred0b (pS n); have{exP}: exists n, p n.
by case: exP => A PA; exists #|A|; apply/existsP; exists A; rewrite /= PA /=.
case/ex_minnP=> n /pred0P; case: (pickP (pS n)) => // A /andP[PA] /eqP <-{n} _.
move=> minA; exists A => //; apply/minsetP; split=> // B PB sBA; apply/eqP.
by rewrite eqEcard sBA minA //; apply/pred0Pn; exists B; rewrite /= PB /=.
Qed.
Lemma minset_exists P C : P C -> {A | minset P A & A \subset C}.
Proof.
move=> PC; have{PC}: exists A, P A && (A \subset C) by exists C; rewrite PC /=.
case/ex_minset=> A /minsetP[/andP[PA sAC] minA]; exists A => //; apply/minsetP.
by split=> // B PB sBA; rewrite (minA B) // PB (subset_trans sBA).
Qed.
Fact maxset_key : unit. Proof. by []. Qed.
Definition maxset P A :=
minset (fun B => locked_with maxset_key P (~: B)) (~: A).
Lemma maxset_eq P1 P2 A : P1 =1 P2 -> maxset P1 A = maxset P2 A.
Proof. by move=> eP12; apply: minset_eq => x /=; rewrite !unlock_with eP12. Qed.
Lemma maxminset P A : maxset P A = minset [pred B | P (~: B)] (~: A).
Proof. by rewrite /maxset unlock. Qed.
Lemma minmaxset P A : minset P A = maxset [pred B | P (~: B)] (~: A).
Proof.
by rewrite /maxset unlock setCK; apply: minset_eq => B /=; rewrite setCK.
Qed.
Lemma maxsetP P A :
reflect ((P A) /\ (forall B, P B -> A \subset B -> B = A)) (maxset P A).
Proof.
apply: (iffP minsetP); rewrite ?setCK unlock_with => [] [PA minA].
by split=> // B PB sAB; rewrite -[B]setCK [~: B]minA (setCK, setCS).
by split=> // B PB' sBA'; rewrite -(minA _ PB') -1?setCS setCK.
Qed.
Lemma maxsetp P A : maxset P A -> P A.
Proof. by case/maxsetP. Qed.
Lemma maxsetsup P A B : maxset P A -> P B -> A \subset B -> B = A.
Proof. by case/maxsetP=> _; apply. Qed.
Lemma ex_maxset P : (exists A, P A) -> {A | maxset P A}.
Proof.
move=> exP; have{exP}: exists A, P (~: A).
by case: exP => A PA; exists (~: A); rewrite setCK.
by case/ex_minset=> A minA; exists (~: A); rewrite /maxset unlock setCK.
Qed.
Lemma maxset_exists P C : P C -> {A : sT | maxset P A & C \subset A}.
Proof.
move=> PC; pose P' B := P (~: B); have: P' (~: C) by rewrite /P' setCK.
case/minset_exists=> B; rewrite -[B]setCK setCS.
by exists (~: B); rewrite // /maxset unlock.
Qed.
End MaxSetMinSet.
Arguments minsetP [T P A].
Arguments maxsetP [T P A].
Prenex Implicits minset maxset minsetP maxsetP.