Library Coq.micromega.RMicromega
Require Import OrderedRing.
Require Import RingMicromega.
Require Import Refl.
Require Import Raxioms RIneq Rpow_def DiscrR.
Require Import QArith.
Require Import Qfield.
Require Import Qreals.
Require Setoid.
Definition Rsrt : ring_theory R0 R1 Rplus Rmult Rminus Ropp (@eq R).
Proof.
constructor.
exact Rplus_0_l.
exact Rplus_comm.
intros. rewrite Rplus_assoc. auto.
exact Rmult_1_l.
exact Rmult_comm.
intros ; rewrite Rmult_assoc ; auto.
intros. rewrite Rmult_comm. rewrite Rmult_plus_distr_l.
rewrite (Rmult_comm z). rewrite (Rmult_comm z). auto.
reflexivity.
exact Rplus_opp_r.
Qed.
Open Scope R_scope.
Lemma Rsor : SOR R0 R1 Rplus Rmult Rminus Ropp (@eq R) Rle Rlt.
Proof.
constructor; intros ; subst ; try (intuition (subst; try ring ; auto with real)).
constructor.
constructor.
unfold RelationClasses.Symmetric. auto.
unfold RelationClasses.Transitive. intros. subst. reflexivity.
apply Rsrt.
eapply Rle_trans ; eauto.
apply (Rlt_irrefl m) ; auto.
apply Rnot_le_lt. auto with real.
destruct (total_order_T n m) as [ [H1 | H1] | H1] ; auto.
now apply Rmult_lt_0_compat.
Qed.
Notation IQR := Q2R (only parsing).
Lemma Rinv_1 : forall x, x * / 1 = x.
Proof.
intro.
rewrite Rinv_1.
apply Rmult_1_r.
Qed.
Lemma Qeq_true : forall x y, Qeq_bool x y = true -> IQR x = IQR y.
Proof.
intros.
now apply Qeq_eqR, Qeq_bool_eq.
Qed.
Lemma Qeq_false : forall x y, Qeq_bool x y = false -> IQR x <> IQR y.
Proof.
intros.
apply Qeq_bool_neq in H.
contradict H.
now apply eqR_Qeq.
Qed.
Lemma Qle_true : forall x y : Q, Qle_bool x y = true -> IQR x <= IQR y.
Proof.
intros.
now apply Qle_Rle, Qle_bool_imp_le.
Qed.
Lemma IQR_0 : IQR 0 = 0.
Proof.
apply Rmult_0_l.
Qed.
Lemma IQR_1 : IQR 1 = 1.
Proof.
compute. apply Rinv_1.
Qed.
Lemma IQR_inv_ext : forall x,
IQR (/ x) = (if Qeq_bool x 0 then 0 else / IQR x).
Proof.
intros.
case_eq (Qeq_bool x 0).
intros.
apply Qeq_bool_eq in H.
destruct x ; simpl.
unfold Qeq in H.
simpl in H.
rewrite Zmult_1_r in H.
rewrite H.
apply Rmult_0_l.
intros.
now apply Q2R_inv, Qeq_bool_neq.
Qed.
Notation to_nat := N.to_nat.
Lemma QSORaddon :
@SORaddon R
R0 R1 Rplus Rmult Rminus Ropp (@eq R) Rle
Q 0%Q 1%Q Qplus Qmult Qminus Qopp
Qeq_bool Qle_bool
IQR nat to_nat pow.
Proof.
constructor.
constructor ; intros ; try reflexivity.
apply IQR_0.
apply IQR_1.
apply Q2R_plus.
apply Q2R_minus.
apply Q2R_mult.
apply Q2R_opp.
apply Qeq_true ; auto.
apply R_power_theory.
apply Qeq_false.
apply Qle_true.
Qed.
Inductive Rcst :=
| C0
| C1
| CQ (r : Q)
| CZ (r : Z)
| CPlus (r1 r2 : Rcst)
| CMinus (r1 r2 : Rcst)
| CMult (r1 r2 : Rcst)
| CInv (r : Rcst)
| COpp (r : Rcst).
Fixpoint Q_of_Rcst (r : Rcst) : Q :=
match r with
| C0 => 0 # 1
| C1 => 1 # 1
| CZ z => z # 1
| CQ q => q
| CPlus r1 r2 => Qplus (Q_of_Rcst r1) (Q_of_Rcst r2)
| CMinus r1 r2 => Qminus (Q_of_Rcst r1) (Q_of_Rcst r2)
| CMult r1 r2 => Qmult (Q_of_Rcst r1) (Q_of_Rcst r2)
| CInv r => Qinv (Q_of_Rcst r)
| COpp r => Qopp (Q_of_Rcst r)
end.
Fixpoint R_of_Rcst (r : Rcst) : R :=
match r with
| C0 => R0
| C1 => R1
| CZ z => IZR z
| CQ q => IQR q
| CPlus r1 r2 => (R_of_Rcst r1) + (R_of_Rcst r2)
| CMinus r1 r2 => (R_of_Rcst r1) - (R_of_Rcst r2)
| CMult r1 r2 => (R_of_Rcst r1) * (R_of_Rcst r2)
| CInv r =>
if Qeq_bool (Q_of_Rcst r) (0 # 1)
then R0
else Rinv (R_of_Rcst r)
| COpp r => - (R_of_Rcst r)
end.
Lemma Q_of_RcstR : forall c, IQR (Q_of_Rcst c) = R_of_Rcst c.
Proof.
induction c ; simpl ; try (rewrite <- IHc1 ; rewrite <- IHc2).
apply IQR_0.
apply IQR_1.
reflexivity.
unfold IQR. simpl. rewrite Rinv_1. reflexivity.
apply Q2R_plus.
apply Q2R_minus.
apply Q2R_mult.
rewrite <- IHc.
apply IQR_inv_ext.
rewrite <- IHc.
apply Q2R_opp.
Qed.
Require Import EnvRing.
Definition INZ (n:N) : R :=
match n with
| N0 => IZR 0%Z
| Npos p => IZR (Zpos p)
end.
Definition Reval_expr := eval_pexpr Rplus Rmult Rminus Ropp R_of_Rcst N.to_nat pow.
Definition Reval_op2 (o:Op2) : R -> R -> Prop :=
match o with
| OpEq => @eq R
| OpNEq => fun x y => ~ x = y
| OpLe => Rle
| OpGe => Rge
| OpLt => Rlt
| OpGt => Rgt
end.
Definition Reval_formula (e: PolEnv R) (ff : Formula Rcst) :=
let (lhs,o,rhs) := ff in Reval_op2 o (Reval_expr e lhs) (Reval_expr e rhs).
Definition Reval_formula' :=
eval_sformula Rplus Rmult Rminus Ropp (@eq R) Rle Rlt N.to_nat pow R_of_Rcst.
Definition QReval_formula :=
eval_formula Rplus Rmult Rminus Ropp (@eq R) Rle Rlt IQR N.to_nat pow .
Lemma Reval_formula_compat : forall env f, Reval_formula env f <-> Reval_formula' env f.
Proof.
intros.
unfold Reval_formula.
destruct f.
unfold Reval_formula'.
unfold Reval_expr.
split ; destruct Fop ; simpl ; auto.
apply Rge_le.
apply Rle_ge.
Qed.
Definition Qeval_nformula :=
eval_nformula 0 Rplus Rmult (@eq R) Rle Rlt IQR.
Lemma Reval_nformula_dec : forall env d, (Qeval_nformula env d) \/ ~ (Qeval_nformula env d).
Proof.
exact (fun env d =>eval_nformula_dec Rsor IQR env d).
Qed.
Definition RWitness := Psatz Q.
Definition RWeakChecker := check_normalised_formulas 0%Q 1%Q Qplus Qmult Qeq_bool Qle_bool.
Require Import List.
Lemma RWeakChecker_sound : forall (l : list (NFormula Q)) (cm : RWitness),
RWeakChecker l cm = true ->
forall env, make_impl (Qeval_nformula env) l False.
Proof.
intros l cm H.
intro.
unfold Qeval_nformula.
apply (checker_nf_sound Rsor QSORaddon l cm).
unfold RWeakChecker in H.
exact H.
Qed.
Require Import Coq.micromega.Tauto.
Definition Rnormalise := @cnf_normalise Q 0%Q 1%Q Qplus Qmult Qminus Qopp Qeq_bool.
Definition Rnegate := @cnf_negate Q 0%Q 1%Q Qplus Qmult Qminus Qopp Qeq_bool.
Definition runsat := check_inconsistent 0%Q Qeq_bool Qle_bool.
Definition rdeduce := nformula_plus_nformula 0%Q Qplus Qeq_bool.
Definition RTautoChecker (f : BFormula (Formula Rcst)) (w: list RWitness) : bool :=
@tauto_checker (Formula Q) (NFormula Q)
runsat rdeduce
Rnormalise Rnegate
RWitness RWeakChecker (map_bformula (map_Formula Q_of_Rcst) f) w.
Lemma RTautoChecker_sound : forall f w, RTautoChecker f w = true -> forall env, eval_f (Reval_formula env) f.
Proof.
intros f w.
unfold RTautoChecker.
intros TC env.
apply (tauto_checker_sound QReval_formula Qeval_nformula) with (env := env) in TC.
rewrite eval_f_map in TC.
rewrite eval_f_morph with (ev':= Reval_formula env) in TC ; auto.
intro.
unfold QReval_formula.
rewrite <- eval_formulaSC with (phiS := R_of_Rcst).
rewrite Reval_formula_compat.
tauto.
intro. rewrite Q_of_RcstR. reflexivity.
apply Reval_nformula_dec.
destruct t.
apply (check_inconsistent_sound Rsor QSORaddon) ; auto.
unfold rdeduce. apply (nformula_plus_nformula_correct Rsor QSORaddon).
now apply (cnf_normalise_correct Rsor QSORaddon).
intros. now apply (cnf_negate_correct Rsor QSORaddon).
intros t w0.
apply RWeakChecker_sound.
Qed.